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The quality defects of hazelnut fruits comprise changes in morphology and taste, and
their intensity mainly depends on seasonal environmental conditions. The strongest off-
flavor of hazelnuts is known as rotten defect, whose candidate causal agents are a
complex of fungal pathogens, with Diaporthe as the dominant genus. Timely indications
on the expected incidence of rotten defect would be essential for buyers to identify areas
where hazelnut quality will be superior, other than being useful for farmers to have the
timely indications of the risk of pathogens infection. Here, we propose a rotten defect
forecasting model, and we apply it in the seven main hazelnut producing municipalities
in Turkey. We modulate plant susceptibility to fungal infection according to simulated
hazelnut phenology, and we reproduce the key components of the Diaporthe spp.
epidemiological cycle via a process-based simulation model. A model sensitivity analysis
has been performed under contrasting weather conditions to select most relevant
parameters for calibration, which relied on weekly phenological observations and the
post-harvest analyses of rotten incidence in the period 2016–2019, conducted in 22
orchards. The rotten simulation model reproduced rotten incidence data in calibration
and validation datasets with a mean absolute error below 1.8%. The dataset used for
model validation (321 additional sampling locations) has been characterized by large
variability of rotten incidence, in turn contributing to decrease the correlation between
reference and simulated data (R2 = 0.4 and 0.21 in West and East Black Sea region,
respectively). This denotes the key effect of other environmental and agronomic factors
on rotten incidence, which are not yet taken into account by the predictive workflow
and will be considered in further improvements. When applied in spatially distributed
simulations, the model differentiated the rotten incidence across municipalities, and
reproduced the interannual variability of rotten incidence. Our results confirmed that
the rotten defect is strictly dependent on precipitation amount and timing, and that
plant susceptibility is crucial to trigger fungal infections. Future steps will envisage the
application of the rotten simulation model to other hazelnut producing regions, before
being operationally used for in-season forecasting activities.
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INTRODUCTION

Crop quality is the major determinant of the economic and
nutritional value of agricultural products, as it influences their
purchase attractiveness by consumers and their acceptability
to buyers (Cappelli et al., 2014; Melovic et al., 2020). Quality
defects induce indirect yield losses, as the consequence of non-
compliance with required quality standards (Battilani et al.,
2018), which are needed to gain a competitive advantage in the
domestic and export market. In the case of hazelnuts, high quality
in-shelled fruits are increasingly requested by the confectionary
industry (Cristofori et al., 2008), especially from Turkey, the
world leader of production and export (FAO, 2019). However,
hazelnut fruits are often affected by quality defects associated
with off-flavors (Pscheidt and Ocamb, 2017), which decrease their
usability in industrial products. The detection of externally visible
and asymptomatic defects after kernel cutting is one of the main
determinants of hazelnut quality (Battilani et al., 2018).

We focus here on the rotten defect, the strongest sensory
off-note of hazelnut fruits, which annually threatens kernel
availability and marketability (Arciuolo et al., 2020). The term
“rotten hazelnuts” derives from the industrial jargon and refers
to fruits with necrotic spots and/or internal browning, resulting
in a black kernel in the worst case. The incidence of rotten
defect on harvested nuts usually fluctuates in the range of
1–15% (Arciuolo et al., 2020), but even a small presence of
damaged fruits could be detrimental for organoleptic properties.
So far, few studies focused on the identification of the causes of
hazelnut rotten defect and the etiological agents have not been
unanimously defined yet. Battilani et al. (2018) conducted a 4-
year experimental study in the Caucasian region, concluding that
Diaporthe was the dominant genus in defected kernels, among
many other fungal species associated with rotten hazelnuts
(i.e., Alternaria spp., Cladosporium spp., Fusarium spp., and
Colletotrichum spp.). Further, same authors observed a positive
correlation between the precipitation amount during the growing
season and the incidence of rotten defect.

Process-based simulation models are needed to extrapolate
the experimental results from one site to another, thus enabling
the development of early warning systems, to either optimize the
chemical control of plant diseases or perform scenario analyses
on pathogen suitability over large areas (Gillespie and Sentelhas,
2008). In addition, plant disease models are increasingly
requested by private and public stakeholders to timely identify
critical situations and quantify the expected impacts on yield and
quality (Bregaglio et al., 2016; Valeriano et al., 2021). With these
premises, we developed a new simulation model to predict the
incidence of the rotten defect on hazelnuts. We followed the
underlying hypothesis that Diaporthe spp. are the main causal
agents of rotten hazelnuts; however, the new model is composed
by generic sub-models, which can be distinctly parameterized
according to thermal and moisture requirements of different
fungal pathogens. A sensitivity analysis was performed to gain
insights into the model plasticity across contrasting climatic
conditions (Confalonieri et al., 2012) and to highlight the most
relevant parameters to be adjusted to increase the prediction
accuracy (Ruget et al., 2002; Vazques-Cruz et al., 2014). The
model was then coupled with an automatic optimization tool, and

key parameters were calibrated within their biological meaningful
ranges to modulate the response of different epidemiological
processes to environmental conditions (Angulo et al., 2013). The
model evaluation has been performed with independent and
additional field datasets from the seven main hazelnut producing
municipalities in Turkey. This work lays the basis to set up a
digital decision support system, enabling an early prediction of
the environmental suitability of fungal pathogens associated with
the occurrence of rotten hazelnuts. The fields of application of
such a system comprise in-season prediction to timely identify
areas where hazelnut quality is predicted to be higher.

MATERIALS AND METHODS

Overview of the Study
The workflow of this study is articulated in four steps (Figure 1).
Historical weather series (1984–2018) in the study area were
processed to compute agrometeorological indices, which were
used to identify the clusters of hazelnut growing seasons sharing
similar climatic conditions via multivariate analyses (step 1).
A process-based simulation model to estimate the incidence
of rotten hazelnuts was developed using available knowledge
on Diaporthe spp. (Emmett et al., 1992; Erincik et al., 2003;
Anco et al., 2013): the main components of the epidemiological
cycle were formalized in sub-models driven by hourly weather
variables and biologically meaningful parameters (step 2). The
new model was subjected to a global sensitivity analysis to
identify the most relevant parameters in modulating the key
outputs, also considering their uncertainty under contrasting
climatic conditions from step 1 (step 3). The most relevant
parameters were then calibrated using the ground truth data
of rotten incidence from post-harvest analysis and phenological
observations collected in 22 orchards; the model evaluation was
carried out on independent and additional 321 datasets, before
running spatially distributed simulations over the whole hazelnut
producing area in Turkey (step 4).

Input Data Sources for the Modeling
Activities
The input weather data for the modeling activities obtained from
the National Aeronautics and Space Administration (NASA)
Langley Research Center (LaRC) Prediction of Worldwide
Energy Resource (POWER) Project funded through the NASA
Earth Science/Applied Science Program, which provides daily
meteorological variables at 0.5◦ × 0.5◦ resolution grid. We
used here maximum and minimum air temperature (◦C), dew
point temperature (◦C), relative humidity (%), and average wind
speed (m s−1). Hourly air temperature was estimated from daily
maximum and minimum air temperature, according to Campbell
(1985), whereas air relative humidity was derived according to
Bregaglio et al. (2010), based on the models proposed by Linacre
(1992), Allen and FAO (1998), and Hahn et al. (1998). Hourly leaf
wetness was estimated from hourly air temperature, dew point
temperature, wind and relative humidity, according to Kim et al.
(2002). In total, 27 NASA-POWER grid cells have been selected to
cover the main hazelnut producing regions of Turkey (Figure 2).
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FIGURE 1 | Workflow of the study. Input data sources (weather data, phenological observations, and rotten incidence data) were used (i) to perform a climatic
characterization of the study area, (ii) to develop a process-based simulation model of rotten hazelnuts, which was then subjected to (iii) an uncertainty and sensitivity
analysis to understand the model behavior across climatic conditions. Finally, (iv) the model was calibrated and evaluated using field data and applied over the
Turkish hazelnut area.

The hazelnut rotten simulation model was calibrated using
phenological observations and post-harvest rotten incidence data
collected in 22 hazelnut orchards located in the municipalities of
Samsun, Ordu, Giresun, and Trabzon (Eastern Black Sea area),
and Duzce, Sakarya, and Zonguldak (Western Black Sea area)
(Figure 2). Phenological observations were collected weekly in
these orchards in the 2018 and 2019 growing seasons, whereas the
post-harvest analyses of rotten incidence were carried out in the
period of 2016–2019 (4 years). The model evaluation was carried
out on 321 additional locations where post-harvest analyses on
hazelnuts samples were available in the same reference period
(2016–2019, as shown in Arciuolo et al., 2020, this special
issue). In all datasets, hazelnuts were collected at full ripening
(phase R13, as shown in Supplementary Table 2) on 100
trees per orchard (30 hazelnuts per tree), when average kernel
humidity was about 10%, to obtain approximately 15 kg of
hazelnuts sample−1 (about 3,000 hazelnuts). Hazelnut fruits were
dried on pallets to facilitate the husk removal and mechanical
dehusking; after a second drying period to ease the cracking
procedure, they were manually shelled and observed for defects
after cutting kernels in two halves. The percentage incidence
of rotten hazelnuts with visible and invisible defects was
determined in laboratory and used as reference data to evaluate
model performances.

The 22 orchards where calibration activities were performed
are located in 13 out of the 27 NASA grid cells covering the whole
hazelnut producing area in Turkey. Therefore weather data from
these 13 grid cells were used for model calibration. The model
was then evaluated comparing simulation results obtained on all
27 grid cells with median rotten hazelnuts incidence from the

additional 321 sampling locations, after averaging them based on
the NASA-POWER grid cell they fall in.

Model Development
Differently from other plant diseases whose etiological agent is
well known, several genera (Diaporthe, Alternaria, Cladosporium,
Fusarium, and Colletotrichum) are associated with rotten
hazelnut defects. Diaporthe spp. emerged as candidate pathogens
in the Caucasian region (Battilani et al., 2018). Based on
this work, the rotten simulation model presented here is
composed by two modules: a process-based model to simulate
the epidemiological processes of the Diaporthe spp. cycle, coupled
with the reproduction of the susceptibility of hazelnuts to fungal
infections as modulated by their phenological development.
The large uncertainty associated with the causal agent and the
heterogeneity of Diaporthe strains isolated on rotten hazelnuts
in Turkey (Arciuolo et al., 2020) led us to develop a hybrid
approach, where the indicators of the suitability of weather
conditions to generic fungal pathogens are derived from
long-term simulations (climatic norm, 30 years over whole
Turkey, 1988–2018).

The workflow of the rotten hazelnut simulation model is
presented in Figure 3. Model simulations start on October 1,
defined as the starting date of the hazelnut growing season.
The simulation of the hazelnut reproductive phases is performed
according to Bregaglio et al. (2016, 2020, 2021), this special
issue. Eight phenological phases were simulated for female
reproductive development, from flowering to nut dropping. The
simulation of the suitability of weather conditions to rotten
increase starts with the formation of pycnidia, i.e., suitable
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FIGURE 2 | The seven main municipalities where hazelnuts are cultivated in Turkey (A). The locations of the 22 orchards where phenological observations were
performed on a weekly basis in the Western (B) and Eastern (C) Black Sea are overlapped with NASA-POWER grids (27 grid cells).

structures for the overwintering of the pathogen (Arciuolo et al.,
2021), as driven by air temperature and relative humidity. When
pycnidia are formed and mature, they produce cirrhi where
conidia develop, i.e., the asexual form of the pathogen (Pscheidt
and Pearson, 1991). The model considers that conidia can spread
based on the rainfall intensity and duration. Once the plant
susceptibility period is reached, the flowers are receptive for
the fungal spores. Fungal infection is simulated when conidia
are spread, with suitable leaf wetness duration and temperature.
The simulated rotten incidence (%) is defined by the following
variables: the number of hours suitable for infection events in
the current season, the cumulated rainfall in January, and the
number of hours suitable for conidia spread in the previous
season, to consider the carry over effect of the inoculum load
from 1 year to the next.

At each time step, when hourly air relative humidity is higher
than a threshold (RHthresholdPC) and temperature is within
the minimum and maximum for pycnidia formation (TmaxPF,
TminPF), hourly temperature is cumulated. Once the cumulated
hourly temperature (CumT, ◦C) reaches a given threshold
(ThresholdPF), pycnidia start to form (PycnidiaFormation, 0-1,
Eq. 1).

PycnidiaFormation =
{

1 if CumT ≥ ThresholdPF
0 otherwise

(1)

Conidia are spread (ConidiaSpread, 0-1, Eq. 2) when both
cumulated rainfall (CumHourlyRain, mm) and consecutive
rainy hours (RainyHours, h) exceed a threshold (RainStartCS;
HoursStartCS).

ConidiaSpread =


1 if CumHourlyRain ≥ RainStartCS and

RainyHours ≥ HoursStartCS

0 otherwise
(2)

The number of suitable hours for conidia spread (CumCS) is used
as a proxy of the inoculum load for the following year and to
modulate the increase of rotten incidence (%, IncreaseR, Eq. 3)
associated with each infection event. IncreaseR depends on the
maximum rotten incidence increase (IP, %), modulated by the
normalization of CumCS according to the median of simulated
hours when conidia were spread in the period 1984–2018 (CS,
Eq. 3).

IncreaseR = IP ∗
(

1+
CumCS − CS

CS

)
(3)

The plant susceptibility (PS, 0-1, Eq. 4) is activated
when female flowers are receptive for fungal spores
(DVSstart). The codes and description of the phenological
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FIGURE 3 | A flowchart of the rotten incidence simulation model. Decisions are indicated as rhombi, parameters are reported in green boxes and model
outputs/events are indicated as white boxes. The acronym, description, and units of the parameters are reported in Table 2.

phases are reported in Supplementary Table 2. The
optimum susceptibility and the end of the susceptible
period are driven by the parameters DVSopt and
DVSend.

PS =

 0 if DVSstart < DVS > DVSend(
DVSend−DVS

DVSend−DVSopt

)
∗

(
DVS−DVSstart

DVSopt− DVSstart

)( DVSopt−DVSstart
DVSend−DVSopt

)
otherwise

(4)

The infection events are simulated as a function of leaf
wetness, which is cumulated (CumLW) when hourly air
temperature (T, ◦C) is in the range between the minimum
(TminCI, ◦C) and the maximum (TmaxCI, ◦C) for infection.
Once CumLW and temperature are conducive, a moisture
function [f(M), 0-1, Eq. 5] triggers the infection events
(Infections, 0-1, Eq. 7). A dry period, i.e., no leaf wetness,

terminates the infection when its duration exceeds a threshold
(LW50CI):

f (M) =

{
LWminCI

f (T)
if CumLW ≥LWminCI

TminCI ≤T ≥TmaxCI
0 otherwise

(5)

f (T) =

(
TmaxCI − T

TmaxCI − ToptCI

)(
T − TminCI

ToptCI − TminCI

)( ToptCI −TminCI
TmaxCI −ToptCI

)
(6)

Infections =

{
1 if CumLW ≥f (M)

CumLW ≥LWoptCI
0 otherwise

(7)

Where ToptCI is the optimum temperature for infection.
Each infection event contributes increasing rotten incidence
(Eq. 8). The parameter RottenCoefficient (Eq. 9) is modulated
by the inoculum load from the previous year (IncreaseR,
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Eq. 3) and by the cumulated rainfall in January (CumR),
normalized considering the median of the period 1984–2018
(CumR):

Rotten incidence = Infections ∗ RottenCoefficient (8)

RottenCoefficient = IncreaseR+ IncreaseR∗
(

CumR− CumR
CumR

)
(9)

The rotten model was developed as a BioMA component
in Microsoft C#, following the guidelines of the Diseases
components (Bregaglio and Donatelli, 2015; Valeriano et al.,
2021; Wang et al., 2021).

Sensitivity and Uncertainty Analysis
Analyzing the Weather Variability in the Study Area
The clusters of similarity in climatic conditions were
identified computing agrometeorological indices (Table 1)
in the period 1984–2018, centered in the hazelnut
growing season (from October to October). Input data
referred to each NASA-POWER grid cell in the Turkish
hazelnut growing area.

A principal component analysis (PCA) was performed
using these agrometeorological indices as active variables.
Principal components (PCs) were obtained on centered
and scaled variables, through the diagonalization of the
correlation matrix and extraction of the associated eigenvectors
and eigenvalues. A hierarchical clustering on principal
components (HCPC) was then applied to identify the groups
of years × NASA grid cells with similar climatic characteristics,
using the Euclidean distance and Ward’s clustering algorithm
(Giuliani et al., 2019).

For each cluster, ten NASA grid cells × year combinations
were selected, i.e., the five most representative and the five
most extreme considering the distance from their corresponding
cluster centroid, to maximize the heterogeneity of the explored
climatic variability. Simulations were performed on these
situations, and results were aggregated at cluster level using mean
and standard deviation (SD). A v-test (Lebart et al., 1995) was
calculated on quantitative variables, under the null hypothesis
(H0) that the cluster average did not differ from the overall
average, with the sign of the test statistic indicating a lower (−)
or greater (+) cluster mean than the overall mean. PCA and
cluster analyses were performed using the FactoMineR R package
(Husson et al., 2011).

Sensitivity Analysis Method
The sensitivity of the rotten simulation model to parameters
variability was tested using the global sensitivity method by Sobol
(1993) as improved by Saltelli (2002). This method is widely
used in agroecological modeling studies, thanks to its robustness
in identifying the parameters’ ranking and its capability of
exploring the entire parameter space (DeJonge et al., 2012).
This method decomposes the output variance into the terms of
increasing dimension (i.e., partial variances), which represent the
contribution of single parameters and of their combinations to

the overall model outputs uncertainty (Eq. 10):

D =
k∑

i=1

Di +
∑

1≤i<j≤k

Dij + ...+ D1,2,...,k (10)

Where D is the total output variance, Di is the partial variance
associated with the main effect of input factor (i), Dij is the partial
variance associated with the interaction between i and j, and
D1,2,..,k is the interaction among k factors.

We used here the Sobol total sensitivity index (STI) to quantify
the contribution of each parameter to output variability including
all its interactions with other parameters (Homma and Saltelli,
1996). This index is computed as the sum of all sensitivity indices
of different order (Eq. 11), which are calculated by dividing the
partial variance of each parameter by the total variance of model
outputs (D) (Eq. 12):

STi = Si
∑
j 6=i

Si,j + ...+ S1,2,...k (11)

Si,j =
Di,j

D
(12)

Where Si provides the first-order contribution from the i-th
input parameter to the output variance, Si,j is the second-order
contribution from the interaction between the i-th and the j-th
parameters, and S1,2,...k is the contribution from the interaction
among all k parameters.

The target outputs of the sensitivity analysis were the number
of suitable hours for (a) pycnidia formation, (b) conidia spread,
(c) infection, and (d) the rotten incidence (%). The latter
was then directly compared with field samples in calibration
and evaluation. All 16 parameters of the process-based models
were included in the sensitivity analysis (Table 2). Given
that no information is available on the thermal and moisture
requirements of the Diaporthe spp. strains associated with
hazelnut rotten defects, the default values of model parameters
were set according to the biological requirements of Phomopsis
viticola, i.e., anamorph of Diaporthe viticola and a causal agent
of grapevine cane and leaf spot (Erincik et al., 2003; Anco et al.,
2013). The random samples of model parameters were generated
and 18,000 simulations were performed for each sensitivity
analysis assessment. Simulation results were stored at daily
temporal resolution and analyzed via boxplots to explore the
uncertainty of the outputs. The sensitivity analysis was performed
using the SALib package in Python (Herman and Usher, 2017).

Model Calibration and Evaluation
The seven most relevant parameters explaining the variability
of the outputs from the sensitivity analysis assessment were
adjusted via automatic calibration, moving their values within
their biological ranges (Table 2). The remaining 11 parameters
were set as their default values (Table 2). Ground-truth data
from the 22 orchards where weekly phenological observations
in 2018–2019 and rotten incidence in 2016–2019 were available
and were used for model calibration. The rotten incidence
model was coupled with a multi-start downhill simplex algorithm
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TABLE 1 | Agrometeorological indices computed on historical weather time series (1984–2018) in the Turkish hazelnut growing area.

Agrometeorological indices Acronym Unit of measure Description Ref.

Air frost yearly AirFY Days year−1 Number of days with Tmin <0◦C a

Rainfall yearly RainY mm year−1 Annual precipitation b

Air temperature mean yearly AirTMY ◦C Mean annual air temperature b

Dryness Dry Days year−1 Number of days with precipitation <0.2 mm a

Dry spell DryS Days year−1 Length of the longest dry period b

Emberger continentality EmbergerC ◦C Thermal excursion between the warmest and coldest month c

Heat wave HW Days Maximum number of consecutive days when Tmax >mean yearly
Tmax + 3.0◦C

a

Hot days number HotDaysN Days year−1 Number of days with Tmax >31◦C a

Mediterraneity Med Unitless Ratio between the total precipitation in the warm and cold season. The
higher the value, the more similar the climate to Mediterranean climate

d

Modified fournier ModFournier mm Modified Fournier index calculated as the ratio between squared
monthly precipitation and annual precipitation. The lower the value, the
higher the dryness

e

Five days maximum rain amount 5DMaxRain mm Maximum total precipitation in 5 days a

Wet spell WS Days year−1 Length of the longest rainy period a

Desertification Deser Unitless Desertification index calculated as the ratio between total annual
precipitation and evapotranspiration. The lower the value, the higher the
dryness

f

Tmax: daily maximum air temperature (◦C); Tmin: daily minimum air temperature (◦C). References (Ref.): (a) Barnett et al., 2006; (b) basic statistics; (c) Emberger, 1930;
(d) Le Houérou, 2004; (e) UNEP, 1992; (f) FAO/UNEP, 1977.

TABLE 2 | Acronym, units, and description of the parameters of the model of rotten incidence.

Parameter Description Units Under calibration Optimized/default value

HoursStartCS Minimum number of consecutive hours with rainfall to trigger conidia spread h No 7

LW50CI Dry hours to stop an infection event h No 5

LWminCI Minimum leaf wetness duration to cause an infection h No 5

LWoptCI Maximum leaf wetness duration to cause an infection h No 14

RainStartCS Minimum rainfall amount to trigger conidia spread mm Yes 10.4

RHthresholdPF Minimum relative humidity to trigger pycnidia formation % Yes 70

ThresholdPF Sum of hourly temperature to trigger pycnidia formation ◦C No 152.3

TmaxCI Maximum temperature to cause an infection ◦C No 32.4

TminCI Minimum temperature to cause an infection ◦C No 6.4

ToptCI Optimum temperature to cause an infection ◦C No 14.4

TminPF Minimum temperature to trigger pycnidia formation ◦C Yes 9.6

TmaxPF Maximum temperature to trigger pycnidia formation ◦C No 25.2

DVSstart Phenological code to start the plant susceptibility period Unitless Yes 7.4

DVSend Phenological code to end the plant susceptibility period Unitless Yes 10.9

DVSopt Phenological code where plant susceptibility is maximum Unitless Yes 9.7

IP Modulation of the increase of rotten due to the inoculum load from previous year % Yes 0.03

Information on the inclusion in model calibration and calibrated value are also reported.

(Nelder and Mead, 1965) to perform automatic calibration,
setting a weighted root mean square error (RMSE, 0.5) and
Pearson’s correlation coefficient (r, 0.5) as objective function to
maximize both accuracy and correlations with reference data.
We used 10 simplexes and 1,000 iterations, setting 0.001 as the
tolerance value (Giuliani et al., 2019). After calibration, the model
was applied on an independent dataset of 321 orchards, whose
data were aggregated according to the respective NASA-POWER
grid cell used as the source of weather data. Model performances
were then assessed at municipality level, by taking the median of
model results from all the NASA-POWER grid cells of interest.

Model accuracy was assessed via mean absolute error (MAE, %),
RMSE (%), Pearson’s r, and the coefficient of determination (R2).

RESULTS

Sensitivity and Uncertainty Analysis
Assessing the Climatic Variability in the Study Area
The results of the PCA and HCPC conducted on the
agrometeorological indices are shown in Figure 4, whereas PCA
loadings are reported in Table 3. The first two components,
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FIGURE 4 | Biplot showing the agrometeorological indices in the principal component (PC) space, as well as the three clusters extracted in the first two PCs. The
acronyms of the agrometeorological indices are reported in Table 1.

explaining 59% of the total variance, were selected for data
interpretation. The first component (PC1) was mostly related
to moisture conditions, as proved by its strong correlation
with annual precipitation (RainY, r = 0.80), the number of
wet days (WetDaysN, r = 0.80), the ratio between total annual
precipitation and evapotranspiration (Deser, r = 0.92) and
the Modified Fournier index (ModFournier, r = 0.77). The
second component (PC2) depicted a thermal gradient, as it was
positively correlated with mean yearly air temperature (AirTMY,
r = −0.86), and negatively with the number of frost days
(AirFY, r = 0.87).

The HCPC identified three clusters of similarities in climatic
conditions (Figure 4). Cluster 1 (C1) was characterized by
dry weather conditions and high daily thermal excursion
(average maximum and minimum temperature equal to 16.5 and
5.3◦C, respectively). The main representative agrometeorological
indices in the characterization of this cluster were Dry (v = 18.89,
p < 0.001), HotDaysN (v = 15.63, p < 0.001), EmbergerC
(v = 11.59, p < 0.001), DryS (v = 11.29, p < 0.001), and HW
(v = 7.25, p < 0.001). Cluster 2 (C2) identified years with the
highest amount of average annual rainfall (823 mm). This cluster
corresponded to cold temperatures with high daily excursion,
with maximum and minimum temperature equal to 14.3 and
6.0◦C, respectively. The main representative agrometeorological
indices in C2 were AirFY (v = 11.59, p < 0.001), RainY
(v = 12.42, p < 0.001), and EmbergerC (v = 12.33, p < 0.001).

Cluster 3 (C3) emerged as a representative of a warm and wet
environment (average annual rainfall = 792 mm). Differently
from C1 and C2, this cluster was characterized by a narrow
daily thermal excursion (16.17 and 11.85◦C for maximum and

TABLE 3 | Principal component analysis (PCA) correlation and loadings of the first
two principal components (PCs).

Index Correlation Loadings

PC1 PC2 PC1 PC2

5DMaxRain 0.59 0.23 0.26 0.14

AirFY −0.39 0.88 −0.18 0.53

AirTMY 0.27 −0.86 0.12 −0.52

Deser 0.93 −0.08 0.41 −0.05

Dry −0.81 −0.22 −0.36 −0.14

DryS −0.42 −0.35 −0.19 −0.21

EmbergerC −0.56 0.74 −0.25 0.45

HotDaysN −0.62 0.16 −0.28 0.10

HW −0.32 0.05 −0.14 0.03

Med −0.17 −0.41 −0.07 −0.25

ModFournier 0.77 0.24 0.35 0.14

RainY 0.81 0.36 0.36 0.22

WetDaysN 0.81 0.22 0.36 0.14

The acronyms of the agrometeorological indices are explained in Table 1.
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FIGURE 5 | Model outputs from sensitivity analysis. (A) Hours for pycnidia formation (solid lines) and minimum temperature (◦C; dotted lines); (B) hours of conidia
spread (solid lines) and cumulated rainfall (dotted lines); (C) infection hours (solid lines) and minimum temperature (◦C; dotted lines); (D) simulated rotten incidence
(%, solid lines) and cumulated rainfall in January (bars). The ranges of suitable temperature are indicated as shades in panels (A,C).

minimum temperature, respectively). The main representative
agrometeorological indices in C3 were AirTMY (v = 20.96,
p < 0.001), Deser (v = 17.86, p < 0.001), and WetDaysN
(v = 10.01, p < 0.001). The v-tests results for all active variables in
the three clusters are listed in Supplementary Tables 3–5.

Exploring Model Plasticity in Different Climatic
Conditions
Simulations conducted with weather data from C3 led to
the highest number of suitable hours for pycnidia formation,
followed by C2 and C1 (Figure 5A). This was mainly due
to the higher minimum temperature in C3, which led to the
longer favorable period for pycnidia formation. The number
of hours, when conidia spread was simulated, was higher in
C2, followed by C3 and C1 (Figure 5B), in agreement with
larger precipitation amounts. C3 led to the highest number
of infection hours (Figure 5C), mainly due to more favorable
thermal conditions. Simulated rotten incidence was higher in C2
(3.82%), followed by C3 (2.33%) and C1 (1.94%, Figure 5D). As
described in section “Model Development,” the simulated rotten
incidence is affected by the number of infection events during the
growing season and modulated by cumulated rainfall in January,
which was higher in C2 (88.6 mm). C3, on the other hand, was
associated with the lowest cumulated rainfall in January, but led
to higher rotten incidence than C1 due to the higher number of
simulated infections.

The values of Sobol total-order index computed on model
parameters after sensitivity analysis are presented as a boxplot
in Figure 6, considering the number of suitable hours
for pycnidia formation, conidia spread, infection, and the
rotten incidence.

The most relevant parameters from the sensitivity analysis
were subjected to automatic calibration. They were the
phases of start, maximum, and end susceptibility (DVSstart,
STI = 0.22 ± 0.13; DVSopt, STI = 0.31 ± 0.04; and DVSend,
STI = 0.58 ± 0.14); the rainfall amount triggering conidia
spread (RainStartCS, STI = 0.26 ± 0.13); the minimum
temperature and threshold of air relative humidity for pycnidia
formation (TminPF, STI = 0.07 ± 0.05; RHthresholdPF,
STI = 0.05± 0.03); and the maximum increase of rotten incidence
(IP, STI = 0.31± 0.03).

The RHthresholdPC and TminPF have mostly
contributed to the variability in the number of suitable
hours for pycnidia formation, given that this process
is mainly driven by temperature and relative humidity.
RainStartCS was the most relevant parameter influencing
the number of suitable hours for conidia spread, which are
entirely dependent on rainfall. The number of favorable
hours for infections resulted mainly dependent on IP
and plant susceptibility, as proved by the top-ranked
parameters, which were the ones related to the period of
plant susceptibility.
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FIGURE 6 | Sobol total sensitivity index (STI) from Sobol sensitivity analysis considering main model outputs. The description of the parameters is presented in
Table 3.

Rotten Simulation Model Calibration and
Evaluation
Model performances in calibration are reported in Table 4 as
aggregated to the municipality level, considering the location

TABLE 4 | Model performances in reproducing rotten incidence in calibration.

Geographical area RMSE MAE Pearson correlation

West

Duzce 0.81 0.50 0.79ns

Sakarya 0.71 0.57 0.93*

Zonguldak 1.70 1.40 0.58ns

Mean 1.15 0.82 0.72*

East

Giresun 2.21 1.77 0.69ns

Ordu 2.21 1.68 0.47ns

Samsun 2.55 2.24 0.19ns

Trabzon 1.26 0.99 0.89*

Mean 2.11 1.66 0.45*

Turkey 1.77 1.31 0.58*

The evaluation metrics of model accuracy are synthesized for the whole country
and are reported at regional and municipality level. nsp > 0.05; *p < 0.05.

of the 22 orchards where weekly phenological observations and
rotten incidence data were available (Figure 2). In the Western
Black Sea region, RMSE in predicting rotten incidence was always
below 2.00%, and MAE ranged between 0.50% in Duzce and
1.40% in Zonguldak. Pearson’s correlation coefficient was higher
than 0.50 in all municipalities, even if significant values were
reached only in Sakarya, due to the low number of orchards
in each municipality. In the Eastern Black Sea region, model
accuracy was slightly lower, with RMSE in predicting rotten
incidence between 1.26% in Trabzon and 2.55% in Samsun, the
latter municipality leading to a MAE higher than 2.00%. Trabzon
was the only municipality where Pearson’s correlation coefficient
was significant. However, when considering all orchards in the
same region, Pearson’s r was significant both in Western (r = 0.72)
and Eastern (r = 0.45) region, as well as when evaluation
metrics were computed on the whole calibration dataset. Model
performances in calibration at the country level denoted a good
model accuracy (RMSE = 1.26% and MAE = 0.99%) and a
significant correlation (r = 0.58) with field observations.

The model accuracy in reproducing reference data coming
from an independent dataset of 321 additional orchards are
presented in Figure 7. The histogram analysis highlights that
the model correctly reproduced a very high rotten incidence in
2016 in the Western Black Sea region, even if the exceptional
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FIGURE 7 | Comparison between simulated (gray bars) and observed rotten
incidence (%) in 2016–2019 in the seven main hazelnut growing municipalities
in the Western (green bars) and Eastern (orange bars) Black Sea region. The
variability associated with field surveys are presented by the standard error
(SE) (error bars). Statistical metrics quantifying the model accuracy in the
evaluation dataset are reported at country and regional level.

rotten incidence in Duzce (>13.00%) was underestimated.
Coherently with field observations, the model simulated lower
rotten incidence in the period of 2017–2019 in all Western
municipalities, with average model errors lower than 2.00%
in all cases. In the Eastern Black Sea region, the model was
able to reproduce an overall higher rotten incidence than in
the Western region, as well as to match the higher observed
rotten incidence in 2016–2018, especially in Giresun, Ordu,
and Trabzon, whereas in Samsun the model underestimated
the reference data. Simulations in 2019 highlighted low rotten
incidence in all the municipalities of the Eastern region, in
agreement with field data. The evaluation metrics computed
on the validation dataset denoted slightly lower performances
than in calibration, with RMSE comprised between 2.04% in the
Eastern and 2.94% in the Western Black Sea region, and MAE
lower than 2.00% in all cases. Pearson’s correlation coefficient
computed at municipality level ranged between 0.46 in the
Eastern and 0.63 in the Western Black Sea, with corresponding
R2 of 0.26 at country level.

DISCUSSION

One of the main determinants of hazelnuts price is the
incidence of rotten defect, a major concern for the confectionary
industry. The identification of its causal agents has been debated
in the last years. Recently, Diaporthe spp. were identified
as candidate etiological pathogens in the Caucasian region

by Battilani et al. (2018) and in Turkey by Arciuolo et al.
(2020). The rationale behind the development of the process-
based model presented here lays the pieces of evidence from
these studies, which found a significant correlation between
Diaporthe spp. and the incidence of rotten defect in similar
hazelnut cultivation areas. However, the same authors found
other fungal species associated with damaged kernels, and
new field experiments and molecular analyses are ongoing to
gain new insights on the actual etiology of this defect. On
these premises, we decided to target the main components of
the epidemiological cycle of Diaporthe spp. using a generic
modeling approach, which is grounded on the Diaporthe
lifecycle, but also customizable to other pathogens both via
parameterization or the substitution of specific (sub-) models
when new information is available.

The workflow for the model development comprised an
uncertainty and sensitivity analysis to rank the most relevant
parameters in modulating model outputs, whose results were
used as input for an automatic model calibration, using in-
field rotten incidence as reference data (Bregaglio et al., 2020).
The cardinal optimum, maximum, and minimum temperature
for infection and latency were set to 14, 32, and 6◦C,
respectively. This agrees with Erincik et al. (2003) and Anco
et al. (2013), who analyzed temperature and wetness duration
requirements for grape leaf and cane infection by P. viticola
(same genus as Diaporthe). The positive correlation between
the incidence/severity of plant fungal diseases and warm and
humid weather conditions is well known (Rotem and Palti,
1969; Colhoun, 1973; Café-Filho et al., 2019). The uncertainty
analysis highlighted that a wet and warm environment with a
small temperature variability (Cluster 3) is more suitable for the
infection process. This result can be mostly attributed to more
humid conditions in C3, which was also associated with small
limitations in thermal requirements for fungal infections. Anco
et al. (2013) stated that once sporulation occurs, infections would
also follow shortly thereafter, provided that the leaf wetness
lasts and temperature does not drastically change. Therefore, the
other two clusters from the HCPC analysis, where temperature
variability was larger, were associated with higher limitations to
the fulfillment of plant susceptibility, and in turn, the number of
suitable hours for infection.

The main purpose of the sensitivity analysis was the
identification of parameters with high influence on the variability
of the outputs (Specka et al., 2019), to select a subset of
parameters for the subsequent calibration (Makowski et al.,
2011). The rotten simulation model showed to be sensitive
to parameters related to plant susceptibility, with DVSend
accounting for the highest variability in simulated rotten
incidence. This underlines the importance of the accurate
simulation of hazelnut reproductive phenology, given that the
plant is mostly susceptible to fungal infections during female
flowering. The simulation model was able to reproduce the
observed trends of rotten incidence in the main hazelnut areas
in Turkey, and to simulate the highest rotten incidence in 2016.
These results agree with Battilani et al. (2018), who noticed severe
symptoms of black, completely decayed rotten nuts in 2016 in the
Caucasus region.
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Overall, inter-annual variability of the rotten incidence was
adequately reproduced by the model, which responded to
environmental conditions, such as rainfall and temperature
(Erincik et al., 2003; Huber et al., 2006; Nita et al., 2008). In
particular, rainfall is crucial for fungal dissemination (Erincik
et al., 2003). In addition, Battilani et al. (2018) reported
large precipitation amount in 2016 in the Caucasian region.
However, the model validation revealed that, in its current
form, the model partially failed in reproducing exceptionally
high values of rotten incidence (e.g., in Duzce, 2016). The
huge variability of rotten incidence within the same growing
season in the validation dataset, constituted by 321 additional
sampling locations, denote a major effect of agronomic and
pedo-climatic conditions that are not currently take into
account in the predictive workflow. This is the main reason
contributing to explain the low correlation of reference and
simulated rotten incidence in the Eastern Black Sea region,
where hazelnut orchards management techniques are generally
less advanced and soil conditions are much more variable
than in the Western region (Erdogan, 2018). Other reasons
which could contribute to explain this poor agreement with
field observations lie in instrumental, procedural, and human
errors in laboratory analyses. The most important limitation,
however, is the spatial resolution of the input gridded weather
data, which were available at a granularity of 0.5◦ × 0.5◦
resolution, corresponding to approximately 3,000 km2 on the
ground. This study would have been benefited from the
availability of either gridded weather datasets at a higher
resolution (e.g., ERA5-Land from Copernicus), or from weather
stations placed close to the fields, which would have allowed
us to gain more insights into the meso- and microclimatic
conditions especially of the Eastern Black Sea area. We
highlight that the model presented here is in a prototypal
form and would benefit from a set of detailed laboratory
experiments to test the response of epidemiological processes
to the varying moisture/thermal conditions, as well as from
field trials where alternative management practices and weather
conditions are tested ad hoc to extrapolate specific response
functions. The availability of additional knowledge on the
actual etiology of rotten hazelnuts coming from laboratory
and field experiments will be fundamental to revise part of
the modeling framework presented in this paper, by ad hoc
functions targeting key components of the epidemiological cycle
of specific fungal pathogens. Eventually, the model performances
shall be evaluated in other hazelnut cultivation regions, to
assess the model scalability in predicting rotten incidence in
different environments.

CONCLUSION

The reliable process-based models to predict quality defects
caused by plant pathogens are requested to the modeling
community. The model presented here is the first building
block of a decision support system to support the tactical
decisions of plant protection in hazelnut orchards, such as
the application of agrochemicals, and to forecast the expected

impact of rotten incidence at the end of the growing season.
The operational execution of this model will require the use
of seasonal weather forecasts as model input to anticipate
expected trends in rotten hazelnuts some weeks before harvest.
The spatially distributed application of the model in the main
hazelnut producing municipalities of Turkey is a preliminary
step toward the extension of the same procedure to other
environments, provided that sufficient input data are available.
Such possibility will open new perspectives for hazelnuts buyers,
who need support to optimize their purchase strategies in the
different regions of the globe.
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