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Menthol mint (Mentha arvensis L., Family: Lamiaceae), popularly known as corn mint
or Japanese mint, is an important industrial crop that is widely grown for its valued
essential oil. Nitrogen (N) is an important macro-nutrient and an essential factor for
optimizing the yield and quality of crops. Hence, rapid and accurate estimation of
the N content is crucial for nutrient diagnosis in plants and to make precise N
fertilizer recommendations. Generally, N concentration is estimated by destructive
sampling methods; however, an indirect assessment may be possible based on spectral
characteristics. This study aimed to compare the foliar N concentration based on non-
destructive (reflectance) and destructive (laboratory analyses) methods in menthol mint.
Foliar N concentration was measured through the Kjeldahl method and reflectance by
Miniature Leaf Spectrometer C-710 (CID Bio-Science). Using reflectance data, several
vegetation indices (VIs), that is, normalized difference red edge (NDRE), red edge
normalized difference vegetation index (reNDVI), simple ratio (SR), green–red vegetation
index (GRVI), canopy chlorophyll content index (CCCI), photochemical reflectance index
(PRI), green chlorophyll index (CIGreen), red edge chlorophyll index (CIRedEdge), canopy
chlorophyll index (CCI), normalized pigment chlorophyll ratio index (NPCI), and structure
insensitive pigment index (SIPI), were developed to determine the foliar N concentration.
The highest correlation (r) between VIs and foliar N concentrations was achieved by
NDRE (0.89), followed by reNDVI (0.84), SR (0.83), GRVI (0.78), and CCCI (0.76).
Among the VIs, the NDRE index has been found to be the most accurate index that
can precisely predict the foliar N concentration (R2 = 0.79, RMSE = 0.18). In summary,
the N deficiencies faced by the crop during its growth period can be detected effectively
by calculating NDRE and reNDVI, which can be used as indicators for recommending
precise management strategies for the application of nitrogenous fertilizers.

Keywords: Mentha arvensis L., foliar nitrogen, spectral reflectance, vegetation index, partial least squares
regression

Abbreviations: NDRI, normalized difference red edge; reNDVI, red edge normalized difference vegetation index; SR, simple
ratio; GRVI, green–red vegetation index; CCCI, canopy chlorophyll content index; PRI, photochemical reflectance index;
CIGreen, green chlorophyll index; CIRedEdge, red edge chlorophyll index; CCI, canopy chlorophyll index; NPCI, normalized
pigment chlorophyll ratio index; SIPI, structure insensitive pigment index; PLSR, partial least squares regression; VIs,
vegetation indices; NIR, near-infrared; SWIR, shortwave-infrared.
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INTRODUCTION

Menthol mint (Mentha arvensis L., Family: Lamiaceae), popularly
known as corn mint or Japanese mint, is a short-term (90–
110 days) cash crop that is widely grown for its valued essential
oil and provides livelihood support to millions of smallholder
farmers. India is the principal producer and supplier of mint oil
in the world (about 80% global share), followed by China, Brazil,
and the United States (Khan et al., 2020). The high demand for
menthol mint oil in the global market in the last few years has
drastically increased its cultivation capacity, with around 2,50,000
hectares of land being cultivated by nearly 5,00,000 farming
families in India (Khan et al., 2020). The economic security of this
crop relies on farmers’ prosperity, which can be accomplished by
enhancing the productivity of their farms with minimal inputs.
Among the various aspects of farm inputs, fertilizers play a
vital role in improving the productivity of food and commercial
crops. The spatial and temporal variability in soil and nutrient
requirements is not uniform even within the same field, which
can be attributed to inherent soil properties, peculiar nutrient
supply, and versatile crop management practices (Dobermann
et al., 1996). Therefore, site-specific nutrient assessment is crucial
for sustainable crop production.

Nitrogen (N) is one of the most important macro-nutrients
essential for plant growth, development, and quality of the crop
(Clevers and Gitelson, 2013; Biswas and Ma, 2016). Plant growth
and development is not static but a dynamic process that requires
persistent N throughput (Kattge, 2002). N regulates a range of
cellular functions, such as growth, absorption, transportation,
excretion, etc. Moreover, it is also a major constituent of amino
acids that are the building blocks of proteins. In addition, it
indirectly helps in the process of photosynthesis via chlorophyll
production (Li et al., 2014). On one hand, insufficient N supply
to the plants can cause damage to the photosynthesis process,
thus resulting in reduced biomass and yield. On the other hand,
its excessive use can degrade soil and environmental quality,
and hence an appropriate amount of N must be supplied.
However, farmers apply excess amounts of nitrogenous fertilizers
to their fields to obtain higher yields without knowing its
harmful effects on soil and environmental health (Ju et al.,
2006). Therefore, continuous monitoring of this key plant
characteristic and precise N fertilization (adequate rate and
time) are crucial for increasing agricultural productivity while
preserving environmental sustainability.

The traditional method for N measurement is tedious and
time consuming, and is typically performed by destructive
sampling and laboratory analyses, making it difficult to fulfill the
challenges of precise crop management in large-scale agricultural
fields. In recent years, remote sensing technologies have been
established as effective methods for the non-destructive detection
of N concentration in several crops, such as rice (Tian et al.,
2011; Du et al., 2016; Yang et al., 2016; Sun et al., 2017;
Zhou et al., 2018), wheat (Hansen and Schjoerring, 2003; Zhu
et al., 2007; Feng et al., 2014; Li et al., 2014; Yao et al.,
2015), oilseed rape (Li et al., 2018), cotton (Tarpley et al.,
2000), soybean (Song and Wang, 2016), and eucalyptus (Oliveira
et al., 2017). It provides comprehensive dimensions of vegetation

indices (VIs) consistent with the optical function of biochemical
foundations, which have a theoretical advantage over traditional
measurements for the detection of N in modern agriculture.
Over the years, empirical regression algorithms have been
predominantly utilized for the N assessment based on the
vegetation spectral signatures in the agronomic context. These
methods are the most useful assessment systems that are based
on major biophysical and biochemical vegetation characteristics.
Regression models evaluate different narrowband VIs using
wavelengths primarily in the NIR, red edge, and SWIR regions
(Chen et al., 2010; Jay et al., 2017). Studies have shown that
N estimation can be related to spectral bands associated with
chlorophyll absorption due to the similarity in the region of
absorption, as N is predominantly localized in the building
blocks of chlorophyll (Baret et al., 2007; Schlemmer et al.,
2013). Subsequently, differences in chlorophyll intensities result
in substantial spectral variations, particularly in the red-edge
region, which is a critical component of the vegetation spectrum
(Main et al., 2011). Several reports have shown better retrievals
of foliar N when protein-linked absorption bands in the NIR and
SWIR regions were brought together with different narrowband
VIs (Serrano et al., 2002; Herrmann et al., 2010).

Although N assessments in different crops have been widely
reported, only a few efforts have been made in the menthol mint
crops (Singh et al., 2019). Therefore, more oriented research is
required to develop a precise and robust method intended to
estimate plant N status with high consistency and practicability
and to determine the N requirement of crops using different
sensors. Thus, this study aimed to explore different VIs and assess
their relationship with foliar N content in menthol mint crops for
precise N fertilizer management.

MATERIALS AND METHODS

Site Description
The field experimentation site (Figure 1) is located in Barabanki,
Uttar Pradesh, India (27◦03′N, 81◦17′E). It is a part of the Indo-
Gangetic Plains with a sub-humid climate and sandy loam soil.
The study area, Barabanki, has emerged as a major hub for the
production of menthol mint in the world, alone contributing to
about 60% of the global share. Apart from menthol mint, other
major crops cultivated in the district are paddy, wheat, maize,
potato, mustard, pigeon pea, okra, chilies, etc. (Khan et al., 2020).
In the present investigation, Mentha arvensis cv. Kosi, developed
by CSIR-Central Institute of Medicinal and Aromatic Plants, was
used to determine the correlation between different VIs and the
foliar N concentration based on non-destructive (reflectance) and
destructive (laboratory analyses) methods.

Foliar Nitrogen Estimation
For field destructive sampling, to represent the amount of canopy
N, the established leaves which are most recent and expanded
first below the growing point were collected for the study. In
each geo-referenced sampling point, we selected 15–20 leaves
for total N analysis in this study. Leaf samples were oven-dried
(70◦C) and powdered, and were subjected to wet digestion with
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FIGURE 1 | Location of the experimental site.

HNO3 + H2O2 by the Kjeldahl method to assess the N content
(Lang, 1958).

Measurements of Leaf Spectral
Reflectance Indices
The spectral reflectance in the range of 400–1,000 nm was
measured using a C-710 Miniature Leaf Spectrometer (CID Bio-
Science) and analyzed using SpectraSnap! software. VIs were
extensively utilized to differentiate plant nutrient concentration,
and the selection of different VIs used in this study was based on
their capacity to retrieve chlorophyll and N content according to
the methods described in the literature. The following VIs were
measured through reflectance spectra: normalized difference red
edge (NDRE), red edge normalized difference vegetation index
(reNDVI), simple ratio (SR), green–red vegetation index (GRVI),
canopy chlorophyll content index (CCCI), photochemical
reflectance index (PRI), green chlorophyll index (CIGreen), red
edge chlorophyll index(CIRedEdge), canopy chlorophyll index
(CCI), normalized pigment chlorophyll ratio index (NPCI), and
structure insensitive pigment index (SIPI) (Table 1).

Statistical Analysis and Model
Development
The relationship between VIs and foliar N concentration
was assessed through Pearson correlations (r) and a test of

significance at the level of p ≤ 0.05 in SPSS 20.0. When a
significant correlation was present between VIs and foliar N
concentration, a linear model was tested for regression analysis.
To study the linear relationship between variables, the partial
least squares regression (PLSR) model was constructed, and the
data were computed using Python 3.7.3. The standard PLSR
equation can be expressed as follows:

y=β1x1+β2x2+. . .+βixi +ε (1)

where y = response variable that represents foliar N,
xi = predictor variable representing spectral data,
βi = the estimated weighted regression coefficient, and
ε = error vector.
Partial least squares regression is the most popular linear

model that has applications in a wide range of fields
(Kamruzzaman et al., 2012; Zhang et al., 2015; Li et al., 2016,
2018). It is a robust and powerful modeling procedure in
comparison to many traditional multivariate regression models
(Sun et al., 2017; Li et al., 2018). It can efficiently analyze data
including several multi-collinear variables. In the present study,
we used N concentration as the dependent variable and VI as an
independent variable. The model was performed by the leave-
one-out cross-validation procedure to assess the validation of
model quality. In this method, all samples excluding one were
employed to build a validation model, which was subsequently
utilized to predict the rest of the samples. The cross-validation
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TABLE 1 | Different vegetation indices (VIs) used in this study.

Vegetation indexes Short Formula References

Normalized difference red edge NDRE (ρ800−ρ720)/(ρ800 + ρ720) Rouse et al., 1973

Red edge normalized difference vegetation index reNDVI (ρ750−ρ705)/(ρ750 + ρ705) Gitelson and
Merzlyak, 1994

Simple ratio SR (ρ800/ρ670) Birth and McVey,
1968

Green-red vegetation index GRVI (ρ800/ρ560) Tucker, 1979

Canopy chlorophyll content index CCCI [(ρ840−ρ717)/(ρ840 + ρ717)]/[(ρ840−ρ668)/(ρ840 + ρ668)] Fitzgerald et al.,
2006

Photochemical reflectance index PRI (ρ531−ρ570)/(ρ531 + ρ570) Gamon et al., 1997

Green chlorophyll index CIGreen (ρ730/ρ530)-1 Gitelson et al.,
2003, 2005

Red edge chlorophyll index CIRedEdge (ρ850/ρ730)-1 Gitelson et al.,
2003, 2005

Canopy chlorophyll index CCI (ρ720/ρ700) Sims et al., 2006

Normalized pigment chlorophyll ratio index NPCI (ρ680−ρ430)/(ρ680 + ρ430) Peñuelas et al.,
1994

Structure insensitive pigment index SIPI (ρ800−ρ445)/(ρ800–ρ680) Peñuelas et al.,
1995

method evaluates the predictive capability of a model and is
statistically a more comprehensive method for selecting an
appropriate number of components to be retained in the model.
The performance of PLSR was measured with the help of the R2

(coefficient of determination) and the RMSE (root-mean-square
error), which is calculated as follows:

RMSE (%) =

√∑n
i=1 (Yi−yi)

n
(2)

where Yi = N concentration of the ith sample calculated by the
equation,

yi = N concentration analyzed in the lab for “i” sample, and
n = total number of samples.
The precision of the model was considered being more

accurate when the R2 value was close to 1 and the RMSE value was
close to 0 (Zheng et al., 2018). A detailed methodology adopted
in this study for estimating foliar N concentration is shown in
Figure 2.

RESULTS

The performance of different VI (NDRE, reNDVI, SR, GRVI,
CCCI, PRI, CIGreen, CIRedEdge, CCI, NPCI, and SIPI) derived from
spectral reflectance studies was evaluated for estimating foliar N
concentration. It was observed that all the VIs significantly and
positively correlated with foliar N concentration (Table 2). In
other words, these VIs were good indicators of N concentration
in menthol mint plants. Based on the magnitude of Pearson
correlation, we categorized the estimates as high (<0.80),
medium (0.70–0.80), and low correlation (0.60–0.70) estimates.
The highest correlation between VIs and N concentrations was
retrieved by NDRE (0.89), followed by reNDVI (0.84) and SR
(0.83). Medium correlation with N concentration was shown by
the VIs GRVI (0.78), CCCI (0.76), PRI (0.71), CIGreen (0.71), and

CIRedEdge (0.71), while a weak correlation was demonstrated by
CCI (0.68), NPCI (0.68), and SIPI (0.64).

According to Zheng et al. (2018), lower RMSE and higher R2

values obtained from PLSR analysis indicate better estimation
efficiency of the foliar N content. In this context, NDRE index
showed a very strong correlation with foliar N concentration
(R2 = 0.79, RMSE = 0.18) and provides the most accurate
results among all the VIs used in this study (Figure 3). In
comparison, reNDVI (R2 = 0.71, RMSE = 0.21), SR (R2 = 0.69,
RMSE = 0.22), GRVI (R2 = 0.60, RMSE = 0.25), CCCI (R2 = 0.58,
RMSE = 0.26), CIGreen (R2 = 0.51, RMSE = 0.28), PRI (R2 = 0.50,
RMSE = 0.28), and CIRedEdge (R2 = 0.50, RMSE = 0.28) also
provided good estimations for N concentration. Nevertheless, a
weak correlation was observed between foliar N and VIs SIPI
(R2 = 0.42, RMSE = 0.30), NPCI (R2 = 0.46, RMSE = 0.29), and
CCI (R2 = 0.46, RMSE = 0.29).

The association between measured N (Kjeldahl method) and
predicted N (model) is shown in Figure 4. The precision and
accuracy of the model were found to be very high (R2 = 0.95,
RMSE = 0.08), suggesting that predicted N concentration
is strongly correlated with measured N concentration. The
sensitivity study was also performed using spectral variables
to calculate their specific importance toward the reliability of
the PLSR model. The outcomes (Figure 5) showed that all the
independent variables significantly affected the model output.

DISCUSSION

Fertilizers play a vital role in improving crop yield and
productivity. Among them, nitrogenous fertilizers are important
to mineral nutrition and significantly affect the biological process
of the plant, right from its germination stage till maturity, and
thus have a considerable impact on crop yields. Excess amount of
N fertilizers not only increases the cost of cultivation, but is also
harmful to soil, environment, and human health (Ahmed et al.,
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FIGURE 2 | Schematic representation of the methodology adopted in this study.

TABLE 2 | Pearson correlation coefficient (r) between vegetation indices (VIs) and foliar nitrogen concentrations (N).

NDRE reNDVI SR GRVI CCCI CIGreen PRI CIRedEdge CCI NPCI SIPI

N (mg 100 mgDW−1) 0.89* 0.84* 0.83* 0.78* 0.76* 0.71* 0.71* 0.71* 0.68* 0.68* 0.64*

*Significant correlations at 0.05 level.
NDRE, normalized difference red edge; reNDVI, red edge normalized difference vegetation index; SR, simple ratio; GRVI, green–red vegetation index; CCCI, canopy
chlorophyll content index; CIGreen, green chlorophyll index; PRI, photochemical reflectance index; CIRedEdge, red edge chlorophyll index; CCI, canopy chlorophyll index;
NPCI, normalized pigment chlorophyll ratio index; SIPI, structure insensitive pigment index.

2017; Rhezali and Lahlali, 2017). Hence, the accurate estimation
of the N requirements of the crop is crucial for optimizing
N fertilizer management. Previous studies have shown that N
content is strongly correlated with plant photosynthetic activities
(Baret et al., 2007; Maathuis, 2009; Schlemmer et al., 2013; Yao
et al., 2015). Over the past years, the chlorophyll content of
leaves was frequently used as an index for detecting nutrient
and N status in plants (Dey et al., 2016). Keeping in view, the

key objective of this investigation was to explore a rapid and
non-invasive method for estimating foliar N concentration in
menthol mint plants. In the present study, destructive foliar
N concentration was measured through the Kjeldahl method
and spectral reflectance by Miniature Leaf Spectrometer C-710
(CID Bio-Science). Using reflectance data, NDRE, reNDVI, SR,
GRVI, CCCI, PRI, CIGreen, CIRedEdge, CCI, NPCI, and SIPI
were measured and further used to determine the foliar N
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FIGURE 3 | Relationship between foliar nitrogen concentrations and vegetation indexes: (A) normalized difference red edge (NDRE), (B) red edge normalized
difference vegetation index (reNDVI), (C) simple ratio (SR), (D) green-red vegetation index (GRVI), (E) canopy chlorophyll content index (CCCI), (F) green chlorophyll
index (CIGreen), (G) photochemical reflectance index (PRI), (H) red edge chlorophyll index (CIRed Edge), (I) canopy chlorophyll index (CCI), (J) normalized pigment
chlorophyll ratio index (NPCI), and (K) structure insensitive pigment index (SIPI) in menthol mint.

concentration. The Pearson correlation analysis showed that
all the VIs were significantly and positively correlated to N
concentration, signifying that these VIs were good indicators of
N concentration in menthol mint plants. The highest correlation
(r) between VIs and N concentrations was retrieved by NDRE,
followed by reNDVI and SR. The VIs GRVI, CCCI, PRI, CIGreen,
and CIRedEdge showed a medium correlation, while VIs CCI,
NPCI, and SIPI exhibited a low correlation with N concentration.
Similar findings were also reported by previous studies (Oliveira
et al., 2017; Shaver et al., 2017).

Following the presence of a significant correlation, the PLSR
model was used to evaluate the linear relationship between
variables, which revealed that the NDRE vegetation index
has a significant correlation with foliar N concentration and
provides the most precise results among all the VIs used in
this analysis. This is in agreement with the findings of the
previous studies (Hansen and Schjoerring, 2003; Li et al., 2014,
2018; Oliveira et al., 2017; Perry et al., 2018; Singh et al.,
2019). Studies have shown that NDRE is a better indicator of
crop health and is generally found to be sensitive toward the
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FIGURE 4 | Relationship between measured and predicted nitrogen
concentrations in menthol mint.

crops having high levels of chlorophyll and nitrogen content
(Gitelson et al., 1996; Eitel et al., 2008; Cammarano et al.,
2014; Liu et al., 2016). The linear relationship between VIs and
foliar N also showed that the VIs based on the reflectance of
the red-edge band (i.e., NDRE and reNDVI) had higher R2

values and lower RMSE values, which indicated that VIs based
on the reflectance of the red-edge band were more sensitive
toward the estimation of foliar N status than the other VIs
evaluated in this study. These results are in agreement with

the findings of Yu et al. (2013), who found that the red-
edge-based VIs were more sensitive to plant N concentration.
The reason behind this is some degree of saturation may be
appeared due to only red-edge band. Similarly, we also found
a strong correlation between NDRE, GRVI, and SR indices and
nitrogen content in the menthol mint crops in our preliminary
study (Singh et al., 2019). However, a weak correlation between
foliar N and VIs was observed for SIPI, NPCI, and CCI. Wu
et al. (2008) suggested that SIPI and NPCI appear to quickly
saturate at low chlorophyll levels and become insensitive to
high chlorophyll content, which might be the reason for a
weak correlation between SIPI and NPCI indices and foliar
N concentration. Chlorophyll is not only used as an alternate
indicator for the estimation of leaf nitrogen content, but is also
an indispensable indicator of N deficiency in plants (Cerovic
et al., 2012). Moreover, in the present study, the performance
of chlorophyll/carotenoid-based index (CCI) in estimating the
foliar N concentration was found to be poor among all the VIs;
nevertheless, a strong linear relationship between CCI and N
concentration was reported by several researchers (Peng et al.,
1993; Van den Berg and Perkins, 2004; Pal et al., 2012; Mace and
Mills, 2015).

Analyzing the model’s precision is an essential part of
developing regression models because it describes how well the
model performs in its predictions. In this study, the model
precision and accuracy between measured N and predicted
N concentration was found to be very high, indicating that
the predicted N is strongly correlated with the measured N
concentration. The results of the sensitivity analysis of the PLSR

FIGURE 5 | Independent variables with their respective importance values.
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model revealed that all the independent variables had a significant
impact on the model output.

CONCLUSION

The revolutionary scientific and technological development,
particularly in the field of remote sensing, has greatly influenced
agricultural practices in the 21st century. Remote sensing
techniques have been proved to be a promising method for
monitoring health, nutrient evaluation, and yield prediction of
crops. Constant monitoring of plant N content might be useful
for farmers to expand their farming practices and facilitate
real-time observation for site-specific fertilizer management,
which would favor novel inventions in the coming years.
Hence, the application of excess fertilizers should be reduced to
prevent destructive consequences on the environment, which can
simultaneously provide supportable benefits to the production
capital. It is apparent from this study that NDRE and reNDVI are
the most sensitive VIs for the estimation of foliar N concentration
in menthol mint plants. This finding suggests that N deficiencies
encountered during the growth of the menthol mint crops can be
detected by calculating NDRE and reNDVI vegetative indices. In
comparison, SR, GRVI, CCCI, CIGreen, PRI, and CIRedEdge indices
also provided good estimations, whereas SIPI, NPCI, and CCI
indices showed a weak correlation with foliar N concentration.
The results of the sensitivity analysis of the PLSR model revealed
that all the independent variables had a significant impact on
the model output. The model precision and accuracy between
measured N and predicted N concentration was found to be
very high, indicating that the predicted N is strongly correlated

with the measured N concentration. We firmly believe that this
information can be used as an indicator for recommending the
application of precise amounts of nitrogenous fertilizers.
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