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Remote sensing and machine learning (ML) could assist and support growers,
stakeholders, and plant pathologists determine plant diseases resulting from viral,
bacterial, and fungal infections. Spectral vegetation indices (VIs) have shown to be
helpful for the indirect detection of plant diseases. The purpose of this study was to
utilize ML models and identify VIs for the detection of downy mildew (DM) disease in
watermelon in several disease severity (DS) stages, including low, medium (levels 1 and
2), high, and very high. Hyperspectral images of leaves were collected in the laboratory
by a benchtop system (380–1,000 nm) and in the field by a UAV-based imaging system
(380–1,000 nm). Two classification methods, multilayer perceptron (MLP) and decision
tree (DT), were implemented to distinguish between healthy and DM-affected plants.
The best classification rates were recorded by the MLP method; however, only 62.3%
accuracy was observed at low disease severity. The classification accuracy increased
when the disease severity increased (e.g., 86–90% for the laboratory analysis and 69–
91% for the field analysis). The best wavelengths to differentiate between the DS stages
were selected in the band of 531 nm, and 700–900 nm. The most significant VIs for DS
detection were the chlorophyll green (Cl green), photochemical reflectance index (PRI),
normalized phaeophytinization index (NPQI) for laboratory analysis, and the ratio analysis
of reflectance spectral chlorophyll-a, b, and c (RARSa, RASRb, and RARSc) and the Cl
green in the field analysis. Spectral VIs and ML could enhance disease detection and
monitoring for precision agriculture applications.

Keywords: artificial intelligence, hyperspectral imaging, plant disease, remote sensing, UAV

INTRODUCTION

Florida is the second-largest watermelon producer in the United States behind Texas. Based on
the information from USDA Economic Research Service in 2017, more than 113,000 acres were
cultivated throughout the United States, producing 40 million pounds of watermelon. The USA’s
annual total watermelon budget was $578.8 million in 2016. Several diseases adversely impact
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watermelon production in Florida, and accurate disease
identification is critical to implementing timely and effective
management tactics. One of the significant diseases of
watermelon is downy mildew (DM) caused by the fungal-like
oomycete (Pseudoperonospora cubensis). Symptoms of DM are
found on the leaves where the lesions begin as chlorotic (yellow)
areas that become necrotic (brown/black) areas surrounded by
a chlorotic halo. Under humid conditions, dense sporulation of
the pathogen on the underside of the leaves within the lesions
appears fuzzy. Severely affected leaves become crumpled and
brown and may appear scorched. Downy mildew infection
spreads quickly and, if left unchecked, can destroy an entire
planting within days, hence the nickname “wildfire” for both
the rapid disease development and scorched leaf appearance.
Downy mildew does not affect stems or fruit directly; however,
defoliation due to DM leaves fruit exposed to sunburning,
making the fruit non-marketable. Therefore, successful field
scouting for diseases would improve the yield production by
implementing timely and effective management actions.

Because of the rapid and destructive occurrence of the disease,
early detection and preventative fungicide applications are
critical to its management. Non-destructive methods have been
utilized as remote sensing tools for identifying and evaluating
diseases occurring over a season (Immerzeel et al., 2008). Bagheri
(2020) applied aerial multispectral imagery for the detection
of fire blight infected pear trees by utilizing unmanned aerial
vehicle (UAV), and several vegetation indices (VIs) (IPI, RDVI,
MCARI1, MCARI2, TVI, MTVI1, MTVI2, TCARI, PSRI, and
ARI) were evaluated for disease detection. The support vector
machine (SVM) method was used to detect diseased trees
with an accuracy of 95%. In another example, cotton root rot
disease was detected by using UAV remote sensing and three
automatic classification methods to delineate cotton root rot-
contaminated areas (Wang et al., 2020). Ye et al. (2020) developed
a technique for detecting and monitoring Fusarium wilt disease
by utilizing UAV multispectral imagery. Eight VIs associated
with pigment concentration and plant development changes were
selected to determine the plants’ biophysical and biochemical
characteristics during the disease progress development stages
(Ye et al., 2020). Unmanned aerial vehicles can cover large crop
areas by employing aerial photography to monitor the progress of
a disease over time. Dense period sequence analysis can provide
additional information on the timing of plant field changes and
enhance the quality and accuracy of information derived from
remote sensing (Woodcock et al., 2020).

One of the benefits of aerial imaging using UAVs is providing
information on disease hot spots. Remote sensing (e.g., UAV-
based hyperspectral imagery) can detect plants with diseases in
asymptomatic and early disease development stages, which are
critical for timely disease management (Hariharan et al., 2019).
Abdulridha et al. (2019, 2020a) successfully detected different
disease development stages of laurel wilt in avocado and bacterial
and target spots in tomatoes with high classification accuracies
utilizing remote sensing and machine learning. Lu et al. (2018)
utilized spectral reflectance data to detect three different diseases
in tomatoes, late blight, target spot, and bacterial spot, and
several VIs were extracted to distinguish between healthy

and diseased plants. Only a few studies utilized hyperspectral
data for watermelon disease detection, which were conducted
mainly in laboratories. Blazquez and Edwards (1986) utilized a
spectroradiometer technique to measure the spectral reflectance
of healthy watermelon and distinguish it from two diseases
(Fusarium wilt and downy mildew). They found significant
differences between the disease categories, especially in the NIR
region (700–900 nm). Kalischuk et al. (2019) used UAV-based
multispectral imaging and several VIs to detect watermelons
infected with gummy stem blight, anthracnose, Fusarium wilt,
Phytophthora fruit rot, Alternaria leaf spot, and cucurbit leaf
crumple virus in the field.

However, all the benefits of remote sensing for disease
detection are wasted (or squandered) if not timed correctly
with early control management. If early disease detection
is achieved and management practices are applied in time,
limiting the disease spread throughout the field and minimizing
economic losses are possible. One of the main goals of precision
agriculture is to optimize fungicide and pesticide usage by
detecting diseased areas (hotspots) and performing site-specific
spraying. A sensor-based detection and mapping of stress
symptoms in crops are required to accomplish spatially precise
applications. Some recent studies have focused on sensor-based
detection of pathogen infections in crops to implement site-
specific fungicide applications (Abdulridha et al., 2020b,c). High-
throughput phenotyping tools, the internet of things, and a smart
environment can be used to observe the heterogeneity of crop
vigor and could be helpful to optimize agricultural input usage
through improved decisions on the spot and accurate timing and
dose of chemical applications (West et al., 2003; Almalki et al.,
2021; Saif et al., 2021; Alsamhi et al., 2022).

Early disease detection is key to limiting the spread, reducing
the severity, and minimizing crop damage. Accurate disease
identification at the beginning of an outbreak is essential for
implementing effective management tactics. To the best of
our knowledge, a high-throughput technique for detecting and
monitoring DM severity stages in watermelon fields has not
yet been developed. In this study, hyperspectral images were
collected in the field (via UAVs) and in the laboratory (via a
benchtop system) to (i) train ML models for the detection and
monitoring of the DM for several DS stages in watermelon,
and (ii) select the best bands and VIs to distinguish between a
healthy and a DM-affected watermelon plant. To the best of our
knowledge, we are the first to develop a UAV-based hyperspectral
imaging technique to detect DM-affected watermelon plants in
several disease severity (DS) stages.

MATERIALS AND METHODS

Experimental Plot Design
The experiments were conducted at the University of Florida’s
Southwest Florida Research and Education Center in Immokalee,
FL, United States. Guidelines established by the University of
Florida were followed for land preparation, fertility, irrigation,
weed management, and insect control. The beds were 0.81 m
wide with 3.66 m centers covered with black polyethylene film.
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Four-week-old watermelon transplants “Crimson Sweet” were
planted on 9 March 2019 into the soil (Immokalee fine sand)
in a complete randomized block treatment design with four
replicates. Each plot consisted of 10 plants spaced 0.91 m apart
within an 8.23 m row with 3.05 m between each plot. The plants
were infected naturally by DM.

Data Collection
Healthy watermelon leaves were collected on April 10, 2019. After
the first detection of DM, leaves were collected from DM-affected
plants in five disease severities (DS; percentage of leaf tissue
affected) stages. For the laboratory analysis, leaves were collected
in the low DS stage (few lesions); then, from the medium 1 and 2,
high and very high DS stages. The grading system of DM severity
is as follows: the low DS had 5–10% severity, and as the disease
progressed, the percentage of infection gradually increased in low
to medium DS stages 1 and 2 (11–20% and 21–30% severity,
respectively), and then the high and very high DS stages increased
dramatically from 31 to 50% and 51 to 75% severity, respectively
(Figure 1). In this study, spectral data were not collected when
the DS was more than 75%, because the leaves were in very bad
shape and desiccated. In the field (UAV-based) study, DS was
categorized in two stages: low and high (Figure 2). The difference
between the number of DS stages in the laboratory and field was
due to the fact that, in the laboratory, each leaf was analyzed as
a sample, and in the field, an entire plant was used as a sample.
Hence, it was easier to quantify the DS stage in a single leaf than
in an entire plant, which can include leaves in different DS stages.

Data Collection and Analysis in the
Laboratory
Spectral data were collected using a benchtop hyperspectral
imaging system, Pika L 2.4 (Resonon Inc., Bozeman MT,
United States) (Figure 1E). The Pika L 2.4 was equipped with a
23-mm lens, which has a spectral range of 380–1,030 nm, 15.3◦
field of view, and a spectral resolution of 2.1 nm. The same
hyperspectral camera was utilized in the laboratory (Figure 1E)
and field (Figure 2C) after changing lenses, which covered the
same spectral range. Resonon’s hyperspectral imagers (RHI),
known as push-broom imagers, are line-scan imagers, which have
281 spectral channels. The system is made up of a linear stage
assembly, which is shifted by a stage motor. In the laboratory,
controlled broadband halogen lighting sources were set up above
the linear stage to produce ideal situations for conducting spectral
scans. The hyperspectral imaging system was arranged in a way
that the lens’ distance from the linear stage was 0.5 m. The lights
were positioned at the same level as the lens on a parallel plane.
All scans were performed using the Spectronon Pro (Resonon
Inc., Bozeman, MT, United States) software, which was connected
to the camera system using a USB cable. Before performing
the scans of the leaves, dark current noise was removed using
the software. Then, the camera was calibrated by using a white
tile (reflectance reference), provided by the manufacturer, and
placed under the same conditions as used for performing scans.
The selection of the regions of interest (RoIs) (e.g., Figure 1B)
was done manually by picking six spectral scan regions per leaf

FIGURE 1 | (A) Healthy watermelon leaves and downy mildew infected leaves
in different severity stages (as examples): (B) low (this image includes
examples of regions of interest, RoIs); (C) medium; and (D) high.
(E) Hyperspectral data collection in the laboratory by a Pika L2 (Resonon Inc.,
Bozeman MT, United States) hyperspectral camera.

(10 leaves per DS stage) to prevent the occurrence of any bias.
The total spectral scans (RoIs) selected for each DS stage was
60. Regions of interest were selected in such a way that they
included both the affected and unaffected areas of leaf tissue. The
pixel number of each spectral scan selected was between 800 and
900 pixels. The average of 60 spectral scans was used to form
an overall spectral scan signature curve for each DS stage. The
Spectronon Pro software, which is a post-processing data analysis
software, was used to analyze the spectral data of each leaf scan.
Several areas containing the symptomatic and non-symptomatic
regions on the leaves were selected using the selection tool and the
spectrum was generated. For the healthy and DM-affected plans
(five DS stages), several random spots on leaves were selected and
the average spectral reflectance was calculated and used to form
the spectral signature curves.

Data Collection and Analysis in the Field
Spectral data were collected in the field by using a UAV
(Matrice 600 Pro, Hexacopter, DJI Inc., Shenzhen, China)
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FIGURE 2 | Downy mildew severity stages in the field: (A) low; (B) high; (C) UAV-based hyperspectral imaging system; and (D) a calibration tarp.

and the same hyperspectral camera (Pika L 2.4). The UAV-
based imaging system included (Figure 2C): (i) a Resonon
Pika L 2.4 hyperspectral camera; (ii) a visible-NIR (V-NIR)
objective lens for the Pika L camera with a focal length
of 17 mm, field of view (FOV) of 17.6 degrees, and an
instantaneous field of view (IFOV) of 0.71 mrad; (iii) a Global
Navigation Satellite System (GNSS) (Tallysman 33-2710NM-
00-3000, Tallysman Wireless Inc., Ontario, Canada)/Inertial
Measurement Unit (IMU) (Ellipse N, SGB Systems S.A.S.,
France) flight control system for multirotor aircraft to record
sensor position and orientation, and (iv) a Resonon hyperspectral
data analysis software (Spectronon Pro, Resonon, Bozeman, MT,
United States), which is capable of rectifying the GPS/IMU
data using a georectification plugin. The data were collected
at 30 m above the ground and a speed rate of 1.5 m s−1. In
the produced map, the pixel size is a function of the working
distance (distance between the camera lens and the scanning
stage/field) and FOV. This value varies according to the flight
parameters. In this study, it was around 35 mm per pixel.
Gray tarp (Group VIII Technologies) was utilized to correct the
data reflectance from radiance; the reflectance tarp was 36%.
Radiometric calibration was performed by using a calibrated
integrating sphere. The manufacturer took 100 lines of spectral
data and built a radiometric calibration file that contains a
lookup table with all combinations of integration times and frame
rates. These data were used to convert raw camera data (digital
numbers) to physical units of radiance in micro flicks. The Pika
L 2.4 camera is a “pushbroom” or line-scan type imager that
produces a 2-D image, where every pixel in the image contains
a continuous reflectance spectrum. A calibration tarp was used to
calibrate the data for various illumination conditions in the field
(Figure 2D). The RoIs were randomly handpicked for each plant,

and several spectral scans were done to cover the entire canopy.
Each RoI contained four pixels, and four RoIs were selected for
each plant. The total sample size for each DS stage was 20 plants.
The RoIs were then transferred as a text file and processed using
the SPSS software (SPSS 13.0, Inc., Chicago; Microsoft Corp.,
Redmond, WA, United States).

Vegetation Indices
Vegetation indices could serve as indicators to identify DS stages
based on any defectiveness in the functioning of plants such
as physiochemical defects that affect photosynthesis, metabolic,
and nutritional processes. The factors that are most affected by
diseases and that could be measured are chlorophyll content, cell
structure, cell sap, presence, and relative abundance of pigments
concentration, water content, and carbon as expressed in the
solar-reflected optical spectrum (400–2,500 nm) (Xiao et al.,
2014). A neural network multilayer perceptron was performed
to select the best VIs that could identify DM disease and its DS.
For data analysis and evaluation of all VIs evaluated in this study
(Table 1), the SPSS software was used. The correlation coefficient
was another parameter that was utilized in this study to evaluate
its VI’s performance in detecting DM severity stages.

Classification Methods
Decision Tree
A decision tree (DT) is a non-parametric managed learning
process used for organization and regression. The objective of DT
is to produce a model that calculates the value of a goal variable by
learning simple choice instructions deducted from data features.
A decision tree has the capability of handling data measured on
different rulers in the absence of any models for the proportion
distributions of the data individually from the modules, elasticity,
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TABLE 1 | Spectral vegetation indices evaluated for downy mildew disease detection.

Ratio analysis of reflectance spectral chlorophyll-a (RARSa) RARSa = R675
R700 Chappelle et al., 1992

Ratio analysis of reflectance spectral chlorophyll b (RARSb) RARSb = R675
(R700×R650) Chappelle et al., 1992

Ratio analysis of reflectance spectra (RARSc) RARSc = R760
R500 Chappelle et al., 1992

Pigment specific simple ratio (PSSRa) PSSRa = R800
R680 Blackburn, 1998

Normalized difference vegetation index 761 (NDVI 761) NDVI 761 = (R761−R651)
(R761+R651) Raun et al., 2001

Green NDVI (GNDVI) GNDVI = (NIR850−G580)
(NIR850+G580) Gitelson and Merzlyak, 1996

Photochemical reflectance index (PRI) PRI = (R531−R570)
(R531+R570) Gamon et al., 1992

Simple ratio index (SR900) SR900 = R900
R650 Jordan, 1969

Water stress and canopy temperature (NWI 2) NWI2 = R970−R850
R970+R850 Babar et al., 2006

Structure insensitive pigment index (SIPI) SIPI = (R840−R450)
(R840−R670) Penuelas et al., 1995

Normalized phaeophytinization index (NPQI) NPQI = (R415−R435)
(R415−R435) Barnes et al., 1992

Normalized difference vegetation index 761 (NDVI 761) NDVI 761 = (R761−R651)
(R761+R651) Raun et al., 2001

Normalized difference vegetation index 850 (NDVI 850) NDVI 850 = (R850−R651)
(R850+R651) Raun et al., 2001

Simple ratio index (SR850) SR850 = R850
R650 Jordan, 1969

Modified triangular vegetation index1 (MTVI 1) MTVI 1 = 1.2[1.2(1.2(R760-R580)—2.5(R650-R580)] Haboudane et al., 2004

Modified triangular vegetation index2 (MTVI 2) MTVI 2 = 1.5[1.2(R760−R580)−2.5(R650−R580)]
SQ[(2 ∗ R760 + 1)∧2 − (6 ∗ R760 − 5 ∗ SQ(R650) − 0.5] Haboudane et al., 2004

Renormalized difference vegetation Index (RDVI) RDVI = (R761−R651)
SQ(R761+R651) Roujean and Breon, 1995

Triangle vegetation index (TVI) TVI = 0.5[120∗(R761-R581)-200(R651-R581)] Broge and Leblanc, 2001

Red-edge vegetation stress index 1 (RVS1) RVS1 = [ (R651+Red Edge 750)
2 ] − Red Edge 733 Merton, 1998

Green vegetation (VI green) VI Green = (R760−R651)
(R760+R651) Gitelson et al., 2002

Transform chlorophyll absorption in reflectance index (TCARI) TCARI = 3[(R740-R651)-0.2(R740-R581) (R740/R651)] Haboudane et al., 2002

Water index (WI) WI = R900
R970 Penuelas et al., 1997

Modified chlorophyll absorption in reflectance index (mCARI 1) mCARI 1 = 1.2[(2.5∗R761-R651)-1.3(R761-R581)] Haboudane et al., 2004

Anthocyanin reflectance index (ARI) ARI = ( 1
R550 )− ( 1

R700 ) Gitelson et al., 2001

Chlorophyll green (Chl green) Chl green = (R760/R800)
(R540/R560) Gitelson et al., 2003

Chlorophyll index green (Cl green NIR/Green) Cl green NIR/Green =
(

NIR
Green

)
− 1 Gitelson et al., 2003

Chlorophyll index red edge (Cl rededge) Cl rededge =
(

R780
R705

)
− 1 Gitelson et al., 2003

and capability to handle non-linear relationships among features
and modules (Friedl and Brodley, 1997). The decision tree can
be qualified rapidly and are quick in execution. It is a widely used
technique in image processing for detecting several plant diseases.
In this study, the classification was accrued between healthy and
DM-affected watermelon plans in several DS stages. The dataset
was split into 70% training and 30% testing.

Multilayer Perceptron
Multilayer perceptron (MLP), which is a deep artificial neural
network, was applied to identify the difference between healthy
and several DM disease severity stages. Similar to a neural
network, MLP is a function of predictors, also called inputs,
or independent variables that minimize the prediction error of
target variables, also called outputs. These models can learn by
example. Thus, when using a neural network, there is no need
to program how the output is obtained for the given certain
input; rather, a learning algorithm is used by the neural network
to calculate the relationship between input and output, which
is then utilized to predict output with the entered input values.
The neural network creates a fitted model in an analytical form,
where the parameters are weight, bias, and network topology.

The multilayer perceptron is a fully connected multilayer feed-
forward supervised learning network trained by the back-
propagation algorithm to minimize a quadratic error criterion;
no values are fed back to earlier layers. The multilayer perceptron
is composed of an input layer, a hidden layer, and an output layer.
The input and output layers are not weighted, and the transfer
functions on the hidden layer nodes are radially symmetric. The
full dataset was randomly split into two datasets by partitioning
the active dataset into training (70%) and testing (30%) samples.
After learning, the MPL model was run on the test set that
provided an unbiased estimate of the generalization error.

RESULTS

Laboratory-Based Analysis
During the spectral data collection under optimal light and
temperature conditions in the laboratory, the spectral reflectance
of five DM disease severity stages was taken. The spectral
signatures and correlation coefficient at different disease
severities were measured and compared (Figure 3). The spectral
reflectance of the very high DS stage showed a significant increase
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FIGURE 3 | (A) Spectral reflectance signatures (collected in the laboratory) of downy mildew affected watermelon leaves in five disease severity (DS) stages; and (B)
correlation coefficient for watermelon leaves in healthy (H) and five DS stages.
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FIGURE 4 | The classification results of the MLP and DT methods to
distinguish healthy (H) against several disease severity stages of downy
mildew disease in watermelon in the laboratory. The vertical lines on the
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in the green and red range (450–650 nm), while other stages
showed lower spectral reflectance in the visible range (380–
700 nm). The spectral reflectance values of the very high DS stage
were decreased in the NIR range, and the spectral reflectance in
the red edge diverged from other stages. The leaves of watermelon
in the low and medium DS stages had very few symptoms;
therefore, there were only slight differences between the spectral
reflectance for these stages. The spectral reflectance signature is
strongly related to the severity of the expected DM pathogen
symptom (Figure 3A). In the visible range (380–700 nm), there

TABLE 2 | Best wavebands and vegetation indices measured in the laboratory
and field for detecting different disease severity stages of downy mildew.

Disease severity (DS)
stages

The weight of best bands
(95–100%)

Best vegetation
indices

Laboratory

Low 722 (100%), 711 (99%), 716
(98%), 709 (96%)

CI green

Medium 1 722 (100%), 720 (99%), 718
(99%), 716 (98%)

PRI

Medium 2 1,020 (100%), 1,014 (99%),
1,019 (98%), 1,016 (96%)

NPQI

High 1,010 (100%), 1,020 (99%),
1,014 (99%), 1,007 (97%)

NPQI

Very high 761 (100%), 759 (99%), 757
(99%), 763 (99%)

NPQI

Field (UAV based)

Low 952 (100%), 956 (99%), 947
(98%), 965 (97%)

RARSc, RARSa

High 755 (100%), 771 (99%), 766
(99%), 780 (98%)

RARSb, CI green

were not many differences in the correlation coefficient signature
of all DS stages (Figure 3B). The signatures were identical
until the red-edge range (700 nm), where it gradually showed
differences between DS stages (especially the high and very
high severity stages). It is obvious from Figure 3B that the
correlation coefficient showed wide differences in the NIR range
as the DS increased.

The results of the classification varied based on disease
severity, as in the low DS stage, the classification was lower
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than the other stages (e.g., 62.3 and 52.6% for MLP and DT,
respectively). The classification rate increased as the severity of
disease symptoms increased (Figure 4). The highest classification
value of MLP was in the very high DS stage at 90%. The DT
classification method had lower detection accuracies than the
MLP classification method for all DS stages (Figure 4). Hence,
the MLP method was selected as the best classification method
for DM detection and DS stages classification. Therefore, it was
used for the selection of the best wavebands and VIs for disease
detection. The best wavebands for detecting the low and medium
1 DS stages were found on the red edge (711–722 nm), medium
2 and high DS stages were found at 1,007–1,020 nm, and the
very high DS stage was found in red edge (759–761 nm). The
best VIs, selected by using the MLP classification method, for low
and medium DS stages 1 were the Cl green and PRI, respectively,
while for medium 2, high, and very high DS stages were the
NPQI (Table 2).

Field-Based Analysis
Figure 5A shows the UAV-based spectral signatures of healthy
and DM-affected plants. In the visible range, the spectral
reflectance values of healthy plants and DM-affected plans in a
low DS stage were lower than in the high DS stage, which had
a peak value of 20% at the green band. The spectral reflectance
values of healthy plants were lower than the low and high DS
stages in the NIR range. The spectral reflectance of the low DS
stage was higher than the high DS stage, especially in the range of
750–915. Major differences cannot be seen in the red edge, where
both DS stages had almost identical signatures. In the NIR range
(700–1,000 nm), the spectral reflectance values of the low and
high DS stages were higher than the spectral reflectance values
of healthy plants.

The correlation coefficients for healthy, low, and high DS
stages were almost identical in the visible range (Figure 5B). In
the range of 750–1,000 nm, there were some differences recorded
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FIGURE 6 | The classification results of the MLP and DT methodologies for
detecting several disease severity stages of downy mildew in watermelon
plants in the field against healthy plants (H). The vertical lines on the columns
are error bars.

between the correlation coefficient values of the two DS stages
(Figure 5B). Figure 5B shows differences between the low and
high DS stages at 750 and 1,000 nm.

The MLP method gave a higher classification accuracy than
the DT method; in the low DS stage, the classification accuracy of
the MLP was 69%, while the classification accuracy of the DT was
60% (Figure 6). The highest classification accuracy was achieved
in the high DS stage at 91% for MLP, while it was 69% for DT. The
best wavebands for low DS stage classification were between 952
and 965 nm, while in the high DS stage the best wavebands were
in red edge (755–780 nm). The best VIs for disease detection were
the RARSc and RARSa for the low DS stage, and the RARSb and
CI green for the high DS stage (Table 2).
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DISCUSSION

Watermelon plants are very susceptible to diseases; therefore,
several studies developed non-destructive and high-throughput
techniques to detect diseases like anthracnose, leaf blight, and
leaf spot (He et al., 2021). Blazquez and Edwards (1986)
developed a laboratory-based technique to detect watermelon
infected with Fusarium wilt, downy mildew, and watermelon
mosaic. All three diseases had significant differences in the
near infra-red range (700–900 nm). Kalischuk et al. (2019)
applied UAV multispectral imaging to identify, using NDVI,
gummy stem blight, anthracnose, Fusarium wilt, Phytophthora
fruit rot, Alternaria leaf spot, and cucurbit leaf crumple disease.
Disease incidence and severity ratings were significantly different
between conventional scouting and UAV-assisted scouting. There
is no other UAV-based system available for the detection and
monitoring of DM in the field.

The difference between our results (aka, DS detection accuracy
by the models, and best wavelengths and VIs for DS detection)
in the laboratory and field can be explained by the different
environmental conditions and data collection procedures. For
example, in the laboratory, data are collected from single leaves
at a close distance and with artificial light, in contrast to the field
where data are collected by a UAV (30 m above ground) from
entire plants. Hence, the results from the laboratory and field
analysis cannot be directly compared.

Spectral Reflectance Signatures
The DM-affected watermelon leaves showed varied spectral
reflectance signatures for each DS stage (both in the laboratory
and field). However, in the visible range, there were no significant
differences between the healthy and the low DS stage (5–10%
infection), which indicates that it is very difficult to distinguish
among these stages with visual observation. For that reason,
hyperspectral imaging and machine learning can be used for a
more efficient and rapid early plant disease and severity detection
(compared to visual detection methods).

Laboratory measurements showed that the spectral reflectance
of healthy plants was higher than the other DS stages in the
blue range. The main differences between healthy and infected
plants in the spectral signatures, both in the laboratory and field
measurements, were found in the high severity stage in the green,
red edge, and NIR range (700–1,000), while in NIR, the spectral
reflectance signature of healthy plants was higher than the other
DS stages. The high DS stage had a unique signature that can be
used to distinguish this stage from others (and healthy plants).
Although we were able to visually observe the change of the colors
of the leaves for some of the DS stages, not all had the same
level of change.

In the field, the results did not show significant differences
between the low and high DS stages in the visible range; only
slight differences were observed. However, that minor differences
in the spectral reflectance in the visible range can be still
considered as an indication of color change in the leaves. The
leaves and the plant canopy in the low DS stage showed very
few visual symptoms, and the classification accuracy was low,
both in the laboratory and field. As the chlorophyll content

and water content decrease, the leaf cell damage increases
(Barnawal et al., 2017), and that helps the classification methods
to better classify the DS stages, especially in the medium and
very high DS stages.

Vegetation Indices
The common practice for selecting significant wavelengths
for the DS detection of new VIs is by the correlation to a
biochemical or biophysical trait, for example, chlorophyll
a + b content leaf structure parameter, the water content,
and so on (Gitelson and Merzlyak, 1996; Hatfield et al.,
2008). Regularly, the fluctuation of spectral reflectance
might guide to the detection of plants under stress without
specifying or providing a description of what type of stress
cause the damage to the plant (Carter and Miller, 1994;
Gitelson and Merzlyak, 1994). For example, as was mentioned
earlier, several factors could reduce the chlorophyll content,
of which some are physiological or biochemical caused
by DM severity and this reduction might influence the
photosynthesis activity.

In both experimental conditions, the best vegetation indices
(e.g., the PRI, this index is more related to the green range;
and the CI green) were able to discriminate between healthy
and DM-affected plants in the low and the high DS stages.
The PRI, which is produced by normalizing 531 and 570 nm,
basically relays on the green range. Any deficiency or disorder in
chlorophyll will influence the PRI value; the PRI has increasingly
been used as an indicator of photosynthetic efficiency (Garbulsky
et al., 2011) and as an indicator of water stress (Suarez et al.,
2008). One of the first changes in a DM-affected plant is the
reduction of the chlorophyll concentration that affects the process
of photosynthesis in the infected leaf, and some VIs associated
with chlorophyll content could be used to detect these changes
(Mandal et al., 2009; Bellow et al., 2013; Barnawal et al., 2017).
Our findings suggest the same.

CONCLUSION

The selected best spectral VIs resulted in high specificity and
sensitivity for the detection and identification of downy mildew
disease in different stages of severity. Lower classification results
were achieved in the low DS stage, because of the minor
changes in leaf composition (compared to a healthy plant).
The highest classification results were obtained from the MLP
method in high and very high DS stages (87–90%), while the
DT method recorded lower classification results (compared to
MLP) for all DS stages. Some VIs can be used for disease
detection and classification of the DS stages. The use of
hyperspectral imaging for identifying the most significant VIs
to detect and identify several DS stages will further enhance the
understanding and specificity of disease detection. Future work
includes the development of a simple and inexpensive UAV-based
sensor, based on previous research and developments, that only
measures spectral reflectance at narrow bands (e.g., customized
multispectral camera), centered at specific wavelengths for early
DM detection in the field.
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