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Editorial on the Research Topic

Multi-omics and computational biology in horticultural plants: From
genotype to phenotype
Horticultural plants complement our food requirements from major agronomic

crops by providing a vast range of bioactive compounds, vitamins, and minerals along

with carbohydrates, reducing sugars, organic acids, proteins, and fats. They play an

important role for humans by providing herbal medicines, beverages, vegetables, fruits,

spices, and ornamentals. In recent years many horticultural plant genomes have been

sequenced (Chen et al., 2019; Zhang et al., 2020; Liang et al., 2022) and multi-omics

technologies have surfaced marker-trait association, gene expression patterns, differential

gene and protein abundance along with the understanding of regulatory RNA

(Hermanns et al., 2020; Luo et al., 2021). In a nutshell, high-throughput technologies

have revolutionized the time scale and power of detecting insights into physiological

changes and biological mechanisms in plants (Zhang and Hao, 2020; Li et al., 2022; Liang

et al., 2022). All sequencing data and tools have helped us better understand the

evolutionary histories of plants and provide genotype resources for molecular studies

on economically important traits (Zhang et al., 2020; Zhou G. et al., 2022). The

integration of these -omics technologies (e.g., genomics, transcriptomics, proteomics,

metabolomics, lipidomics, ionomics, and redoxomics, etc.) is currently at the forefront of

plant research. The genomes of horticultural plants are highly diverse and complex, often

with a high degree of heterozygosity and polyploidy, such as Solanum tuberosum,

modern roses, Chrysanthemum, and Eustoma grandiflorum (Hibrand Saint-Oyant
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et al., 2018; Liang et al., 2022; Sun et al., 2022; Wen et al., 2022).

Novel computational methods need to be developed to take

advantage of state-of-the-art genomic technologies. The mining

of multi-omics data and the development of new computational

biology approaches will help to generate reliable data and

efficient analysis of plant traits. This, in turn, will aid to

manipulate crop yield to address the ever-growing demand for

quality food. The integration of multi-omics data and

computational biology technologies constructs biological

networks to identify traits that can be further applied toward

horticultural crop breeding and generated more productive crop

varieties. The present Research Topic on “multi-omics and

computational biology in horticultural plants: from genotype to

phenotype” aims to combine high-throughput omics and

computational biology technologies to find a coherently

matching genotype-to-phenotype relationship or marker-trait

association in horticultural crops.

This Research Topic has published 31 articles. Of them,

three are reviews and the remaining 28 are research papers. Of

these, three reported genome sequencing of horticultural crops,

two contain research on fruit crops, three are on vegetables, two

are on spices, six are on ornamental crops, three on other

industrial crops, and the remaining twelce are on model

crop species.
Genome sequencing of horticultural
plants

A genome is the complete set of DNA sequences of an

organism and harbors all of the information required for that

organism to function, including embryogenesis, growth, and

responses to environmental cues. Unraveling such information

means opening up its potential for human exploitation and uses.

Although various techniques are now available to sequence a

whole plant genome, the assembly of such information is

difficult with most of the next-generation sequencing

platforms either involving short read or long-read sequences

(Eid et al., 2009; Clarke et al., 2009; Levy and Myers, 2016).

High-throughput Chromosome Conformation Capture (Hi-C)

is a chromosome conformation capture technique that can

generate the input materials for deep sequencing and helps in

assembling those associated DNA fragments and thus

completely connecting chromosome structure and the genomic

sequence (Belton et al., 2012). In this Research Topic, Zhou et al.

reported a high-quality chromosome-scale genome assembly of

Quercus gilva (a broad-leaf oak tree). This is the first reference

genome for section Cyclobalanopsis, using the combination of

Illumina and PacBio sequencing with Hi-C technologies. The

assembled genome size of Q. gilva was 889.71 Mb with 36,442

protein-coding genes distributed on 12 pseudochromosomes.

The analysis revealed that Q. gilva underwent considerable gene

family expansion and contraction. Ilex latifolia Thunb. is a
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subtropical evergreen tree native to China and Japan. In

addition to its ornamental functions, the tender leaves of this

plant are processed into a specific kind of tea known as

Kudingcha (Sun et al., 2011). The Ilex latifolia genome

information (Xu et al.) along with transcriptome data

predicted a total of 35,218 genes and three candidate genes for

biosynthesis of pentacyclic triterpenoid saponins responsible for

lowering blood lipid, lowering blood pressure, detoxification,

and anti-cancer effects. Amomum tsao-ko (presently known as

Lanxangia tsaoko) is an herbaceous plant of the Zingiberaceae

family rich in volatile oils and is used in traditional Chinese

medicine. Sun et al. prepared a draft genome (2.70 Gb in size,

contig N50 of 2.45 Mb) of this medicinal plant using both of

PacBio long reads and Illumina paired-end short reads and

revealed significant expansion of genes involved in secondary

metabolite biosynthesis. Notably, the 1-Deoxy-D-xylulose-5-

phosphate synthase (DXS), geranylgeranyl diphosphate

synthase (GGPPS), and cytochrome P450 (CYP450) genes were

found to play a major role in essential oil formation in amomum

tsao-ko.
Research on fruit crops

Most of the fruit crops are highly cross-pollinating and with

heterozygous genome makeup. Grafting is a well-developed

vegetative propagation technique used for fruit trees in which

a scion and rootstock are combined to form a new plant with a

blend of each plant’s characteristics and is the most important

reproduction mode for citrus production (Wu et al., 2019). In

between rootstock and scion, horticulturists also use ‘interstock’

to control scion vigor, manage high-density orchard planting,

and improve other important agronomic traits. Interstock

grafting uses different genetic material between the rootstock

and selected commercial cultivar, with the resulting plant

formed from three different individuals through a double-graft

union (Calderón et al., 2021). Liao et al. found interstocks help to

regulate the early ripening and quality of citrus fruits by

upregulating sucrose, fructose, and glucose contents, as well as

by decreasing organic acid contents. Through transcriptome

studies, they proved that the phytohormone signal is activated

by alterations in the expression levels of ERF1 (ethylene-

responsive transcription factor 1B), GA20OX2 (Gibberellic acid

20 oxidase), CKI1 (CYTOKININ-INDEPENDENT1), and TIR1

(TRANSPORT INHIBITOR RESPONSE 1). Genes related to

sugar metabolism (i.e., starch, glucose, sucrose, fructose, and

TCA cycle's metabolites) and energy metabolism or those

encoding transcription factors (TFs) (e.g., MYB52, 547, and

GRF5) were strongly affected by interstocks during fruit

ripening. Another fruit plant papaya (Carica papaya L.)

strengthens its heterozygosity by following the dioecy

mechanism of pollination control. The sex in wild papaya is

controlled by XY chromosomes, XX for females, and XY for
frontiersin.org

https://doi.org/10.3389/fpls.2022.1012277
https://doi.org/10.3389/fpls.2022.982323
https://doi.org/10.3389/fpls.2022.904178
https://doi.org/10.3389/fpls.2022.995913
https://doi.org/10.3389/fpls.2022.1073266
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mondal et al. 10.3389/fpls.2022.1073266
males (Ming et al., 2008). Previous studies have suggested that

sex differentiation in papaya may be regulated by transcription,

epigenetic DNAmethylation, and phytohormone by considering

the experiments in above-ground parts (Zhou et al., 2020; Zhou

P. et al., 2022). Zhou et al. in this Research Topic have used

transcriptomics and metagenomics to reveal differential

metabolites and soil microflora (bacteria and fungi) in the

roots and rhizosphere of male and female papaya plants.
Research on vegetable crops

Pakchoi (Brassica rapa subsp. chinensis) is an edible leafy

vegetable, cultivated for its nutritional value, particularly with

regard to vitamins, minerals, and dietary fibers (Jeon et al.,

2018). Wu et al. observed the transcriptional and genomic

structural alterations between diploid B. rapa (AA) and

artificial autotetraploid B. rapa (AAAA) using RNA-seq and

Hi-C techniques. In the autotetraploid B. rapa, eight

differentially expressed genes (DEGs) with genomic structural

variants were selected as potential candidate genes, including

four DEGs involved in photosynthesis, three DEGs related to the

chloroplast, and one DEG associated with disease resistance,

which all showed high expression in this autotetraploid. An et al.

used transcriptome sequencing in Abelmoschus esculentus to

detect fruit color-related DEGs and reveal the biological

processes and metabolic pathways associated with the related

genes. Such detection of DEGs also facilitates the development

of Expressed Sequenced Tags-Simple Sequence Repeat

(EST-SSR) primer pairs to study genetic diversity in 153 A.

esculentus varieties/lines and marker-trait association for fruit

color. In other leafy vegetable crops, Li et al. established the role

of two structural genes (dihydroflavonol-4-reductase/DFR and

anthocyanidin synthase/ANS), three Glutathione S-Transferases

(homologous to TT19), and 68 differentially expressed TFs,

especially MYB-related TFs and WRKY44 in providing purple

leaf color (rich in anthocyanins) in three Brassica napus varieties

using metabolome and transcriptome approaches.
Research on spice/medicinal crops

Zanthoxylum bungeanum Maxim. (genus: Zanthoxylum;

family Rutaceae) has recently gained significant attention from

researchers because of its applications in the pharmaceutical,

food, and cosmetic industries (Sun et al., 2019). The spicy taste

and medicinal properties of Zanthoxylum bungeanum are

imparted by several alkylamides. Zhang et al. functionally

validated the role of ZmFAD2 and ZmFAD3 in alkylamides

production through their stable and transient expression in

Arabidops i s thal iana and Nicot iana benthamiana .

Polygonatum cyrtonema Hua is one of the most useful herbs

in traditional Chinese medicine and a widely used medicinal and
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ed ib le perennia l p lant . However , the seeds have

the characteristics of epicotyl dormancy. Zhang et al. have

established the role of higher content of trans-zeatin,

proline, auxin, and gibberellin and lower content of

flavonoids and arginine in relieving seed dormancy in 6-

benzylaminopurine treated seeds through metabolomic and

transcriptome study.
Research on ornamentals

Ornamental crops have been a part of human life since

civilization began due to their aesthetic appearance that

indirectly help relieve human stress and improving the quality

of space. Chrysanthemum indicum var. aromaticum has an

intense fragrance, making it a novel resource plant for

agricultural, medicinal, and industrial applications. Zhu et al.

used integrative eal metabolome and transcriptome analyses at

three different developmental stages of this special

Chrysanthemum genotype to investigate key floral scent-

related volatile compounds and genes in its flowers.

Transcriptome analysis revealed significant DEGs and TFs

involved in the production of volatile terpenes. Bougainvillea is

known for its specialized, large, and colorful bracts, which

contrast with its tiny colorless flower. Huang et al. employed a

pan-transcriptome of bracts obtained from 18 Bougainvillea

glabra accessions to investigate the global population level

germplasm kinship and the gene regulation network for bract

color variation. Transcriptome analysis revealed seven DEGs as

an identifier of core regulation factors contributing to the B.

glabra bract color variation. Orchidaceae family in ornamental

crops harbor many premium orchids which are divided into

epiphytic, terrestrial, and saprophytic types according to their

life forms. Cellulose synthase (CesA) and cellulose synthase-like

(Csl) genes are key regulators in the synthesis of plant cell wall

polysaccharides, which play an important role in the adaptation

of orchids to resist abiotic stresses, such as drought and cold.

Wang et al. exploited available genome information from nine

orchid species with three types of life forms (epiphytic,

terrestrial, and saprophytic types) and detected eight

subfamilies of cellulose synthase A/cellulose synthase-like

(CesA/Csl) genes. Expansion of the CesA/Csl gene family in

orchids mainly occurred in the CslD and CslF subfamilies. Of

the three types of orchids, epiphytic orchids experienced greater

strength of positive selection, with expansion events mostly

related to the CslD subfamily, which might have resulted in

strong adaptability to abiotic stress in epiphytes. Dendrobium

officinale Kimura et Migo is a famous Chinese herb. D. officinale

grows on rocks where the available phosphorus is low. The SPX

family (SYG1, PHO81, and Xpr1) plays a critical role in

maintaining Pi homeostasis in plants (Li et al., 2021). Liu et al.

identified nine SPX family genes in the genome of D. officinale

and studied their role in improving phosphorus content in stem
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through molecular interaction with the Phosphate High-Affinity

Response factor in Dendrobium (DoPHR2). Availability of

genome sequence in Dendrobium officinale assisted Wang

et al. to identify 37 heat shock protein 20 (Hsp20) genes

(DenHsp20s), 43 Hsp70 genes (DenHsp70s), and 4 Hsp90

genes (DenHsp90s). These genes were classified into 8, 4, and

2 subfamilies based on phylogenetic analysis and subcellular

localization, respectively. Evolution genetics analysis revealed

seven pairs in DenHsp70s were under positive selection and

proved to be imparted strong stress tolerance in presence of

methyl jasmonate. On the other hand, Jiao et al. revealed that

treatment of protocorm-like bodies with terpenoid indole

alkaloids precursors and methyl jasmonate significantly

increased alkaloid production in Dendrobium officinale.

Different time points transcriptome under the above treatment

revealed six and seven genes related to alkaloid and JA

biosynthetic pathways, respectively that might encode the key

enzymes involved in the alkaloid biosynthesis of D. officinale.

Moreover, 13 TFs, which mostly belong to AP2/ERF, WRKY,

and MYB gene families, were predicted to regulate

alkaloid biosynthesis.
Research on industrial horticultural
crops

Horticultural crops include a vast range of plants that are

also used for industrial purposes. The Tung tree (Vernicia fordii),

a unique industrial oil tree species in China, is a monoecious

plant with wide distribution and many varieties (Cao et al.,

2019). Jiang et al. studied the properties of young and old

duplicate genes in V. fordii for the first time and identified

important duplicate genes for imparting resistance to wilt

disease. Jiang et al. analyzed five Euphorbiaceae species

(generate raw materials for the production of biodiesel and

rubber) genomes and evidenced novel mechanisms of

controlling flowering in this species that does not contain FRI

(FRIGIDA) and FLC (FLOWERING LOCUS C) genes. Wang

et al. developed barcodes of different grass species of Gramineae

by combining different barcoding genes that had a significantly

higher identification effect than using a single fragment. These

results met the requirements of DNA barcoding to locate species

in a taxonomic system (family, genus, etc.) with sufficient

phylogenetic information.
Research on model crop species

Understanding of crop biology is often fueled by research on

model crop plants. Model plant genomes have helped to isolate

homologous genes in horticultural crops. In this Research Topic,

we have displayed 12 research articles on model plants and/or

established crop plants. Jun et al. summarize a new role of
Frontiers in Plant Science 04
ARABIDOPSIS ELONGATOR PROTEIN 4 (AtELP4) in

maintaining adaxial-abaxial polarity and cell proliferation

during leaf development by epistatically act on DEFORMED

ROOTS AND LEAVES 1 (DRL1). Before the birth of the

genomics platform, we hardly know about the long noncoding

RNAs (lncRNAs) that play an important regulatory role in the

plant response to environmental stress. The soil in high-rainfall

areas often becomes acidic due to the abundance of soluble

aluminum. Thus, the aluminum tolerance mechanism is a

required field of research in horticultural crops that are grown

in such soils. The article of Gui et al. explains the role of two Al-

activated-malate-transporter-related lncRNAs in Medicago in

providing tolerance to aluminum toxicity by using a

heterologous overexpressing yeast model. Similarly, Li et al.

identified novel microRNAs in Medicago sativa that regulate

phosphate starvation response by modulating target genes

involved in carbohydrate metabolism, sulfo-lipid metabolism,

glutathione metabolism, and hormone signal transduction.

Saline-alkali soils pose an increasingly serious global threat to

plant growth and productivity. Xiong et al. studied plant growth,

transcriptional and metabolic responses of shoots to long-term

potassium deficiency in maize and found that putrescine and

putrescine derivatives were specifically accumulated in shoots

under K deficiency. Besides, genes involved in K+ acquisition

and homeostasis along with many stress-induced genes involved

in transport, primary and secondary metabolism, and regulation

were upregulated in maze shoots under K-deficiency. Ma et al.

presented a review article on the molecular mechanism of plant

responses to salt stress. They suggested deep research in

establishing any connection between nutrient signaling and

salt stress signaling to balance plant root growth and stress

tolerance in plants.

Additionally, the role of growth-regulating factors (GRFs) in

regulating leaf size was established in alfalfa (Sun et al.). On the

other hand, Zheng et al. studied the architecture of TIFY family

genes in casava and found that MeJAZ1, MeJAZ13, and

MeJAZ14 were highly up-regulated by osmotic, salt and

cadmium treatments. Zhang et al. identified five upregulated

WRKY genes, AdWRKY18 , AdWRKY40 , AdWRKY42 ,

AdWRKY56, and AdWRKY64 in Arachis duranensis under

drought stress. Shi et al. studied the role of Fusarium toxin

deoxynivalenol (DON) stress in the demethylation of the potato

genome and subsequent transcript upregulation. They found

that the differentially methylated region-associated DEGs were

significantly enriched in resistance-related metabolic pathways

and implicated the role of lower concentration of DON (5 and

35 ng/ml) in enhancing potato dry rot resistance through an

unknown mechanism similar to seed priming. Dormancy is an

important physiological attribute that controls the growth of

propagules of many horticultural crops. Zhao et al. summarized

the role of abscisic acid (ABA), gibberellic acid (GA), and light

signaling in seed germination through the direct and indirect

regulation of a core transcription factor ABSCISIC ACID
frontiersin.org
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INSENSITIVE 5 (ABI5) that represses seed germination in ABA

signaling. The authors envisioned that future works should

address the regulation of DELLA proteins by ABA, the

crosstalk of ABA and GA in regulating ABI5, and regulations

of ABI5 by PIF (phytochrome-interacting factors) and DELLA

proteins. Li et al. used dynamic comparative transcriptomic

analysis combined with weighted gene co-expression network

analysis (WGCNA) to reveal key modules and hub genes related

to the hardness and starch synthesis between the floury

endosperm and the vitreous endosperm of wax corn structure

and nutrient formation for the floury endosperm of maize.

Zhang et al. summarized different cutting-edge technologies

and theories including genome-wide association and genomic

prediction using data collected from genomics and agronomic

traits of agricultural crops and further discussed their utilities in

horticultural crop breeding. Output from such studies will

provide the key information and knowledge towards the input

of the genome editing technology such CRISPR-Cas9 in many

horticultural crops.

With increasing global climate change and a huge increase in

the human population, there are severe problems and

discrepancies between the global resources and the need of the

human population, especially in places where the local

population size is extremely large. People are facing these

challenges and trying to solve the problems by improving the

efficiency of agricultural production and keeping the balance

between environmental capability and natural resources. To

meet the need of the food requirements of the global

population, diversification of crop husbandry is of prime

concern. Cutting-edge genomics technologies, such as

CRISPR-Cas9, have facilitated towards breeding of better

breeds or varieties in major food crops (Menz et al., 2020;
Frontiers in Plant Science 05
Pixley et al., 2022). It is now time to harvest the same

magnitude of benefits in horticultural crops.
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