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The global surface temperature has witnessed a warming hiatus in the first

decade of this century, but how this slowing down of warming will impact

spring phenology over Pan-Third Pole remains unclear. Here, we combined

multiple satellite-derived vegetation indices with eddy covariance datasets to

evaluate the spatiotemporal changes in spring phenological changes over the

Pan-Third Pole. We found that the spring phenology over Pan-Third Pole

continues to advance at the rate of 4.8 days decade-1 during the warming

hiatus period, which is contrasted to a non-significant change over the

northern hemisphere. Such a significant and continued advance in spring

phenology was mainly attributed to an increase in preseason minimum

temperature and water availability. Moreover, there is an overall increasing

importance of precipitation on changes in spring phenology during the last four

decades. We further demonstrated that this increasingly negative correlation

was also found across more than two-thirds of the dryland region, tentatively

suggesting that spring phenological changes might shift from temperature to

precipitation-controlled over the Pan-Third Pole in a warmer world.

KEYWORDS

spring phenology, alpine vegetation, asymmetric warming, water availability,
warming hiatus
1 Introduction

Vegetation phenology represents timing of the key vegetation developmental events

in the seasonal cycle and is deemed as a sensitive indicator of climate change (Stocker

et al., 2014). The ongoing climate warming has generally advanced spring phenology,

delayed autumn phenology, and extended the growing season length (Menzel et al., 2006;
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Piao et al., 2006; Jeong et al., 2011; Gill et al., 2015). These

changes in vegetation phenology are not only sensitive to climate

change but also play a fundamental role in regulating regional

carbon fluxes (Jin et al., 2016; Piao et al., 2017), water balance

(Peñuelas et al., 2009), and energy exchange (Richardson et al.,

2013). It is therefore imperative to assess the vegetation

phenology changes and their underlying drivers to advance the

understanding of how terrestrial ecosystems respond to

changing climate (Badeck et al., 2004; Zhang et al., 2004; Pau

et al., 2011; Tang et al., 2016; Piao et al., 2019; Shen et al., 2022).

The Pan-Third Pole encompasses Euro Asia high-land and

its surroundings and covers the core region of the Belt and Road

Initiative (Yao et al., 2017). The region distributes various

ecologically fragile ecosystems known for high elevation and

high aridity, and is therefore particularly vulnerable to drastic

climate change. However, compared to the northern high

latitude, assessment of vegetation phenology changes and its

underlying mechanisms over the Pan-Third Pole has received

much less attention. Previous studies focused on part of the Euro

Asia high-land, have revealed general advances in spring

phenology (Menzel et al., 2006; Shen et al., 2015; Shen et al.,

2022), but the advancing magnitude differed among areas. For

example, over the Tibetan Plateau, a series of research based on

satellite data found an advancing trend in spring phenology

from 1982 to the mid-1990s, but the advance slowed down after

the mid-1990s (Yu et al., 2010; Chen et al., 2011; Piao et al., 2011;

Shen, 2011; Shen et al., 2011). While a continued advance in

spring phenology in the first decades of this century, was found

in the western TianshanMountains, Ili Valley (Yang et al., 2022),

and the northern Alps of European (Meng et al., 2021). What’s

more, a significant slowing down of spring phenology during

2000-2011 were found in the lowland of the Pan-Third Pole (Fu

et al., 2014), with even slight delaying trends detected in the

south-western Tibetan Plateau (Shen et al., 2022) and high

altitude (>2500 m) of Tianshan Mountains in central Asia

(Ding et al., 2022), and French Alps (Asse et al., 2018).

To date, a comparative analysis of spatiotemporal change in

spring phenology and its drivers over the Pan-Third Pole is still

lacking. Previous studies show daytime maximum temperature

(Tmax) and nighttime minimum temperature (Tmin) has a

divergent impact on regional spring phenology (Piao et al.,

2015; Shen et al., 2016). Precipitation is detected as the main

driver in the dryland of Central Asia, with faster advancement in

dryland spring phenology (Kariyeva and van Leeuwen, 2011;

Kariyeva and van Leeuwen, 2012). In this way, the spatial

divergence in temporal trend in spring phenology may be

attributed to the spatial variation in Tmax, Tmin, or

precipitation over Pan-Third Pole. Moreover, the global mean

temperatures witnessed a widespread warming hiatus in the first

decade of this century. A recent study, using several eddy

covariance data and multi-remote sensed data, suggested that

there is no widespread trend in spring phenology over the

northern hemisphere during the warming hiatus (Wang et al.,
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2019). While all the eddy covariance data used in the analysis are

distributed in North America or Europe, it remains unclear how

the slowing down of warming impacts the spring phenology over

the Pan-Third Pole.

Here, we examined spatiotemporal change in spring

phenology and its underlying mechanisms over the Pan-Third

Pole. First, we extracted the spring phenology in the Pan-Third

Pole based on multiple satellite-based proxies and validated

multiple satellite-based results by the eddy covariance data

(EC). Then we examined change in spring phenology over the

past four decades (1982–2015), with special attention to the

warming hiatus period. We hypothesize that the asymmetric

warming between daytime and nighttime temperature and

change in precipitation might contribute to the spatial

divergence in temporal trend in spring phenology over the

Pan-Third Pole. This study aimed to (1) explore how spring

phenology changed over the Pan-Third Pole during the warming

hiatus, (2) determine the climatic factors regulating spring

phenology, and (3) analyze whether those climate regulating

factors changed as with climate change changes.
2 Material and methods

2.1 Study area

Pan-Third Pole covers the Euro-Asian highland, including

Tibetan Plateau, Pamir, Hindu Kush, Tianshan, Iranian Plateau,

Caucasus, Carpathians, and surrounding regions. The Pan-

Third Pole covers more than 20 million km2 in area and is

environmentally related to more than 2/3 of global humanity

(Yao et al., 2017). Over the past 40 years, the Pan-Third Pole has

experienced significant warming, far surpassing the global

average, while this warming has witnessed a significant

slowing down, and is known as warming hiatus (An et al.,

2016; Huang et al., 2017).

The vegetation of the Pan-Third Pole mainly includes forests

(south of the Tibetan Plateau, Alps 36.0% of the total region);

grassland (Tibetan Plateau, Pamir, Tianshan Mountains, etc.

32.3% of the total region); cropland (Alps, Yunnan-Guizhou

Plateau, 17.0% of the total region); shrub (Iranian Plateau, Kazak

Hills 14.8% of the total region). To avoid the weak seasonal

vegetation index signal of subtropical evergreen vegetation, the

broad-leaved forest in southeast TP was not included in this

study (0.1% of the total region).
2.2 Datasets

2.2.1 Satellite-based vegetation proxies
To assess the spring phenology, we used two satellite‐derived

vegetation proxies, including Normalized Difference Vegetation

Index (NDVI) and Solar-induced Chlorophyll Fluorescence (SIF)
frontiersin.org
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from different sensors, to characterize spring phenology over the

Pan-Third Pole. Specifically, we considered two NDVI datasets

provided by Advanced Very High-Resolution Radiometer

(AVHRR) sensors onboard NOAA satellites (Tucker et al.,

2005) (hereafter NDVI3g) and the Moderate Resolution

Imaging Spectroradiometer (MODIS) sensors onboard Terra

and Aqua (Didan, 2015) (hereafter NDVIm). NDVI3g dataset

was developed by the GIMMS group from the AVHRR sensors

with a spatial resolution of one-twelfth of 1° (~10 km) and a 15‐

day time step and is currently the longest continuous NDVI time

series (1982–2015). NDVIm was extracted from MODIS

MOD13A1 product (Collection 6), and has the 16-day time

step, with a spatial resolution of ~500 m, and covers the period

2001–2015. SIF data which is a proxy for gross primary

productivity, a daily SIF product (Köhler et al., 2015) was used

to derive spring phenology. All the data sets are aggregated to a

spatial resolution of 0.5° × 0.5° using bilinear interpolation to

ensure consistency of analysis between the different products.

2.2.2 Eddy covariance flux sites
We used sixteen eddy covariance observations to validate

satellite-based spring phenology across the Pan-Third Pole. All

the data were processed according to the standard protocol of

the FLUXNET data set (Reichstein et al., 2005), e.g. data filtering,

gap filling, and flux partitioning of those measurements. Noted

eddy covariance observations are very sparse and mainly

distributed in Europe and eastern TP.

2.2.3 Climate data
To assess the impact of climate data on spring phenology, we

compiled daytime maximum temperature, nighttime minimum

temperature, and daily mean temperature, precipitation, and

insolation with a spatial resolution of 0.5 × 0.5° covering the

period 1982-2015 from Climatic Research Unit‐National

Centers for Environmental Prediction (CRU‐NCEP) climate
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dataset (Viovy, 2018). Besides, to validate the robustness of

temperature changes, we also compiled data from the Climate

Research Unit, University of East Anglia (CRU) and National

Weather Service National Centers for Environmental Prediction

(NOAA NCEP) at the spatial resolution of 0.5 × 0.5° covering

the period 1982-2015.

2.2.4 Landcover data and dryland region
Vegetation‐type data for the Pan Third Pole were extracted

from the GLC2000 landcover map generated by the European

Commission’s Joint Research Centre and VEGETATION

sensors on the SPOT4 satellite (Bartholome and Belward,

2005). The data provides multi-scale spatial resolution

products. The original vegetation types were aggregated into

the following six categories: broadleaf forest, mixed forest,

needleleaf forest, shrubland, grassland, and cropland (Figure 1).

The aridity index, defined as the ratio of precipitation to

evapotranspiration (AI), were calculated based on CRU datasets.

The dryland region, with AI< 0.5, occupies 64.9% of the Pan-

Third Pole (Supplementary Figure 1).
2.3 Analyses

2.3.1 Determination of spring phenology based
on multi-satellite vegetation proxies

Here we used consistent processing flow for different satellite

datasets. Specifically, we first removed the snow effect before the

processing (Wang et al., 2013). Here when the average

temperature of five days falls below 0℃, the reflectance from

satellite data might be affected by snow. We replaced those

values with information from the nearest day without snow.

Then we fitted the original time series datasets (eg. NDVI,

SIF) using the Gaussian function. The Gaussian function is

usually expressed as (Cong et al., 2012):
FIGURE 1

Distribution of vegetation type over the Pan-Third Pole. Vegetation type from the Global Land Cover 2000 (GLC2000) project uses the FAO
Land Cover Classification System.
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VI(t)  =  a  + b � e  −
t − c
2

� �2

Where is the Julian date, VI(t) is the fitting VI value of date t,

and a, b, c, and d are the fitting coefficients of the gaussian curve

using the least square method. Gaussian curves are also known

as “normal curves” with single peaks and symmetrical edges, so

this fitting method is more suitable for the Pan Third Pole, where

time series of vegetation proxies usually have only a single peak.

Besides, to ensure the robustness of changes in spring

phenology, we also used other four data filtering methods

(cubic spline, HANTS, Timesat, and polyfit) to extract spring

phenology, following (Cong et al., 2012; Cong et al., 2013; Cong

et al., 2021).

Thirdly, we determined spring phenology as the date with

the maximum change ratio as follows.

VIratio(t)  =  
VI(t  + 1)  − VI(t)

VI(t)

The type of VI(t) is the VI value at time t, VIratio(t) is in the

vegetation index of the relative change rate of time . In other

words, the maximum value of VIratio(t) is the time when the

vegetation index time series has the maximum change. This

maximum change ratio algorithm provides a dynamic threshold

for phenology extraction and is widely adopted for large-scale

phenology extraction (White et al., 2009).

2.3.2 Statistical analysis
The spatiotemporal trends of spring phenology and

temperature were calculated by a linear regression model using t

test at the 95% significance level. To reveal the interannual

associations between each climate driver and spring phenology,

we calculated the partial correlation between spring phenology and

one driver (e.g. Tmin), after controlling changes in other drivers

(e.g. Tmax, precipitation and insolation). Here, the preseason

climate drivers were considered, with the length of preseason for

each pixel is calculated as the period before spring phenology with

maximized partial-correlation coefficient between preseason climate

driver (e.g. Tmin) and spring phenology (controlling the effects of

other drivers e.g. Tmax, precipitation and insolation).
3 Results

3.1 Spatiotemporal changes in spring
phenology over Pan Third Pole

We first depicted the spring phenology based on three

vegetation proxies, including NDVI from GIMMS (NDVI3g),

MODIS (NDVIm), and SIF from Global Ozone Monitoring

Experiment-2 (GOME-2). To evaluate the robustness of our
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satellite-based spring phenology datasets, we resorted to sixteen

eddy covariance sites recording daily Gross Primary Productivity

(GPP) variation (Supplementary Figure 2 and Supplementary

Table 1), and extracted spring phenology as the date at which

daily GPP rises above 15% of the multi-year daily GPP maximum

(Richardson et al., 2010). Our results showed that satellite-derived

spring phenology results are consistent with EC observations, with

high correlations (R) ranging from 0.76 to 0.94, and the root-

mean-square difference between 11 and 4 days (Supplementary

Figure 3). Notably, the SIF-derived result has a better statistical

performance in capturing phenology, with a smaller difference (3

± 7 days) than that of the NDVI-derived result (16 ± 14 and 20 ±

19 days for NDVI3g and NDVIm). For example, for the CN-HaM

sites, dominated by alpine grassland, and experiencing low annual

temperature (2.4°C) and arid climate (annual precipitation ~

370 mm), the NDVI-derived spring phenology (NDVI3g: 117

day of year, NDVIm: 135 day of year) diverge 28-10 days from

that of SIF-derived results (145 day of year).

The climatological spring phenology based on multiple proxies

reveals a consistent spatial gradient from west to east, with earlier

spring phenology in the Alps (109 ± 20 days) and Iranian Plateau

(122 ± 32 days), and a much later one in the Tibetan Plateau (144 ±

24 days) and the Tianshan Mountains (140 ± 29 days) (Figure 2).

Besides, the spring phenology delayed progressively along the

increase of elevation, with the high elevation showing remarkable

later spring phenology than the low one (138 ± 36 days > 3000m vs.

104 ± 42 days< 3000 m). Here, since different proxies have a

generally consistent pattern in spring phenological changes, we,

therefore, use the longest records derived from NDVI3g hereafter,

to reveal changes in spring phenology during 1982–2015, with a

special emphasis on the changes after 1998, a period when the

global warming hiatus occurred.

The spring phenology significantly advanced at the rate of 4.5

days decades-1 (P< 0.01) across the Pan Third Pole during the

whole period (1982–2015). Furthermore, we found that the

advance rate of spring phenology is 5.9 days decades-1 (P< 0.01)

before 1998, and this rate only slow down by 18.6% after 1998 and

is still significant at the 99% significance level (4.8 days decades-1,

P< 0.01). This significant advance rate was also observed during

2000–2015 using the NDVIm-derived spring phenology (4.6 days

decades-1, P< 0.01), and was robust to the use of phenology

extraction method (Supplementary Figure 4). Meanwhile, we

resorted to multiple temperature records to examine the

warming trend in the preseason period. Here the length of

preseason for each pixel is searched as the period before spring

phenology with maximized partial-correlation coefficient between

preseason mean temperature and spring phenology (controlling

the effects of precipitation and insolation). Evidence from three

temperature datasets (CRUNCEP, CRU, and NOAA NCEP)

shows a consistent slowing down of the warming rate (0.5 ± 0.1
frontiersin.org
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vs. 0.02 ± 0.04°C decades-1 before and after 1998) over the Pan-

Third Pole (Figures 3 and Supplementary Figures 5A1, A2). A

similar consistent slowing down was found for spring (March-

May) temperature. We therefore documented a continued spring

phenological advance during the warming hiatus period over the

whole Pan-Third Pole.

Spatially, the continued advance of spring phenology is widely

observed across the studied area (~74.0% and 59.2% for the period

of 1982–2015, 1999–2015), which could be mainly found in the

Alps, Iranian plateau, and east of Tibetan Plateau (Figures 4).

Only 19.5% of the region had delayed spring phenology, which is

scattered and distributed in part of the southern Alps, Pamir

plateau, and the southern Tibetan Plateau. Most notably, using the

aridity index defined as the ratio of precipitation to

evapotranspiration (AI), the dryland region (AI< 0.5) which

occupies 64.9% of the Pan-Third Pole has a larger advance rate

(3.6 days decades-1, P< 0.01) than the sub-humid (AI > 0.5) region

(3.4 days decades-1, P< 0.01). The results are also robust to the use

of NDVIm-derived phenology (Figure 4D).
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3.2 Drivers of temporal changes in
spring phenology

We observed a widespread continuous advance in spring

phenology, but this signal cannot be explained by changes in

mean temperature. To reveal mechanisms behind the

decoupling between mean temperature and spring phenology,

we focused on two possible effects: the effect of asymmetric

warming between daytime and nighttime, and the effect of

precipitation, especially over the dryland region. According to

temperature records based on three datasets (CRUNCEP, CRU,

and NOAA NCEP), there exists widespread asymmetric

warming between daytime and nighttime over the Pan-Third

Pole. We found that only the daytime maximum temperature

(Tmax) showed the warming hiatus, and there was a slight

cooling trend after 1998 (-0.1°C decades-1, P > 0.1). While, the

nighttime minimum temperature (Tmin) shows a continuous

warming trend after 1998 (0.4°C decades-1, P< 0.05). We then

detrended all the quantities and calculated the partial-
A

B

C

FIGURE 2

Multi satellites-based vegetation spring phenology in the Pan-Third Pole. (A) Spring phenology from GIMMS Normalized difference vegetation
index (NDVI3g), and the period is from 1982 to 2015. (B) Spring phenology from Moderate Resolution Imaging Spectroradiometer (MODIS) C6
(NDVIm), and the time period 2001 to 2015. (C) Spring phenology from Solar‐Induced chlorophyll Fluorescence (SIF), and the period is from
2007 to 2015. All spatial distribution patterns represent the mean value of their period respectively.
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correlation coefficients between spring phenology and preseason

temperature (Tmax and Tmin). The inter-annual variation of

spring phenology was significantly negatively correlated with

preseason Tmin (R = -0.47, P< 0.05), but not with Tmax (R =

-0.27, P > 0.1) (Figures 5A1, B1). Moreover, the significant effect

of Tmin on spring phenology persists across the entire period (R

= -0.68 and -0.61, P< 0.05, before and after 1998), with the

increase of Tmin advancing spring phenology during the

warming hiatus period using the metric of daily mean

temperature. Our results are also robust to the analysis

without the detrending of temperature variables. The

continued significant effect of Tmin was also found using a

15-year sliding window (Figures 6A, C). In addition, spatial

analysis between spring phenology and preseason Tmin reveals

large spatial heterogeneity, with a significant negative correlation

mainly distributed over the Tibetan Plateau, the Iranian Plateau,

Pamirs, and Tianshan Mountain (Figure 5A2).

In addition, the Pan-Third Pole also includes part of the

lowland with an elevation below 3000 m, such as the part of the

region in the Alps and Iranian plateau. We also take a closer look

at different altitude bands separately for regions above and below
Frontiers in Plant Science 06
3000 m and find a shift in the impact of Tmax on spring

phenological changes for regions below 3000 m. Most notably,

there is a shift in the Tmax impact in regions below 3000 m, and

the negative impact shifted from significant (R = -0.72, P< 0.05)

during the first period (1982-1998) to non-significant (R = -0.41,

P > 0.1) during the second period (1998-2015) (Figure 5B1). By

contrast, the negative effect of Tmax on spring phenological

advance for high elevation is non-significant in both periods (R =

-0.35 and -0.17, P > 0.1, before and after 1998) (Figure 5B2).

We then focused on the effect of moisture availability on

spring phenological changes over the dryland region. We found

that the partial correlation coefficient between spring phenology

and preseason precipitation increased from non-significant (R =

-0.14, P > 0.1) before 1998 to significant (R = -0.53, P< 0.05) after

1998 (Figures 5C1, C2). To test the robustness of such enhanced

correlation, we further calculated the partial correlation between

spring phenology and preseason precipitation using a 15-year

sliding window (Figures 6B, D). Our results show that the absolute

value of the negative impact of the preseason precipitation on

spring phenology significantly increased across the entire period

of 1982-2015. This increasingly negative correlation was also
A

B

C

FIGURE 3

Multi satellites-based vegetation spring phenology in the Pan-Third Pole. (A) Spring phenology from GIMMS Normalized difference vegetation
index (NDVI3g), and the period is from 1982 to 2015. (B) Spring phenology from Moderate Resolution Imaging Spectroradiometer (MODIS) C6
(NDVIm), and the time period 2001 to 2015. (C) Spring phenology from Solar‐Induced chlorophyll Fluorescence (SIF), and the period is from
2007 to 2015. All spatial distribution patterns represent the mean value of their period respectively.
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A1

B1

C1

A2

B2

C2

FIGURE 5

The relationship of the spring phenology with preseason Tmax, Tmin, and Precipitation during 1982–2015 over the Pan-Third Pole. Partial-
correlation coefficients (R) between preseason Tmin (A), Tmax (B) precipitation (C) after controlling for other factors. Here we also controlled
insolation in the analysis. The dots indicate the regions with significant correlation coefficients (P< 0.05) and the asterisk indicate the regions
with a significant correlation (P< 0.05).
A B

DC

FIGURE 4

Spatial distribution of changes in spring phenology over the Pan-Third Pole. (A) Changes in regionally spring phenology across Pan-Third Pole
over the period 1982–2015. (B) Changes in spring phenology derived from GIMMS Normalized difference vegetation index (NDVI3g) during 1982
– 2015 (C), 1999 – 2015 (D), and from Moderate Resolution Imaging Spectroradiometer (MODIS) C6 (NDVIm) during 2001 – 2015. The dots
indicate the regions with a significant trend in spring phenology (P< 0.05).
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found across more than two-thirds of the dryland region. We

therefore concluded that there is continuous control of Tmin and

increasing importance of precipitation control on spring

phenological changes.
4 Discussion

4.1 Continuous significant advance
in spring phenology over the
Pan-Third Pole

There is evidence from satellite and eddy-based results

showing no advancing (or delaying) trends in spring

phenology over the Northern Hemisphere during the warming

hiatus (Wang et al., 2019). By contrast, our analysis shows that

the spring phenology advanced significantly during the warming

hiatus period over the Pan-Third Pole. This continuous

significant advance in spring phenology can also be supported

by regional studies. For example, based on the long-term in situ

observations (site number = 21), Zheng et al. (2016) reveal the

spring phenology of herbaceous plants significantly advanced

during the first decades of this century. Shen et al. (2022)

provided an overview of changes in spring phenology over the

Tibetan Plateau and showed a continuous significant advance,

with the advancing rate during the period 2000-2020 ranging

from 2.1 days decades-1 (from CSIF) to 4.0 days decades-1 (from

MODIS EVI and NDVI). Our analysis using NDVI3g (only have

the data before the year 2015) also shows a significant advance at

the rate of 3.8 days decades-1 over the Tibetan Plateau. Similar

results were also found in Central Asia (Hyrcanian Forests of

Iran). Kiapasha et al. (2017) showed that spring phenology
Frontiers in Plant Science 08
advanced at the rate of 1.6 days decades-1, with more than

85% of the region showing non-significant trends.

To our best knowledge, this is the first study focused on the

spring phenology over the Pan-Third Pole, and provided

satellite-based evidence about how spring phenology changes

and their controls, especially during the warming hiatus.

Although we detect generally consistent significant advancing

trends in spring phenology based on both NDVI3g and NDVIm

datasets, there are still large uncertainties in the magnitude and/

or sign of trends between different products (Peng et al., 2017;

Moon et al., 2021; Ma et al., 2022). These inconsistencies could

stem from the following factors: biological meaning (leaf

emergence or plant photosynthesis), extraction methods (Cong

et al., 2012), spatial and temporal resolution (different levels of

mixed pixel effect, and different observation frequency) (Zhang

et al., 2003; Zhang et al., 2009; Melaas et al., 2013; Shen et al.,

2014; Tian et al., 2020; Tian et al., 2021), the BRDF effect (solar

illumination angle and satellite view angle) (Morton et al., 2014;

Ma et al., 2019; Petri and Galvao, 2019; Ma et al., 2020; Norris

andWalker, 2020; Lu et al., 2022), and effects due to atmospheric

(aerosols, clouds, and hazes) (Chen et al., 2004; Cai et al., 2017)

or snow (Wang et al., 2013). For example, Yu et al. (2010) found

a spring phenology started to slowing down in the mid-1990s.

Zhang et al. (2013) documented continued advances, but with a

substantially larger advance rate than in situ observations (Qi

et al., 2006), possibly due to different processing procedure, e.g.

ignoring the snow effect on non-growing season NDVI (Wang

et al., 2013; Shen et al., 2013). The currently available longest

eddy covariance data over Pan-Third Pole is only several years,

and these measurements could then not be robustly used to

validate satellite-derived trends. Therefore, the continued

accumulation of field measurements is highly necessary to give
A B

DC

FIGURE 6

Spatial and temporal distribution of the partial correlation coefficients (R) between spring phenology and per-season climate. The 15-year sliding
window were used to estimate trends in partial correlation between spring phenology and Tmin (A, C) and precipitation (B, D).
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a quantitative evaluation of the uncertainties in depicting

spring phenology.
4.2 Continuous impact of minimum
temperature on the spring phenology

In the cold area including the alpine and high-altitude

regions, the temperature has been clearly deemed as the major

driver for spring phenology (Park et al., 2016; Richardson et al.,

2018). Higher temperatures during the preseason could

accelerate physiological progress by increasing the heat

accumulation rates (e.g. temperature exceeds a given

threshold) for the leaf’s development (Körner and Basler,

2010; Luedeling et al., 2013). We showed that Tmin rather

than Tmax facilitated changes in spring phenology. The strong

control of Tmin on spring phenology was also found in recent

analysis over the Tibetan Plateau (Shen et al., 2016), and the

spring phenology is more sensitive to Tmin instead of Tmax in

the central, eastern, and north-eastern parts of the Tibetan

Plateau, with the increase in Tmin significantly advancing

spring phenology by 4.2 days °C-1. The major climatic control

of Tmin can also be found in tree-ring data over the eastern and

south-eastern Tibetan Plateau, with the increase in Tmin

advancing the initiates of xylem cell differentiation in trees

(Yang et al., 2017). The increase in Tmin could effectively

reduce the risk of deadly frosts (Inouye, 2008), and therefore

allow some opportunistic species to leaf out earlier and thus be

observed (Basler and Körner, 2012). Besides, the increase in

Tmin could also influence available soil nutrients mediated by

microbial activity (Basler and Körner, 2012; Heberling et al.,

2019; Lee and Ibanez, 2021). Specifically, an increase in Tmin

has the potential to remove the low-temperature restriction on

microbial activity, and thus provide more available nitrogen

(Heberling et al., 2019), which is beneficial to the dormancy

release and growth recovery of plants. The significant impact of

Tmin on spring phenological change was found in more than

76% of the high-elevational region (> 3000 m), suggesting a

universe driver for the alpine region.
4.3 Increasingly importance of
precipitation control on the dryland
spring phenology

In contrast to temperature, the impact of precipitation on

spring phenological changes has been understudied (Shen et al.,

2011; Shen et al., 2015). Here we demonstrated that precipitation

has a significant impact on spring phenology over the Pan-Third

Pole during the warming hiatus period. This is because higher

precipitation could be more likely to meet the water requirement
Frontiers in Plant Science 09
for initiating leaf establishment, therefore advancing the spring

phenology in the dryland region. Our analysis further provided

satellite-based evidence that precipitation is playing an

increasingly important role in spring phenology over the Pan-

Third Pole dryland, with partial correlation changes from non-

significant to significant. The significant impact of precipitation

on spring phenological changes was also found in long-term

manipulations, with the treatments of experimentally increased

precipitation advancing spring phenology (leaf-out onset) in

alpine meadows of the Tibetan Plateau (Ji et al., 2019). The

strong influence of preseason (May–June) precipitation on the

start of xylem cell differentiation was also found in tree ring

analysis (Yang et al., 2017). Besides, previous studies also show

spring phenology is sensitive to changes in precipitation in dry

regions (Shen et al., 2015) and dry years (Ganjurjav et al., 2020).

Other factors should be considered in further analysis. For

example, changes in snowmelt time (Wang et al., 2018), snowfall

(Chen et al., 2015), soil nutrients (Thackeray et al., 2008; Xi et al.,

2015; Yin et al., 2017; Fu et al., 2019) and grazing may impact

spring phenology. Here, we did not consider winter chilling and

photoperiod in the analysis, since the underlying mechanism

over alpine grassland is unclear, but mounting evidence have

shown winter chilling and photoperiod may influence tree

phenology in lowland region (Cong et al., 2017).
5 Conclusions

In summary, we used multi-source remote sensing data to

provide a systematic assessment of the spring phenology changes

over the Pan-Third Pole. Our analysis reveals that asymmetric

warming and increased water availability contributed to a

significant advance in the spring phenology during the mean

temperature warming hiatus period. Moreover, we also detected

an increasingly important role of precipitation in spring

phenology. Given that the Pan-Third Pole is projected to

warm faster than the global average, the climate control of

spring phenological changes might shift from temperature to

precipitation over the Pan-Third Pole. Besides, the earlier start of

the growing season may lead to enhanced vegetation growth

(Gao et al., 2022), but can increase water scarcity during the

summer (Lian et al., 2020). How the changes in spring

phenology over Pan-Third Pole affect regional carbon and

water flux still need further exploration.
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