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Genomic prediction has been established in breeding programs to predict the genotypic

values of selection candidates without phenotypic data. First results in wheat showed that

genomic predictions can also prove useful to select among material for which phenotypic

data are available. In such a scenario, the selection candidates are evaluated with low

intensity in the field. Genome-wide effects are estimated from the field data and are then

used to predict the genotypic values of the selection candidates. The objectives of our

simulation study were to investigate the correlations r(y,g) between genomic predictions

y and genotypic values g and to compare these with the correlations r(p,g) between

phenotypic values p and genotypic values g. We used data from a yield trial of 250 barley

lines to estimate variance components and genome-wide effects. These parameters

were used as basis for simulations. The simulations included multiple crossing schemes,

population sizes, and varying sizes of the components of the masking variance. The

genotypic values g of the selection candidates were obtained by genetic simulations, the

phenotypic values p by simulating evaluation in the field, and the genomic predictions y

by RR-BLUP effect estimation from the phenotypic values. The correlations r(y,g) were

greater than the correlations r(p,g) for all investigated scenarios. We conclude that using

genomic predictions for selection among candidates tested with low intensity in the field

can proof useful for increasing the efficiency of barley breeding programs.

Keywords: genomic prediction, barley, unreplicated trials, prediction accuracy, simulation

1. INTRODUCTION

Genomic selection between candidate genotypes that were not tested in field trials has been
implemented successfully in breeding programs of major crops (Albrecht et al., 2011; Hofheinz
et al., 2012; Auinger et al., 2016; Bartholomé et al., 2016). Genomic selection is carried out using
either within-cyle prediction or across-cycle prediction. In within-cycle prediction, the selection
candidates are split in two sets. The first set is evaluated in the field and used as a training set
to estimate genomic effects which are then used to predict the performance of the second set of

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.735256
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.735256&domain=pdf&date_stamp=2022-04-22
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:biometry.popgen@uni-giessen.de
https://doi.org/10.3389/fpls.2022.735256
https://www.frontiersin.org/articles/10.3389/fpls.2022.735256/full


Terraillon et al. Genomic Prediction for Unreplicated Trials

selection candidates. In across-cycle prediction, genotypes from
the previous breeding cycle are used to predict the performance
of selection candidates. Both applications focus on the prediction
of genotypic values of selection candidates which were not yet
evaluated in field trials.

Genomic predictions y can not only be employed to predict
the genotypic values g of untested breeding material but also
to predict the genotypic values g of tested material. This was
suggested for preliminary yield trials in wheat by Endelman et al.
(2014) and applied by Michel et al. (2017) and Michel et al.
(2019). In such an approach, selection candidates are evaluated
in the field with low testing intensity, typically one single plot
per genotype. The phenotypic values p from the field trial are
then used to estimate genomic marker effects. Subsequently, the
genomic marker effects are used to calculate genomic predictions
y of the true genotypic values g.

From a statistical point of view, this procedure is in analogy to
the following example from linear regression. Assume for a given
set of x values that the corresponding y values were assessed in an
experiment. Linear regression puts a straight line ŷ through the
scatterplot of the x and y values. To predict the y value of a certain
x value we now use the predicted values ŷ on the regression
line instead of the observed y values of the scatterplot. From a
selection theory point of view, selection among tested selection
candidates on basis of the genomic predictions y is preferable
over selection on basis of phenotypic values p if the correlation
r(y, g) is greater than the correlation r(p, g). To our knowledge
there are no studies in barley that are investigating the use of
genomic predictions to select between selection candidates that
were evaluated in field trials.

The goal of our study was to investigate the correlations r(p, g)
and r(y, g) with simulations based on an experimental barley
data set. In particular, our objectives were to (i) estimate the
correlations r(p, g) and r(y, g) for replicated and unreplicated
trials based on simulations, (ii) investigate the effect of themating
scheme, population size, and the components of the masking
variance on the correlations, and (iii) demonstrate that genomic
selection among barley lines in unreplicated trials can be superior
to phenotypic selection based on replicated trials.

2. MATERIALS AND METHODS

2.1. Experimental Data Set
We used an experimental data set of winter barley
(Osthushenrich et al., 2018) for obtaining estimates of genomic
marker effects, genotypic values, and variance components. In
our simulations, we assumed that these estimates were the true
values of the respective parameters.

The experimental data set consisted of 250 doubled-haploid
(DH) lines which were derived from 25 crosses of 10 parental
lines. Five of the parental lines were elite lines and five were
resistant donors. The derived lines and the parental lines were
evaluated for yield at five locations in two years. The field trial was
layed out as an augmented design with five blocks. In each block,
50 of the derived lines were tested together with the 10 parental
lines that served as checks. In the first year, each of the derived
lines was tested unreplicated in four locations, in the second

year each of the derived lines was grown in two replications at
five locations.

To estimate the adjusted treatment means of the of the
parental lines and the derived lines we used the linear model

p = µ + l+ e+ l : e+ r : e+ b : r : e+ ε (1)

where l is the effect of the line, e is the effect of the
environment, l:e is the genotype-by-environment interaction,
r:e is the replication within environment effect, b:r:e is the
block effect nested within replication and environment, and ε

is the residual. The genotype was analyzed as a fixed factor,
the remaining factors of the model were random. The adjusted
treatment means ranged from 69.4 to 99.3 dt/ha (adjusted to
15% moisture), the standard errors of the means were 2.7 for
the 10 check genotypes in the augmented design, and 3.1 for the
250 genotypes with one replication per block. The heritability
for unbalanced trials, according to Equation (19) of Piepho and
Möhring (2007), was h2 = 0.83.

To estimate the variance components from the derived lines
we used the linear model

p = µ + c+ l : c+ e+ c : e+ l : c : e+ r : e+ b : r : e+ ε (2)

where c is the effect of a cross, l:c is the effect of the line within the
cross, e is the environmental effect, c:e the cross-by-environment
interaction, l:c:e the line-by-environment interaction, r:e is the
replication within environment effect, b:r:e is the block effect
nested within replication and environment, and ε is the residual.
Assuming all effects as random, the cross-by-environment
variance σ̂ 2

ce = 10.3, the line-by-environment variance σ̂ 2
le

=

11.1, and the residual variance σ̂ 2
ε = 30.1 were estimated with

software ASReml-R (Butler et al., 2017).
The lines were genotyped with a 50 K single-nucleotide

polymorphism (SNP) chip (Trait Genetics, Gatersleben). SNPs
with more than two recorded alleles, more than 10% missing
values and a gene diversity smaller than 0.1 were excluded from
the analysis, as well as genotypes with more than 15% missing
information. After preprocessing the marker data, 9,597 SNP
markers and 259 genotypes (249 DH lines and 10 parental lines)
remained for the analysis.

The pairwise modified Roger’s distances (cf Reif et al., 2005)
between the lines were used in a principal coordinate analysis
and a heatmap to illustrate the degree of relatedness of the lines
(Figure 1).

From the adjusted treatment means, we estimated the
genome-wide effects for yield with the RR-BLUP method
(Meuwissen et al., 2001).

2.2. Simulation Methodology
Starting with the marker genotypes of the parental lines,
we simulated the crosses and the development of DH lines
from the crosses. The simulations were genetic simulations
of recombination along chromosomes using the code of the
software Plabsim (Maurer et al., 2008). The result of a simulation
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FIGURE 1 | (A) Principal coordinate analysis based on the pairwise modified Roger’s distances (MRD) and (B) heatmap showing the distances between the lines of

the experimental barley data set. Lines that were derived from one cross are plotted using the same color and symbol.

run are the marker genotypes of a set of simulated DH lines. The
genotypic values g of the simulated DH lines were determined
from their marker genotypes and the corresponding genomic
marker effects. For this purpose, we used the genomic marker
effects obtained from the experimental data set and assumed that
these were the true values. This procedure results in simulated
DH lines of which the marker genotypes as well as the genotypic
values g are known. The genotypic value of the l-th line of the c-th
cross is denoted by gcl.

The evaluation of the DH lines in field trials at E environments
with R replications per environment was simulated using
normally distributed random numbers. The masking effect for
the l-th line of the c-th cross was mcl = uc + vl + wε

where uc, vl, and wε were realizations of independent random
variables with distribution u ∼ N(0, σ 2

ce/E), v ∼ N(0, σ 2
le
/E),

and w ∼ N[0, σ 2
ε /(ER)]. The variance components σ 2

ce, σ 2
le
,

and σ 2
ε were determined on basis of the variance components

estimated from the experimental barley data as described in
the subsequent section on the simulated scenarios. The effects
uc were determined for each cross and the effects vl for each
DH line. With the simulated genotypic values gcl and the
masking effects mcl, the phenotypic values were determined
as pcl = gcl +mcl.

The phenotypic values pcl of the simulated DH lines were
in turn used to estimate simulated genomic marker effects with
the RR-BLUP method. The simulated genomic marker effects
were then used to calculate genomic predictions ycl of the true
genotypic values gcl.

2.3. Simulated Scenarios
In order to illustrate the principle of using genomic prediction
for selection candidates evaluated in unreplicated field trials, we
simulated two experiments with a mating scheme similar to that

of Osthushenrich et al. (2018) as a starting point. These two
experiments were simulated with only one simulation run. After
a factorial cross of the 5 × 5 parental lines, 10 DH lines were
generated from each cross, resulting in 250 DH lines.

We considered two different field trial designs for the
evaluation of the 250 simulated DH lines in order to compare
unreplicated and replicated trials. The first investigated design
was an unreplicated trial with one environment (E = 1) and
one plot per genotype (R = 1). The second investigated design
was a replicated trial with three environments (E = 3) and two
replications per environment (R = 2). The variance components
σ 2
ce, σ

2
le
, and σ 2

ε that were estimated from the experimental data
set were used for calculating the masking effects mcl and thus
the simulated phenotypic values pcl for the two different field
trial designs.

In order to investigate the effect of varying the variance
components σ 2

ce, σ 2
le
, and σ 2

ε of the masking variance for
unreplicated (E = 1, R = 1) and replicated (E = 3, R = 2)
field trials, we ran a set of replicated simulations with 2,000
simulation runs for each parameter setting. In addition to the
original factorial crossing scheme of 5×5 lines, we also simulated
a diallel mating scheme. In the diallel mating scheme, all 10
pairwise crosses between the 5 elite lines were carried out.

In the factorial mating scheme we simulated either family sizes
of 10 DH lines per cross, resulting in a population of 250 lines, or
family sizes of six lines per cross, resulting in a population size
of 150 lines. For the diallel mating scheme, we generated 25 DH
lines for each of the 10 crosses, resulting in a population size of
250 lines. Thus, we investigated three different mating schemes,
all of which were evaluated in both an unreplicated (E = 1,
R = 1) and a replicated (E = 3, R = 2) field trial.

For each of these six scenarios, we considered five different sets
of variance components σ 2

ce, σ
2
le
, and σ 2

ε of the masking variance
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in order to assess the effect on the correlations r(p, g), r(y, p),
and r(y, g).

For the first set of variance components, we used a setting
that is close to the variance components of the experimental
design: σ 2

ce = 10, σ 2
le

= 10, σ 2
ε = 30. For the second set of

variance components, we used a smaller cross-by-environment
variance and a greater line-by-environment variance than in
the experimental data set: σ 2

ce = 2, σ 2
le

= 18, σ 2
ε = 30. For

the third set of variance components, we used a greater cross-
by-environment variance and a smaller line-by-environment
variance than in the experimental data set: σ 2

ce = 18, σ 2
le

=

2, σ 2
ε = 30. In addition, we investigated a scenario with a greater

error variance: σ 2
ce = 10, σ 2

le
= 10, σ 2

ε = 60, and one in
which the interaction variances as well as the error variance were
considerably greater than in the experimental data set: σ 2

ce = 20,
σ 2
le
= 20, σ 2

ε = 120.
In phenotypic selection, the phenotypic values p assessed

in field trials are used as estimates for the genotypic values g
of the selection candidates. The correlation r(p, g) depends on
the heritability and determines the response to selection. The
response to genomic selection is determined by the correlation
r(y, g) between the genomic predictions y and the genotypic
values g. The correlation r(y, g) is referred to as prediction
accuracy (Legarra et al., 2008). We used the mean values of the
correlations across the replicated simulations to compare the
efficiency of phenotypic selection with genomic selection.

The R code used to carry out the simulations is available at
Github (https://github.com/JT-Giessen/Terraillon_2022).

2.4. Retrospective Re-analysis of the
Experimental Data
Our experimental data was collected in two years, in the first
year one plot per genotype was planted in each of four locations
(R = 1, E = 4), in the second year two replications were grown
in each location (R = 2, E = 5). In the retrospective analysis we
regarded the data from each of the four environments in year one
as an unreplicated trial (R = 1, E = 1). This results in four sets
of phenotypic values. We denote the sets of phenotypic values
obtained from these unreplicated trials with p∗.

We then used the four sets of phenotypic values p∗ to estimate
four sets of genomic effects using the RR-BLUP method. From
these we calculated four sets of genomic performance estimates
y∗. For each set of values p∗ we used the remaining three locations
of the first year and the data from the second year to determine
the adjusted treatment means of the lines according to Equation
(1). These phenotypic values were then regarded as estimators for
the genotypic values ĝ∗.

For each of the four sets of values p∗, y∗, and ĝ∗ we determined
the correlations r(p∗, ĝ∗) between the phenotypic values and
the estimate of the genotypic value, and r(y∗, ĝ∗) between the
genomic prediction and the estimate of the genotypic value.

A one-sided Pearson z-test with the alternative hypothesisHA:
r(p∗, ĝ∗) < r(y∗, ĝ∗) was carried out with the R package cocor
(Diedenhofen and Musch, 2015) to test whether the genomic
predictions are superior to the phenotypic values in predicting
the estimated genotypic value.

3. RESULTS

In the illustration example that was based on the parameter
settings and variance components from the experimental data
set, the pairwise correlations r(p, g), r(y, p), and r(y, g) between
phenotypic values p, genotypic values g and genomic predictions
y were consistently lower for the unreplicated trial than for the
replicated multi-environment trial (Figure 2). The correlations
amounted to r(p, g) = 0.53, r(y, p) = 0.72, and r(y, g) = 0.87
in the unreplicated trial, and r(p, g) = 0.82, r(y, p) = 0.88, and
r(y, g) = 0.97 in the replicated trial. The correlation r(y, g) in
the unreplicated trial thus surpassed the correlation r(p, g) in the
replicated trial, even though the unreplicated trial used only one
sixth of the field plots of the replicated trial.

The replicated simulations, which investigated different
mating schemes, population sizes and sets of variance
components, confirmed the results of the illustration example
with respect to the correlations r(p, g), r(y, p), and r(y, p)
(Table 1). All correlations were lower for the unreplicated
trials (l. 1–5, 11–15, 21–25 of Table 1) than for the replicated
trials (l. 6–10, 16–20, 26–30 of Table 1). The difference
between replicated and unreplicated trials was lowest for
r(y, g) and highest for r(p, g). The correlations r(p, g) were
consistently lower than both r(y, p) and r(y, g) for all investigated
scenarios (Table 1). In the factorial mating designs, the
correlations r(p, g) between phenotypic and genotypic values
ranged from 0.33 to 0.54 for the unreplicated trials and from
0.61 to 0.80 for the replicated trials (l. 1–20 of Table 1).
The correlations r(y, g) between genomic predictions and
genotypic values ranged from 0.76 to 0.91 for the unreplicated
trials and from 0.89 to 0.96 for the replicated trials (l. 1–20
of Table 1).

All correlations were of similar size for both investigated
population sizes of the factorial mating scheme (l. 1–20 of
Table 1). The superiority of the genomic predictions y over the
phenotypic values p persisted when the total population size of
the factorial mating designs was reduced from 250 to 150 DH
lines (compare l. 1–10 to l. 11–20 of Table 1). In both factorial
mating scenarios, the correlations r(y, g) in the unreplicated trials
were higher than the correlations r(p, g) in the corresponding
replicated trials (l. 1–20 of Table 1). However, the differences
between r(y, g) in the unreplicated trials and r(p, g) in the
replicated trials diminished when the total population size was
reduced to 150 DH lines. For example, in the scenario that was
close to the experimental data set, r(y, g) in the unreplicated
trial was 0.88 and r(p, g) in the replicated trial was 0.80 with a
population size of 250 DH lines (l. 1 and 6 of Table 1). With
150 DH lines, r(y, g) in the unreplicated trial diminished to 0.86,
while r(p, g) in the replicated trial remained at 0.80 (l. 11 and 16
of Table 1).

The masking variance for the simulation of the phenotypic
values p contained three different variance components: the
cross-by-environment variance σ 2

ce, the line-by-environment
variance σ 2

le
, and the error variance σ 2

ε . We investigated five
different sets of these variance components. For the first three
sets, the error variance was held constant at σ 2

ε = 30. In these
scenarios, the correlation r(y, g) decreased with increasing σ 2

ce
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FIGURE 2 | (A–F) Pearson correlations r and Spearmans correlations ρ between phenotypic values p, genomic predictions y, and genotypic values g for a simulated

data set. The simulation was carried out with variance components and genomic effects estimated from an experimental barley data set. Unreplicated field evaluation

(E = 1, R = 1) is compared with a replicated multi-environment trial (E = 3, R = 2).
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TABLE 1 | Pearson correlations between the phenotypic values and the genotypic values r(p,g), between the genomic predictions and the phenotypic values r(y,p), and

between the genomic predictions and the genotypic values r(y, g) depending on the mating scheme, the number of crosses nc, the number of lines per cross nl , the

number of environments E and replications per environment R, the cross-by-environment variance σ 2
ce, the line-by-environment variance σ 2

le , the residual variance σ 2
ε , and

the genetic variance σ 2
g .

nc nl E R σ
2
ce σ

2
le σ

2
ε

σ
2
g r(p,g) r(y,p) r(y,g)

Factorial mating

1 25 10 1 1 10 10 30 20 0.53 0.69 0.88

2 25 10 1 1 2 18 30 20 0.53 0.67 0.91

3 25 10 1 1 18 2 30 20 0.53 0.71 0.85

4 25 10 1 1 10 10 60 20 0.44 0.62 0.86

5 25 10 1 1 20 20 120 20 0.33 0.54 0.80

6 25 10 3 2 10 10 30 20 0.80 0.88 0.94

7 25 10 3 2 2 18 30 20 0.79 0.87 0.96

8 25 10 3 2 18 2 30 20 0.80 0.89 0.93

9 25 10 3 2 10 10 60 20 0.74 0.84 0.94

10 25 10 3 2 20 20 120 20 0.61 0.75 0.90

11 25 6 1 1 10 10 30 20 0.53 0.73 0.86

12 25 6 1 1 2 18 30 20 0.53 0.71 0.88

13 25 6 1 1 18 2 30 20 0.54 0.75 0.83

14 25 6 1 1 10 10 60 20 0.45 0.66 0.83

15 25 6 1 1 20 20 120 20 0.33 0.58 0.76

16 25 6 3 2 10 10 30 20 0.80 0.90 0.93

17 25 6 3 2 2 18 30 20 0.80 0.89 0.94

18 25 6 3 2 18 2 30 20 0.80 0.91 0.92

19 25 6 3 2 10 10 60 20 0.74 0.86 0.92

20 25 6 3 2 20 20 120 20 0.61 0.78 0.89

Diallel mating

21 10 25 1 1 10 10 30 2 0.19 0.40 0.43

22 10 25 1 1 2 18 30 2 0.20 0.32 0.52

23 10 25 1 1 18 2 30 2 0.19 0.46 0.37

24 10 25 1 1 10 10 60 2 0.16 0.34 0.38

25 10 25 1 1 20 20 120 2 0.11 0.31 0.26

26 10 25 3 2 10 10 30 2 0.38 0.56 0.69

27 10 25 3 2 2 18 30 2 0.38 0.52 0.79

28 10 25 3 2 18 2 30 2 0.38 0.61 0.62

29 10 25 3 2 10 10 60 2 0.33 0.50 0.66

30 10 25 3 2 20 20 120 2 0.24 0.44 0.52

from 2 to 10 to 18, while the correlation r(y, p) increased. For
example, in the factorial mating scheme with 10 DH lines per
cross, r(y, g) decreased from 0.91 to 0.88 to 0.85, while r(y, p)
increased from 0.67 to 0.69 to 0.71 (l. 2, 1, and 3 of Table 1).
Conversely, with increasing σ 2

le
from 2 to 10 to 18, the correlation

r(y, g) increased, while the correlation r(y, p) decreased (l. 3, 1,
and 2 of Table 1). Thus, the correlation r(y, p) was lowest and the
correlation r(y, g) was highest for σ 2

ce = 2 and σ 2
le

= 18 for all

scenarios with σ 2
ε = 30 (l. 2, 7, 12, 17, 22, and 27 of Table 1).

The correlation r(p, g) remained approximately constant with
increasing σ 2

ce for all scenarios with σ 2
ε = 30.

Increasing the error variance σ 2
ε from 30 to 60 resulted in

a reduction of all three correlation coefficients r(p, g), r(y, p),
and r(y, g) for all investigated mating schemes (l. 1, 4, 6, 11,
14, 16, 19, 21, 24, 26, and 29 of Table 1). The only exception
was the correlation r(y, g) in the factorial mating scheme with a

population size of 250 in the replicated trials. It increased slightly
when σ 2

ε was increased from 30 to 60 (l. 9 of Table 1). Further
increasing the error variance σ 2

ε to 120 and both σ 2
ce and σ 2

le
to 20

diminished the correlation coefficients even more (l. 5, 10, 15, 20,
25, and 30 of Table 1).

In addition to the factorial mating schemes, we also simulated
two diallel mating schemes for the five elite parents. In the diallel
mating schemes, the genetic variance was estimated at σ 2

g = 2
(l. 21–30 of Table 1). This is a strong reduction in comparison
to the genetic variance of the factorial mating schemes with a
genetic variance of σ 2

g = 20 (l. 1–20 of Table 1). The correlations
r(p, g), r(y, p), and r(y, g) were consistently much lower in the
diallel mating schemes than in the factorial mating schemes (l.
21–30 of Table 1). For example, r(p, g) ranged from 0.11 to 0.20
in the unreplicated trials and from 0.24 to 0.38 in the replicated
trials (l. 21–30 of Table 1). The correlation r(y, g) ranged from
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TABLE 2 | Correlations r(p∗, ĝ∗) between the phenotypic values from an

unreplicated trial and the genotypic values, correlations r(y∗, ĝ∗) between genomic

predictions and the genotypic values, and p-value of the z-test to compare the

two correlations for the four data sets of the retrospective re-analysis of the

experimental data.

Data set r(p∗, ĝ∗) r(y∗, ĝ∗) p-value

1 0.57 0.62 0.0166

2 0.63 0.66 0.1568

3 0.62 0.66 0.0316

4 0.61 0.69 0.0019

0.26 to 0.52 in the unreplicated trials and from 0.52 to 0.79 in the
replicated trials (l. 21–30 of Table 1). However, as for the factorial
mating schemes, r(y, g) in the unreplicated trials was higher than
or comparable to r(p, g) in the corresponding replicated trials (l.
21–30 of Table 1). In contrast to the factorial mating schemes,
for which r(y, p) was always lower than r(y, g), r(y, p) was
higher than r(y, g) for a higher cross-by-environment/line-by-
environment variance ratio and larger environmental variances
in the unreplicated trials (l. 23 and 25 of Table 1).

In the retrospective re-analysis of the experimental data, the
correlations r(y∗, ĝ∗) between genomic predictions and genotypic
values were for all four sets of data greater than the correlations
r(p∗, ĝ∗) between the phenotypic values from the unreplicated
trial and the genotypic values (Table 2). In three out of four cases
the superiority was significant (α = 0.05).

4. DISCUSSION

4.1. Modeling the Breeding Program
In our study, we use a model of a breeding program for
our simulations. Here we discuss briefly the rationales behind
choosing its components.

In a field trial, the environment, the genotype-by-environment
interaction, the design factors, such as blocks or replications, and
the experimental error contribute to the phenotypic value of the
tested genotypes. This is modeled in our approach by adding a
masking effect to the genotypic value. If, for a given genotype,
n replications with respect to a given variance component σ 2

are available, then averaging over the n replications results in
a transformed random variable with variance σ 2/n. Summing
up realizations of transformed random variables for all variance
components of a trial allows to model environmental conditions
similar to those of the trial from which the variance components
were estimated.

In applied breeding programs, it is a common approach
to select the best lines available from one cycle of material
development and to recombine these as parents to obtain the
selection candidates for the next cycle. If the lines are from one
material group, then one option for recombining the lines is to
mate every line with every other line, this corresponds to a diallel
mating scheme. If the lines originate from two pools, for example,
a resistance pool and a pool with high yielding genotypes, then
one option to recombine the lines is to mate every line from the

first pool to every line of the second pool. This corresponds to a
factorial mating scheme. This was the rationale for investigating
both, the diallel and the factorial mating scheme in our study.

4.2. Simulation Methodology
In experimental evaluations of genomic prediction, the
correlation r(y, p) between genomic predictions y and phenotypic
values p is often used as a measure for the precision of prediction
(e.g., Hofheinz et al., 2012; Albrecht et al., 2014; Lorenz and
Smith, 2015; Zenke-Philippi et al., 2017; Werner et al., 2018).
The reason for this is that the correlation r(y, g) between the
genomic predictions y and the true genotypic values g remains
unknown. Some authors divide the correlation r(y, p) by the
square root of the heritability (e.g., Albrecht et al., 2011; Zhao
et al., 2013; Technow et al., 2014; Sallam et al., 2015). This is a
linear transformation, and the ranking of selection candidates
remains the same as in the untransformed data assuming
constant heritability. The simulation methodology employed in
this study provides, in contrast to experimental evaluations, a
direct assessment of the correlations r(p, g) and r(y, g) between
the phenotypic values p and genotypic values g and between the
genomic predictions y and the genotypic values g, respectively.
This allows the comparison of the selection criteria p and y
with respect to their precision to predict the true unknown
genotypic values g of selection candidates. Moreover, it facilitates
the investigation of quantitative genetic factors that affect the
two correlations.

The genomic marker effects and the components of the
masking variance from our experimental barley data set were
used as the basis for the simulations. This methodology implies
simplifying assumptions, the most important of which we point
out here briefly. The purely additive genetic model neglecting
epistasis as well as the estimation method for genomic marker
effects might have an effect on the results. It is neglected that
a certain SNP variant might be in linkage disequilibrium with
alleles having different genomic effects in breeding material
that originates from genetically different sources. Moreover, we
assume that the genomic effects of SNPs were estimated in the
original barley data set without a residual error. In particular
this simplification might result in an overestimation of the
correlations of y and p with the true genotypic values g. In
addition, the genetic structure of the parental lines can be
assumed to have an effect on the size of the estimated genomic
marker effects.

We used genome-wide effects estimated from an experimental
data set as the basis for our simulations. An alternative approach
is to use genetic effects that were drawn with a random number
generator from a probability distribution. A prominent example
for this methodology is Meuwissen et al. (2001). We have chosen
to use effects estimated from experimental data, because we
think that this might be closer to reality than effects from a
random number.

In consequence, the results reported here can only illustrate
the concept of using genomic predictions of tested material.
Further research is needed on the basis of other experimental
data sets or quantitative genetic scenarios to confirm the
transferability to other situations of the results reported here.
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4.3. Illustration of the Principle of Using
Genomic Predictions of Tested Material
In the simulation using the variance components and genomic
marker effects of Osthushenrich et al. (2018), the correlation
r(p, g) between the phenotypic values p and the genotypic values
g in an unreplicated field trial was 0.53 (Figure 2). The strength
of this correlation might just be sufficient for selection, but the
selection gain that can be reached is low.

In a field trial in three environments with two replications
(E = 3, R = 2), the correlation between the phenotypic and the
genotypic values amounted to r(p, g) = 0.82, which should allow
for efficient selectionwith reasonable selection gain. However, the
increase in precision in comparison to the unreplicated field trial
comes at the cost of a six-fold increase of the resources required
for the field trial.

In contrast, the correlation r(y, g) between the genomic
predictions and the true genotypic values amounted to r(y, g) =
0.87 in the unreplicated trial (Figure 2). Hence, the marker-based
genomic predictions y of the genotypic value have a much higher
correlation with the true genotypic value g than the phenotypic
values p of the unreplicated trial. The correlation reaches values
that are typically reached by replicated trials and even surpasses
the correlation r(p, g) reached by the replicated field trial with
E = 3, R = 2. This enables an efficient selection of genotypes
with high performance which results in a high selection gain.

From an applied point of view, the costs of genotyping a line
might equal roughly the costs of one field plot. In consequence,
our results suggest for the investigated data set that using one
field plot and in addition genotyping the lines can realize a
selection gain roughly corresponding to that of a replicated trial,
but requires only a third of the resources.

4.4. Superiority of Genomic Predictions
Over Phenotypic Estimates
The correlations r(y, g) for unreplicated trials reached values that
surpassed the correlations r(p, g) for the corresponding replicated
trials for all investigated scenarios (Table 1). For example, an
experimental design close to the experimental data set resulted
in the correlation r(y, g) = 0.88 for the unreplicated trial (l. 1 of
Table 1) and in the correlation r(p, g) = 0.80 for the replicated
trial (l. 6 of Table 1). We conclude that using unreplicated trials
combined with genomic selection might be a useful strategy for a
wide range of genetic situations, which we address subsequently.

The lower limit for the population size that is required to
apply the proposed approach of predicting tested lines is not yet
reached with 150 individuals. This conclusion is supported by the
r(y, g) = 0.86 of l. 11 of Table 1 and r(p, g) = 0.80 presented in
l. 16 of Table 1.

In our analysis we divided the genotype-by-environment
interaction variance into two components, the cross-by-
environment variance σ 2

ce and the line-by-environment variance
σ 2
le
. With an increasing importance of the cross-by-environment

component of σ 2
ce = 2, 10, 18 (l. 2, 1, 3 of Table 1), the correlation

between genomic predictions and genotypic values r(y, g)
decreased while the correlation r(y, p) increased. This result
suggests that a large genotype-by-cross variance might render
the assessment of prediction accuracy using the correlation

r(y, p) difficult as there might be situations in which changing
parameters of a genomic selection program increases r(y, p)
without actually increasing r(y, g).

With increasing error variances and increasing genotype-by-
environment variances (e.g., l. 1, 4, 5 of Table 1), the correlations
r(p, g) decreased considerably. The correlations r(y, g) remained
above 0.75 nevertheless in the factorial mating schemes. This
suggests that even when the correlations between the phenotypic
and genotypic values of an unreplicated trial get low, using
genomic predictions instead can still enable successful genomic
selection of candidate genotypes.

In the diallel mating scheme of the elite lines, the genetic
variance was only a fraction of the genetic variance in the
complete factorial. This observation might be caused by the
contrasting yield of the two parental groups in the factorial
mating scheme. The small genetic variance in comparison to the
components of the masking variance in the diallel mating scheme
results in a low heritability in the unreplicated trial accompanied
by a correlation r(p, g) of 0.19 or 0.20 (l. 21–23 of Table 1). Even
in this extreme scenario, using the genomic predictions for the
genotypic values for selection results in correlations r(y, g) of 0.37
to 0.52.

These comparisons suggest that using genomic predictions
y of the genotypic values might be preferable over using the
phenotypic values p directly for a wide range of variance
components and populations sizes with our data set.

4.5. Pseudo-Replications of Genome
Stretches
The high correlation between the true genotypic values g and
their genomic predictions y observed in this study might be
explained by the replicated evaluation of chromosome segments
in different lines. Due to the replicated use of the parental lines,
the parental chromosome segments are present and evaluated in
the field in a large number of derived lines. The amount of this
pseudo-replication of chromosome segments strongly depends
on the degree of relatedness between the evaluated lines and the
crossing scheme that was used to develop them.

From a quantitative genetics point of view, the approach
suggested here can be related to older best linear unbiased
prediction (BLUP) approaches. Assuming a large number of
markers with small genomic effects of similar size, the genomic
prediction model converges to a GBLUP model that employs the
realized relationship matrix between the tested genotypes. Those
type of prediction models showed a good performance in maize
(Bernardo, 1994). A direct consequence of these hypotheses on
the mechanism behind the observed results is that the approach
suggested here can only be expected to work if the material
under investigation is related. This, however, is typically the case
in breeding programs for cultivar development, because often
several selection candidates were derived from the same crosses,
and the parents of the crosses are used in several crosses.

4.6. Retrospective Re-analysis of the
Experimental Data Set
A thorough experimental validation of the results obtained from
the presented simulation study requires an experimental data set
that estimates the genotypic values of the tested lines with high
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precision. To achieve highly precise estimates, typically trials over
several years (e.g., more than tree) at many locations (e.g., more
than 10) are required. The precision of the field trial used to
collect our experimental data can be considered as sufficient in
applied breeding programs, but it does not provide highly precise
estimates of the genotypic value. In consequence, this data set can
not be used for a rigid experimental validation of our simulation
results. Nevertheless, it can be used to demonstrate the potential
usefulness of our approach.

In the retrospective re-analysis we estimated the genotypic
values ĝ∗ from three locations with one plot per genotype in the
first year and five locations with two replications per genotype
in the second year. The fourth location in the first year was
considered as a “preliminary yield trial” (in terms of Endelman
et al., 2014) to obtain the phenotypic values p∗. The research
question was, whether the estimations of the genotypic values
ĝ∗ can be better approximated by the field data p∗ of single-plot
experiments or by genomic predictions y∗ obtained from the field
data of single-plot experiments.

For all four data sets, which correspond to the four single-plot
experiments in the first year, we observed a greater correlation
r(y∗, ĝ∗) than r(p∗, ĝ∗). Hence, the genotypic predictions from
single-plot experiments approximated the genotypic values better
than the original phenotypic values of the experiments.

5. CONCLUSION

Our investigation focused on the research question whether
genomic selection between genotypes tested with low intensity in
a field trial can be superior to phenotypic selection. We conclude,
that for breeding material where parental lines are used in several

crosses and from each cross several lines were derived, genomic
predictions can have a greater correlation to the true unknown
genotypic values than the phenotypic values. Hence, genomic
selection has the potential to increase the efficiency of breeding
programs that use low-intensity field trials.
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