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Entada phaseoloides stem is known for its high medicinal benefits and ornamental value.
Flavonoids are one of the main active constituents in E. phaseoloides stem. However,
the regulatory mechanism of flavonoids accumulation in E. phaseoloides is lacking.
Here, phytochemical compounds and transcripts from stems at different developmental
stages in E. phaseoloides were investigated by metabolome and transcriptome analysis.
The metabolite profiling of the oldest stem was obviously different from young and
older stem tissues. A total of 198 flavonoids were detected, and flavones, flavonols,
anthocyanins, isoflavones, and flavanones were the main subclasses. The metabolome
data showed that the content of acacetin was significantly higher in the young stem
and older stem than the oldest stem. Rutin and myricitrin showed significantly higher
levels in the oldest stem. A total of 143 MYBs and 143 bHLHs were identified and
classified in the RNA-seq data. Meanwhile, 34 flavonoid biosynthesis structural genes
were identified. Based on the expression pattern of structural genes involved in flavonoid
biosynthesis, it indicated that flavonol, anthocyanin, and proanthocyanin biosynthesis
were first active during the development of E. phaseoloides stem, and the anthocyanin
or proanthocyanin biosynthesis branch was dominant; the flavone biosynthesis branch
was active at the late developmental stage of the stem. Through the correlation
analysis of transcriptome and metabolome data, the potential candidate genes related
to regulating flavonoid synthesis and transport were identified. Among them, the MYBs,
bHLH, and TTG1 are coregulated biosynthesis of flavonols and structural genes, bHLH
and transporter genes are coregulated biosynthesis of anthocyanins. In addition, the
WDR gene TTG1-like (AN11) may regulate dihydrochalcones and flavonol biosynthesis
in specific combinations with IIIb bHLH and R2R3-MYB proteins. Furthermore, the
transport gene protein TRANSPARENT TESTA 12-like gene is positively regulated the
accumulation of rutin, and the homolog of ABC transporter B family member gene is
positively correlated with the content of flavone acacetin. This study offered candidate
genes involved in flavonoid biosynthesis, information of flavonoid composition and
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characteristics of flavonoids accumulation, improved our understanding of the MYBs
and bHLHs-related regulation networks of flavonoid biosynthesis in E. phaseoloides
stem, and provided references for the metabolic engineering of flavonoid biosynthesis in
E. phaseoloides stem.

Keywords: Entada phaseoloides, flavonoids, metabolome, transcriptome, structural genes, transcription factors,
transport genes

INTRODUCTION

Entada phaseoloides (L.) is a medical and ornamental legume
that belongs to the genus Entada and grows in the southern
of China, other tropical, and sub-tropical regions worldwide.
E. phaseoloides is notable for its large woody vines (stems) and
seed pods. E. phaseoloides is a perennial, grows in a hollow of the
hills or hillside mixed forest, and usually climbs trees using it as
support. The genus Entada includes approximately thirty species,
belonging to the subfamily Mimosoideae (Ohashi et al., 2010).
Entada species are rich in saponins and flavonoids (Dong et al.,
2012; Roheem et al., 2019; Xiong et al., 2021). The stems of Entada
species have been widely used as a traditional medicine owing to
its pharmacological activities, such as antioxidant activity (Diallo
et al., 2001; Njayou et al., 2013; Njayou et al., 2015; Roheem et al.,
2019), anti-microbial activity (Teke et al., 2011; Wan et al., 2020),
and anti-inflammatory activity (Ayissi et al., 2013; Xiong et al.,
2021). The ethyl acetate extracts from the stems of E. phaseoloides
showed significant antioxidant activity by radical scavenging
activity, β-carotene bleaching, reducing power, and superoxide
radical scavenging effects in vitro experiments, and most of
the compounds isolated from ethyl acetate fraction belonged to
flavonoids and displayed antioxidant ability by above-mentioned
tests (Teke et al., 2011; Zhao et al., 2011; Dong et al., 2012). Thus,
flavonoids are considered as one of the important bio-activities in
the stems of E. phaseoloides. However, the biosynthetic pathway
of flavonoids has not been reported in Entada species.

Flavonoids are one of the most important polyphenolic
compounds, consisting of over 8,000 metabolites widely
distributed in plants (Wen et al., 2020). Flavonoids have
been reported to have various pharmaceutical activities. They
often act as antioxidants due to their effectively scavenging
free radical ability (Bors et al., 1990; Grigalius and Petrikaite,
2017), in the rat brain mitochondria in vitro experiment
showed that flavonoids inhibited the non-enzymatic lipid
peroxidation (Ratty and Das, 1998). Flavonoids also exhibited
anti-cancer (Kopustinskiene et al., 2020), anti-inflammation
(Mower et al., 1984), antimicrobial activity (Cushnie and Lamb,
2005), neuroprotective activities (Spagnuolo et al., 2018), and
antidiabetic effects (Sarkhail et al., 2007; Bansal et al., 2012; Yang
et al., 2015) in many in vitro and animal models. In addition,
flavonoids also possess multiple ecological roles, including
regulation of plant–microbe and plant–plant interactions (Leoni
et al., 2021), facilitating pollination (Saigo et al., 2020), improving
resistance to biotic and abiotic stresses (Casas et al., 2016; Barcelo
et al., 2017; Tohge et al., 2018) and UV-light protection (Tohge
et al., 2016; Peng et al., 2017). Thus, flavonoids are widely used
for the pharmaceutical, cosmetic, and food industries and have

gained increasing attention (Soto-Vaca et al., 2012; Grigalius and
Petrikaite, 2017; Khan et al., 2021).

Flavonoids are characterized by a common diphenylpropane
(C6-C3-C6) backbone in which two aromatic rings are
connected by a three-carbon chain (Stobiecki and Kachlicki,
2006; Wen et al., 2020). Based on the oxidation pattern of
the heterocyclic C ring, flavonoids are divided into several
categories, including flavones, flavanones, flavonols, flavanols,
isoflavones, and anthocyanidins (Wen et al., 2020). The
flavonoid synthesis pathway begins with the catalytic action
of phenylalanine ammonia-lyase (PAL) on the precursor
phenylalanine and then trans-cinnamate 4-monooxygenase
(C4H), leading to the production of chalcone (Koukol and
Conn, 1961; Russell and Conn, 1967; Ververidis et al., 2007;
Jia et al., 2008; Hassani et al., 2020). The first committed step
of flavonoid synthesis is mediated through chalcone synthase
(CHS), which catalyzes malonyl-CoA and p-coumaroyl-CoA to
generate naringenin chalcone (Kreuzaler and Hahlbrock, 1975;
Kreuzaler et al., 1983). Then, naringenin chalcone undergoes
isomerization to produce flavanone naringenin through chalcone
isomerase (CHI) (Moustafa and Wong, 1967; Jez et al., 2000).
Next, the flavanones act as substrates for a series of other
enzymes, giving rise to different subclasses of flavonoids,
such as flavanones, dihydroflavonols, and anthocyanins; these
enzymes include flavonoid 3-hydroxylase (F3H), flavonoid
3′-hydroxylase (F3′H), flavonoid 3′5′-hydroxylase (F3′5′H),
flavanone 3b-hydroxylase (FHT), flavonol synthase (FLS),
dihydroflavonol 4-reductase (DFR), anthocyanidin synthase
(ANS), and anthocyanin reductase (ANR) (Holton and Cornish,
1995; Winkel, 2006; Gebhardt et al., 2007; Tohge et al.,
2017; Jun et al., 2018). Heterologously overexpression of
Ginkgo biloba L. GbF3′5′H1 can increase the contents of 4′,5-
dihydroxy-7-glucosyloxyflavanon, epicatechin, and gallocatechin
in transgenic Populus (Wu et al., 2020). High expression of
the CHS gene enhances the accumulation of flavonoids in
the leaves of Perilla frutescens based on the metabolomic
and transcriptomic data (Jiang et al., 2020). Moreover, some
transcription factors (TFs) have been proved to participate in
regulating flavonoid synthesis. Overexpression of Poplar MYB117
promotes anthocyanin synthesis in all tissues and enhances
flavonoid B-ring hydroxylation by upregulating the F3′5′H gene
(Ma et al., 2021). Overexpressed FtMYB31 increases the rutin
content of Fagopyrum tataricum Gaertn (Hou et al., 2021).
Wang et al. (2018) prove that overexpression of MdWRKY11
could promote the expression of F3H, FLS, DFR, ANS, and
UFGT, thereby increasing the accumulation of flavonoids and
anthocyanin in apple calli. In Petunia hybrida, an R2R3-MYB
TF AN4 promotes anthocyanin biosynthesis by enhancing the
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expression of anthocyanin biosynthesis genes, such as CHS, CHI,
F3H, and DFR (Zhang et al., 2021). Cucumis sativus CsMYB60
also can promote flavonol and proanthocyanidin biosynthesis by
inducing the expression of CsFLS and CsLAR (Li et al., 2020).
Among the TFs, R2R3-MYB, WD-repeat proteins (WDR), and
basic helix-loop-helix proteins (bHLH) have been received more
attention (Koes et al., 2005; Mehrtens et al., 2005; Jaakola, 2013;
Xu et al., 2015; Karppinen et al., 2021).

In this study, untargeted metabolite analysis was performed to
determine global metabolic profiles and analyze the characteristic
of flavonoid accumulation in three developmental stages of
stems from E. phaseoloides. Global gene expression profiling was
explored during the development of the stem, and the structural
genes of flavonoid biosynthesis and some TFs were identified and
classified by transcriptome data. Meanwhile, the coexpression
networks and candidate genes regulating the biosynthesis of
flavonoids in E. phaseoloides were revealed by an integrated
analysis of metabolome and transcriptome. This study not
only clarified the accumulation of flavonoids in E. phaseoloides
stem at different development stages but improved the current
understanding of the MYBs and bHLHs-related molecular
network of flavonoid synthesis in E. phaseoloides and provided
gene sequences information of flavonoid biosynthesis and
research clues for the future studies in other medicinal plants
and legume plants.

MATERIALS AND METHODS

Plant Materials
Entada phaseoloides stem tissue used for this study was
obtained from the mixed forest of Botanical Garden of
Xishuangbanna South Medicine at an altitude of about
553 m, Xishuangbanna, Yunnan Province, China. The Mucuna
sempervirens Hemsl is next to E. Phaseoloides. The stems were
collected at 15, 45, and 75 days at fruit developmental stages,
corresponding to the stem_young (S1), stem_older (S2), and
stem_oldest (S3), respectively. The temperature on the day of
harvest was 27◦C. Samples were collected on ice and frozen
immediately in liquid nitrogen and stored at −80◦C until
further use. Additionally, all samples were divided into two
parts for metabolites determination and extraction of RNA
for transcriptome sequencing. To ensure the consistency of
subsequent correlation analysis, the metabolites and transcripts
were assessed from the same samples.

Extraction and Separation of Metabolites
Each sample had six independent biological replicates. A total
of 18 samples were collected as metabolite studies. Metabolite
extraction for non-targeted metabolite profiling was conducted
as previously described (Tohge and Fernie, 2010). The tissues
(25 mg) were weighed and put into a 1.5-ml EP tube.
A total of 800 µl pre-cooled precipitant (methanol: acetonitrile:
water = 2:2:1) were added into the tube. The tissues were crushed
with steel beads using a grinder for 4 min at 60 Hz. After
ultrasonic extraction for 10 min (power 80 HZ) in an ice bath,
the mixture was frozen for 120 min and centrifugated at 25,000 g

for 15 min at 4◦C. The supernatants were collected and repeated
one time and then dried by a freeze dryer. Redissovle by adding
600 µl of 10% methanol solution, sonicate for 10 min (power
80 Hz) in an ice bath, and centrifuge for 15 min at 4◦C to take
the supernatant; about 50 µl of each sample was taken and mixed
into a QC sample.

High-resolution mass spectrometry (MS) was performed
on a Xevo G2-XS QTOF mass spectrometer (Waters,
United Kingdom) following chromatographic separation
on a Waters 2777C ultra-performance liquid chromatography
(UPLC) system (Waters, United Kingdom) using a Waters
ACQUITY UPLC HSS T3 column (100 mm ∗ 2.1 mm, 1.8 µm,
Waters, United Kingdom), with column temperature control
at 50◦C. The elution gradient at 0.4 ml/min using solvent A
(water + 0.1% formic acid) and solvent B (acetonitrile + 0.1%
formic acid) was applied/set as follows: 0–2 min with 100%
phase (A), followed by a 2–11 min gradient from 0 to 100% (B),
11–13 min with 100% (B), 13–15 min gradient from 0 to 100%
(A), the injection volume for each sample was 5 µl. The QTOF
mass spectrometer was operated in both positive and negative
ion modes. The MS data were acquired in Centroid MSE mode.
The TOF mass range was from 50 to 1,200 Da, and the scan
time was 0.2 s. For the MS/MS detection, all the precursors were
fragmented using 20–40 eV, and the scan time was 0.2 s.

Pre-identification and Analysis of
Metabolites
Mass spectrometry raw data were preprocessed and analyze using
Progenesis QI (v2.2, Waters, Milford, MA, United States) and
metaX (Wen et al., 2017). The ions meeting a relative standard
deviation (RSD) ≤ 30% threshold were selected for downstream
statistical analysis. Metabolites were identified by a comparison of
the measured molecular mass-to-charge ratio (m/z) or molecular
weight with information available in the KEGG database. The
information of adducts and isotopes is utilized to assist in
metabolite identification if it is present. The mass deviation
was 10 ppm. The pre-identifications are Level II following the
standardization of metabolomics data after the International
Metabolomics Society. Rutin, myricitrin, and acacetin were
verified based on the authentic standard. The related information
(MS/MS spectrum) was added to Supplementary File 1.

The variable importance in projection (VIP) values of the
first two principal components in the multivariate PLS-DA
model, combined with fold-change (FC) and q-value of univariate
analysis, were used to choose differential metabolites. The
filtering rules are VIP ≥ 1; fold-change ≥ 1.2 or ≤0.8333;
and q-value < 0.05. Metabolic pathway analysis is based on
the KEGG database.

Transcriptome Sequencing (RNA-Seq)
and Analysis
The stem samples of three developmental stages used for
RNA-seq were the same as metabolome analysis samples. Each
sample had three independent biological replicates. The total
RNA and mRNA from E. phaseoloides stems were obtained as
previously described (Fu et al., 2021). The RNA-seq libraries
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were constructed according to Illumina instruction and then
sequenced using an Illumina HiSeq X Ten platform. Low-
quality raw read sequences were removed using SOAPnuke
with default parameters (-l 15 -q 0.2 -n 0.05) (v1.5.21).
The clean reads were mapped to E. phaseoloides reference
genome sequence using HISAT with default parameters (–
phred64 –sensitive –no-discordant –no-mixed -I 1 -X 1000)
(v2-2.0.42) and then assembled by StringTie with default
parameters (-f 0.3 -j 3 -c 5 -g 100 -s 10000 -p 8) (v1.3.3b3).
The fragments per kilobase per million mapped fragments
(FPKM) values and transcripts per million (TPM) values were
then calculated for each gene in all samples. Differentially
expressed genes (DEGs) were identified by DESeq2 (v1.34.0,
fold-change ≥ 2 and adjusted p-value ≤ 0.05) (Anders and
Huber, 2010; Love et al., 2014) and annotated to Nr, GO,
and KEGG database.

Identification of Enzyme-Coding Genes
and Transcription Factors
To identify the candidate structure genes involved in the
biosynthesis of flavonoids, the genes that are annotated to these
pathways (ko00940, ko00941, ko00942, ko00943, and ko00944)
using KEGG (E-value ≤ 1e–10) were retrieved. Subsequently,
the identified candidate genes involved in flavonoid biosynthesis
were confirmed using the knowledge-based identification of
pathway enzymes (KIPEs4) (Pucker et al., 2020a).

The identification and classification of MYB and bHLH were
based on the signature domain and phylogenetic tree as described
in the previous studies (Pucker, 2021; Song et al., 2021). The
MYB domain sequences of published multiple plant species were
merged to generate a bait sequence collection. MYB candidates
are checked for conserved domains and assigned to orthologs in
other plant species (Pucker, 2021).

Protein sequences of Arabidopsis from the TAIR database
were established as references. The pipeline for automatic
identification and annotation in a bait sequence data set was
used to get E. phaseoloides MYB candidates. Non-redundant
MYB genes were obtained by mapping identified gene models
of the previous step to unique loci in the genome. For the
bHLH, the most conserved sequence in the bHLH region
(Toledo-Ortiz et al., 2003) was used for tBLASTn searches.
Protein sequences of Arabidopsis from the TAIR database
were established as references. The intact bHLH domain was
analyzed by the HMMER (v3.0). Other steps were similar to
MYB processing. Multiple sequence alignments of the predicted
genes and Arabidopsis were performed using muscle (v3.8.31)
with default parameters. Phylogenetic trees were constructed by
FastTree (v2.1) using the maximum likelihood (ML) method.
E. phaseoloides genes homologs were classified according to
their relationships with corresponding Arabidopsis. The resulting
genes were named following the position of the chromosome.

1https://github.com/BGI-flexlab/SOAPnuke/
2http://daehwankimlab.github.io/hisat2/
3http://ccb.jhu.edu/software/stringtie/
4https://github.com/bpucker/KIPEs

FIGURE 1 | Classification and statistical analysis of all detected flavonoids in
all samples. The x-axis represents the different categories, and the y-axis
represents the number of each category.

Integrated Analysis Between Metabolite
Profiling and Transcriptome
To identify the potential key genes and networks involved in
flavonoid biosynthesis in E. phaseoloides, correlation analysis
was performed by calculating the Pearson correlation coefficient
(PCC) values in the R software between each set of variables
(DEGs and differentially accumulated metabolites) across the
profiles. The | PCC| ≥ 0.80 and p-value ≤ 0.05 between DEGs
with metabolites were selected as significant correlations. The
correlation network was visualized by Cytoscape software (v
3.6.1). The sequences of genes involved in the network are
presented in the Supplementary Files 2, 3.

RESULTS

Metabolite Profiling of Stem Samples
Untargeted metabolite analysis was performed to determine
the global metabolic profiles of E. phaseoloides stem
tissues. Among all the detected phytochemical compounds,
terpenoids, flavonoids, and alkaloids are the main metabolites
(Supplementary Figure 1). Partial least squares discriminant
analysis (PLS-DA) was conducted to obtain an overview of
metabolic changes and plot comparison of differences and
similarities. The PLS-DA of the metabolites showed a clear
separation in the first principal component for the composition
of stems metabolites in both positive and negative modes,
explaining 32.06 and 35.63% of the variation in the data,
respectively; the metabolite profiling of stem_oldest (S3) was
obviously different from stem_young (S1) and stem_older
(S2) tissues (Supplementary Figure 2). Flavonoids are one
of the main important active ingredients in E. phaseoloides
stems (Teke et al., 2011; Dong et al., 2012). A total of 198
putative flavonoids were detected, and flavones (31), flavonols
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FIGURE 2 | Variable importance in projection (VIP) score of the top 20 flavonoids in each compared group. Results were from the PLS-DA. (A) S2 versus S3 and
(B) S1 versus S3. The VIP scores displayed the relative contribution of these flavonoids to the separation among different stems. The higher the VIP score, the larger
the contributions. Stem_young, stem_older, and stem_oldest were renamed as S1, S2, and S3, respectively.

(25), anthocyanins (19), isoflavones (18), flavanones (12),
pterocarpans (12), biflavonoids, and polyflavonoids (11),
chalcones (7), proanthocyanidins (8), and dihydrochalcones
(7) were the top 10 most abundant classes (Figure 1 and
Supplementary Table 1). This is the first time that so many
types of flavonoid compounds were isolated in E. phaseoloides,
including myricitrin and acacetin. Combing VIP in the PLS-DA
model variable, FC, and q-value, 366 differentially accumulated
metabolites (DAMs) were identified among all the compared
samples. KEGG pathway enrichment analysis indicated that these
DAMs mainly enriched in pathways of flavonoid biosynthesis,
flavone and flavonol biosynthesis, anthocyanin biosynthesis,
and isoflavonoid biosynthesis (Supplementary Figure 3). Taken
together, the flavonoids were analyzed in detail in this study.

Flavonoids Differences Among Different
Stem Samples
A total of 97 differentially accumulated flavonoids (DAFs) were
detected among all comparison groups. Flavones (17), flavonols
(17), and anthocyanins (10) are the three major categories in
DAFs (Supplementary Table 2). In detail, there were 0, 72,
and 84 significantly DAFs, respectively, in the 3 comparison
groups, including S1 versus S2, S2 versus S3, and S1 versus S3;

there were 61 DAFs changed in common between S2 versus S3
and S1 versus S3. Pairwise comparison of three groups revealed
that the difference of content of flavonoids between the S1
and S2 was small, whereas large between S2 versus S3 and S1
versus S3 (Supplementary Table 2). Based on the VIP values
of the PLS-DA, the 20 dominant components responsible for
the separation among different stems in DAFs were identified
and shown in Figure 2. In the comparison between S2 and
S3, these 20 flavonoids included five flavones, three flavonols,
two isoflavones, two dihyroflavonols, one anthocyanin, one
biflavonoid, and polyflavonoid, one flavan 3-ol, one flavan, one
flavonoid glycoside, one isoflavan, one o-methylated flavonoid,
and one pterocarpan (Figure 2A and Supplementary Table 3);
whereas for the S1 and S3 comparison groups, there were five
flavonols, four flavones, three anthocyanins, two isoflavones,
one chalcone, one 3-arylcoumarin, one biflavonoid and
polyflavonoid, one flavan 3-ol, one flavan, and one O-methylated
flavonoid (Figure 2B and Supplementary Table 3). Among
them, rutin, myricitrin, 6-methoxyluteolin 7-rhamnoside,
3-methoxyapigenin, cinnamtannin A1, and (-)-epiafzelechin
showed significantly higher levels in S3 than both S1 and S2,
whereas the content of acacetin, pinobanksin 3-O-acetate,
8-hydroxykaempferol, phellamurin, quercitrin, pelargonidin
3-O-(6-caffeoyl-beta-D-glucoside), desmethylxanthohumol,
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FIGURE 3 | Phylogenetic tree of EpMYBs. The EpMYBs are marked in red, AtMYBs are marked in black. The subgroups are marked in different colors on the
periphery of the circle.

dasytrichone, delphinidin 3-(6-p-coumaroyl) glucoside, and
eriodictyol chalcone was significantly lower in S3 then both S1
and S2 (Supplementary Table 3).

Transcriptome Analysis of Stem Samples
To gain the global gene expression in three different types of stem
samples, a total of 57.85 Gb of clean data were obtained, and the
clean reads ranged from 42.07 to 43.44 Mb in each library, with an
average of 96.85% of bases scoring Q30. All the clean reads were
mapped to the reference genome sequence with mapping ratios in
the range of 86.23–91.81% (Supplementary Table 4). These data
demonstrated that the transcriptome sequencing was high quality

and could be used for further analysis. Totally, 24,240 genes were
detected for further analysis, and their gene expression levels were
estimated by FPKM and TPM values. Among these genes, 21,462
were expressed in all three different stems (S1, S2, and S3), and
316, 456, and 581 specific expressed genes were found in S1, S2,
and S3, respectively (Supplementary Figure 4).

A total of 143 MYBs and143 bHLHs were identified in
E. phaseoloides (Supplementary Table 5). To unravel the
evolutionary relationship of these genes, the phylogenetic trees
were constructed. The Arabidopsis MYB family (131 members,
including 124 R2R3-MYBs, five MYB3R, one CDC5, and
one MYB4R) and bHLH family (116 members) were used,
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FIGURE 4 | Phylogenetic tree of EpbHLHs. The EpbHLHs are marked in red, AtbHLHs are marked in black. The subgroups are marked in different colors on the
periphery of the circle.

respectively. A set of 120 R2R3-MYBs proteins, 13 R1-MYB
proteins, 8 R1R2R3-MYB (MYB3R) proteins, and 2 unclassified
MYB proteins (pseudo) were identified (Supplementary Table 5
and Figure 3). R2R3-MYBs account for the largest subfamily
size in E. phaseoloides. E. phaseoloides bHLHs were classified
into 23 subfamilies, including subgroup Ia, XII, IVa, Ib, VIIIb+c,
IIId+e, Vb, III b, VIIa+b, IX, XIII, IIIc, IVb, IVc, VIIIa, XI,
II, IIIf, VI, IIIa, IVd, Va, and X based on Arabidopsis bHLH
subgroups. Among them, Ia (16 members), XII (16 members),
IVa (13 members), Ib (12 members), and VIIIb+c (14 members)
were the largest top five subgroups of EpbHLHs, while subgroups
IIIa, IVd, Va, and X were the smallest, each with only one member

(Supplementary Table 5 and Figure 4). The number of subgroup
XII was similar to Arabidopsis and Ficus carica L., but the number
of subgroup X was significantly less than these two species.

Differential Gene Expression Analysis
Based on the fold-change of gene expression and a false discovery
rate (FDR), a total of 1,183 (908 up- and 275 downregulated),
3,289 (1,150 up- and 2,139 downregulated), and 3,112 (1,509
up- and 1,603 downregulated) DEGs were found in the S1
versus S2, S2 versus S3, and S1 versus S3, respectively (Figure 5
and Supplementary Table 6). The results demonstrated that
the expression profile of S1 and S2 is closer, whereas the gene
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FIGURE 5 | Numbers of DEGs among all comparison group.

expressions between S2 and S3, S1, and S3 were obviously
different, which is similar to the results obtained based on
the metabolome analysis. This implied that the DAMs in these
samples have certain correlations with regulation by DEGs.

To explore the potential biological significance of these DEGs,
GO, and KEGG function annotation and enrichment analysis
were performed. GO functional classification analysis showed
that all the DEGs could be grouped into 48 functional groups,
including 23 biological process, 15 cellular component, and 10
molecular function categories (Supplementary Table 7). Within
the biological processes, cellular process, metabolic process,
and biological regulation were the most enriched terms, in
the cellular component category, the top three represented
terms were membrane, membrane part, and cell, and under
the molecular function category, the most abundant terms were
catalytic activity, binding, and transporter activity. To further
illustrate the alterations of metabolic pathways during stem
development, the KEGG analysis of all the DEGs was conducted.
A total of 976 (S1 versus S2), 2,665 (S2 versus S3), and 2,554
(S1 versus S3) DEGs were grouped to 117, 130, and 133 KEGG
pathways, respectively, and five pathways that are related to
the biosynthesis of flavonoids were enriched in all comparison
groups, including phenylpropanoid biosynthesis, flavonoid
biosynthesis, flavone and flavonol biosynthesis, anthocyanin
biosynthesis, and isoflavonoid biosynthesis (Supplementary
Table 8). KEGG significantly enrichment analysis showed a
marked difference. Starch and sucrose metabolism and flavonoid
biosynthesis were significantly enriched in the S1 versus S2
comparison group, and the number of upregulated DEGs
were significantly more than downregulated DEGs in these
pathways. Starch and sucrose metabolism, plant hormone
signal transduction, phenylpropanoid biosynthesis, other glycan
degradation, and MAPK signaling pathway were significantly
enriched in the comparison group of S2 versus S3. Other
glycan degradation, flavone and flavonol biosynthesis, and
MAPK signaling pathway were significantly enriched in the
S1 versus S3 comparison group (Supplementary Table 8).
The genes involved in these significantly enriched flavonoid

TABLE 1 | Candidates in the flavonoid biosynthesis of E. phaseoloides.

Gene_id Gene_name S1_TPM S2_TPM S3_TPM

Maker00007222 PAL_1 481.54 458.53 387.47

Maker00017096 PAL_2 209.03 178.75 281.66

Maker00024415 PAL_3 31.77 75.52 39.38

Maker00000730 C4H_1 113.46 325.01 236.68

Maker00016708 C4H_2 156.16 107.80 38.85

Maker00024431 C4H_3 9.57 24.52 6.57

Maker00005215 4CL_1 155.10 187.25 70.86

Maker00021972 4CL_2 2.24 2.45 1.33

Maker00016317 CHS_1 115.70 75.10 30.24

Maker00015698 CHS_2 87.03 240.23 153.12

BGI_novel_G000863 CHS_3 113.09 380.78 64.24

BGI_novel_G002275 CHS_4 322.93 149.11 43.15

BGI_novel_G002056 CHS_5 0.27 0.99 1.74

Maker00010747 CHII 20.69 70.02 7.72

Maker00010788 CHIII 15.23 18.21 20.11

Maker00011936 F3H 323.40 779.63 178.18

BGI_novel_G002728 F3′H_1 93.11 166.92 114.37

BGI_novel_G002452 F3′H_2 17.80 17.94 29.65

Maker00021903 F3′H_3 17.80 17.94 29.65

BGI_novel_G002451 F3′H_4 0.68 0.47 1.95

BGI_novel_G000284 F3′5′H 3.59 16.52 3.95

Maker00004594 FHT 0.17 0.46 3.20

Maker00012388 FNSII 1.14 1.47 11.36

Maker00001108 FLS_1 14.25 30.86 16.89

Maker00000877 FLS_2 0.31 0.15 2.48

Maker00008739 FLS_3 0.47 0.26 0.03

BGI_novel_G001177 DFR_1 105.39 511.09 88.79

Maker00011254 DFR_2 0.36 0.26 0.35

Maker00011665 ANS_1 28.83 74.64 9.08

BGI_novel_G000615 ANS_2 5.69 57.63 3.00

Maker00002624 LAR_1 59.19 113.37 145.87

Maker00020310 LAR_2 19.73 63.16 97.15

Maker00017345 ANR_1 71.18 186.12 49.29

Maker00019292 ANR_2 42.55 170.62 18.27

Candidates are ordered by their position in the respective pathway. The expression
level (mean TPM) of the candidates in different samples is shown: S1, S2, and S3.
The background color showed the transcript abundance.

biosynthesis-related pathways may contribute to the changes
in flavonoid content. It further illustrated a close relationship
between flavonoids and DEGs.

Patterns of Expression of Flavonoid
Biosynthetic Structural Genes
To further explore the molecular mechanism of accumulating
flavonoids in E. phaseoloides stems, the genes related to flavonoids
biosynthetic pathways were identified, and then the expression
patterns of these genes were analyzed. A total of 34 structural
genes of flavonoid biosynthesis were identified based on KEGG
pathway annotations and KIPEs in this work, including PAL
(3), C4H (3), 4CL (2), CHS (5), CHII (1), CHIIII (1), F3H
(1), F3′H (4), F3′5′H (1), FHT (1), FNSII (1), FLS (3), DFR
(2), ANS (2), LAR (2), and ANR (2) (Table 1). In addition,
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functionally relevant amino acid residues of most identified genes
showed highly conservative, and no F3′5′H, FHT, ANR, and
LAR candidates with conservation of all functionally relevant
amino acids were detected (Supplementary Table 9). Most
candidates showed high transcriptional activity at least in one
stem developmental stage in our transcriptome data had a
high gene expression level (TPM > 10). However, there were
some isoforms of candidates that displayed very low transcript
abundance at all the stages. It indicated that other isoforms may
perform functions during the process of flavonoid biosynthesis in
E. phaseoloides stems (Table 1).

Among them, there were 20 structural genes differentially
expressed, including three C4H genes, one 4CL gene, four CHS
genes, one CHII gene, one F3H, one F3′5′H, one FHT, one FNSII,
one DFR, two LAR genes, two ANS gene, and two ANR gene
(Supplementary Table 10 and Figure 6). Among these genes,
two C4H (C4H_1 and C4H_3) genes, two CHS genes (CHS_2
and CHS_3), one CHII gene, one F3H gene, one F3′5′H gene, one
DFR (DFR_1) gene, two ANS gene, two ANR gene, and one LAR
(LAR_2) were obviously upregulated in S1 versus S2, and one
CHS (CHS_4) was remarkably downregulated during all the stem
developmental stage. However, in the comparison group of S2
and S3, most of the differentially expressed structural genes were
significantly downregulated, including one 4CL (4CL_1), two
C4H (C4H_2 and C4H_3), two CHS genes (CHS_3 and CHS_4),
one CHII, one F3H, one F3′5′H, one DFR (DFR_1), two ANS,
and two ANR. Only one FHT and two LAR were upregulated
in S1 versus S3. FNSII gene was significantly upregulated during
the late stem developmental stages. Most of the differentially
expressed structural genes were significantly downregulated from
S2 to S3 stage (Supplementary Table 10).

Correlation Analysis Between
Transcripts and Flavonoids
Many studies have already been performed to investigate the
synthesis of flavonoids, and many structural and regulatory
genes were identified in other plants (Falcone Ferreyra et al.,
2012; Liu et al., 2020); it is still not clear which genes
control the production of which flavonoids in E. phaseoloides.
To reveal the regulatory network and candidate genes of
flavonoid biosynthesis in E. phaseoloides, correlation analysis
between the DAFs content and the expression of DEGs was
performed. All detected correlations between DAFs and DEGs
are shown in Supplementary Table 11. There were 34 flavonoids
that showed higher correlation coefficient values (r > 0.8,
p-value < 0.05) with 17 differentially expressed flavonoid
biosynthesis structural genes (Supplementary Table 12), and
their interaction networks are organized in Figure 7A. The 17
structural genes contained one 4CL, three C4H, three CHS, one
CHII, one F3H, one F3’5’H, one FHT, one FNSII, one DFR, one
DFR, two ANS, and one ANR, which are the major structural
genes in the flavonoid biosynthesis pathway. The 34 flavonoids
include seven flavones, six anthocyanins, four biflavonoids
and polyflavonoids, three flavanones, three pterocarpans, two
chalcones, two flavonols, one dihyroflavonol, one flavan 3,4-
diol, one dihydrochalcone, one isoflavan, one isoflavone, one

flavonoid glycoside, and one proanthocyanidin (Supplementary
Table 12).

The previous research showed that many MBW complexes
are involved in regulating flavonoid synthesis (Ramsay and
Glover, 2005; Xu et al., 2015; Xu et al., 2021). In this
study, the expression of 47 genes encoding MYB, bHLH, and
TRANSPARENT TESTA GLABRA 1 (TTG1) homologs was
highly correlated with the amount of 81 flavonoids, including
32 MYBs, 13 bHLHs, and 2 TTG1 homologs (Supplementary
Table 13). Furthermore, the expression level of 86 transporters
was also showed highly associated with quantitative changes
of 76 flavonoids (Supplementary Table 14). The solute carrier
family, glutathione S-transferase, ABC transporter B family,
and multidrug resistance protein were the most members
in the 86 genes. It was in accordance with the genes
involved in flavonoid transport observed in pepper fruit (Liu
et al., 2020). The previous studies found that H+-ATPase are
associated with flavonoid uptake efficiency in the vacuoles and
cytoplasm (Kitamura, 2006). Mutations of P-type H+-ATPase
(AHA10) lead to vacuolar morphology defects and reduced
proanthocyanidin content in Arabidopsis seeds (Baxter et al.,
2005). Maker00021223 and Maker00005004, a member of the
H+-transporting ATPase, are closely positively related to one
flavonol (3-O-methylquercetin) and one flavone (tricetin), two
anthocyanidins (pelargonidin 3-O-[6-caffeoyl-beta-D-glucoside]
and delphinidin 3-[6-p-coumaroyl] glucoside), one chalcone
(isobavachalcone), one dihydrochalcone (isouvaretin), and one
pterocarpan (glyceollin III), respectively.

In addition, the phosphate transporters 1–7
(BGI_novel_G000936 and BGI_novel_G000295) were
significantly positively related to one flavanone (isosakuranetin),
three flavanones (acacetin, luteolin 7-O-glucuronide, and
morusinol), three flavonols (quercitrin, 8-hydroxykaempferol,
and kaempferol 3-O-beta-D-glucosylgalactoside), two
flavones (acacetin and morusinol), and one anthocyanidin
(cyanidin 3-O-[6-O-p-coumaroyl] glucoside), respectively. The
TRANSPARENT TESTA 12-like gene (Maker00022863) is
obviously positively associated with five flavones (nortangeretin,
6-methoxyluteolin 7-rhamnoside, lucenin-2, malonylapiin, and
apiin), four flavonols (quercetin 3-O-glucoside, robinetin, rutin,
quercetin 3-O-[6-O-malonyl-beta-D-glucoside], and myricitrin),
and one flavanone (silandrin). The previous studies have shown
that TRANSPARENT TESTA genes are associated with flavonoid
accumulation (Appelhagen et al., 2011; Appelhagen et al., 2015).
The results indicated that the transporter genes are conserved in
plants.

The correlation regulatory network of some significant
DAFs and structural gene, MYBs, bHLH, TTG1 homologs,
and key transporter genes in each comparison group is
displayed in Figure 7B (Supplementary Table 13). In this
coexpression network, many hub genes were identified, including
structural genes, MYBs (Maker00011685, Maker00013236,
Maker00003993, and Maker00008847), bHLHs, TTG1 homologs,
and transporter genes, which correlated with multiple different
flavonoids. FHT (Maker00004594) and FNSII (Maker00012388)
are positively correlated with 6-methoxyluteolin 7-rhamnoside,
lucenin-2, malonylapiin, nortangeretin, and 3-methoxyapigenin.
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FIGURE 6 | Comparative transcriptomic analysis of structural genes involved in the flavonoid biosynthesis pathway at different stems. The three columns for each
gene represent the expression level at S1, S2, and S3 stage, respectively. Red represents the high expression level; blue represents the low expression level.
Stem_young, stem_older, and stem_oldest were re-named as S1, S2, and S3, respectively.

CHS_4 gene (BGI_novel_G002275) is positively correlated with
pelargonidin 3-O-3′′,6′′-O-dimalonylglucoside, delphinidin,
3-(6-p-coumaroyl) glucoside, isobavachalcone, phellamurin,
apigenin 7,4′-dimethyl ether, and desmethylxanthohumol.
EpMYB41 (Maker00003993) is positively correlated with
seven flavonols, four flavones, one anthocyanidin, and one
dihydrochalcone. Maker00007729 is belonged to WDR protein
and was the homolog of AtTTG1-like (AtAN11). The amino acid
identity between them was 92.8%. Maker00007729 is positively
correlated with one dihyroflavonol and two flavonols. Some
MYBs genes clustered in the subgroup of confirmed flavonoid
biosynthesis-regulating Arabidopsis MYB family (Figure 3 and
Supplementary Table 13), which also significantly correlated
with flavonoids in this study. EpMYB84 (Maker00010600,
AtMYB4) and EpMYB76 (Maker00016264, AtMYB123
[AtTT2]) are positively correlated with one anthocyanin
(pelargonidin 3-O-beta-D-glucoside 5-O-[6-coumaroyl-beta-
D-glucoside]) and two isoflavones (luteone, sayanedine),
respectively (Figure 7B and Supplementary Table 13).
EpMYB135 (Maker00004321, AtMYB5) is positively correlated

with two isoflavones (luteone, sayanedine) and negatively
correlated with one flavonol (quercetagetin). EpMYB64
(Maker00021702, AtMYB82) is negatively correlated with
one dihydrochalcone (isouvaretin). EpMYB51 (Maker00018152,
AtMYB12 [PFG1]) is positively correlated with one flavone
(6-hydroxy-4′,5,7-trimethoxyflavone).

Furthermore, there were also exist one metabolite associated
with multiple genes (Figure 7B and Supplementary Table 13).
The expression level of Maker00007729 (AtTTG1-like
[AtAN11]), EpMYB41 (Maker00003993, AtMYB36), EpMYB119
(Maker00013914, AtMYB4), EpMYB118 (Maker00013934,
AtMYB44), and EpbHLH53 (Maker00018803, IIIb, AtbHLH116)
was showed highly associated with the content of kaempferol
3-sophorotrioside (flavonols). Meanwhile, the accumulation
of glepidotin B (dihyroflavonol) was also positively corrected
with the expression of Maker00007729 (AtTTG1-like [AtAN11]),
EpMYB119 (Maker00013914, AtMYB4), and EpbHLH53
(Maker00018803, IIIb, AtbHLH116). The structure genes
[CHS_1 (Maker00016317), CHS_4 (BGI_novel_G002275),
CHII (Maker00010747), F3H (Maker00011936), ANS_1
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FIGURE 7 | Connection network between flavonoid biosynthesis related genes and flavonoids. (A) Connection network between flavonoid biosynthesis structural
genes and flavonoids; (B) connection network between flavonoids and MYBs, bHLHs, WDRs, transport genes, and structural genes. The magenta circle represents
flavonols; the Indian red circle represents anthocyanins; the gray violet circle represents proanthocyanidins; the green circle represents other flavonoids; the red
diamond represents the structural genes; the triangle represents TFs, the yellow triangle represents MYB families, the blue triangle represents bHLH families, the
Caribbean green triangle represents WDR families; the gray hexagon represents transport genes. The size of the shapes in the graph shows the number of
connections of the input genes and flavonoids in the network. The red line indicates a positive correlation, and the blue line indicates a negative correlation.

(Maker00011665)], EpbHLH128 (Maker00012137, IIIf,
AtbHLH2), and transport genes [ABC transporter B family
(Maker00006471), H+-transporting ATPase (Maker00005004)]
are positively correlated with delphinidin 3-(6-p-coumaroyl)
glucoside (anthocyanin). It suggested these genes may
coregulated the biosynthesis of flavonols and anthocyanins.

DISCUSSION

Analysis of Flavonoids in E. phaseoloides
Stem
The specialized metabolism of legumes mainly includes
terpenoids, flavonoids, and alkaloids (Wink, 2013; de Souza
et al., 2019). As a member of the Leguminous family, many
previous studies on E. phaseoloides metabolites have focused
on terpenoids (Iwamoto et al., 2012; Xiong et al., 2013; Xiong
et al., 2014). In our study, it was shown that flavonoids are also
the main metabolites in E. phaseoloides stem by untargeted
metabolite analysis (Supplementary Figure 1). The number of
detected flavonoids type from E. phaseoloides stems was far more
than previously reported (Zhao et al., 2011; Dong et al., 2012).
It suggested that untargeted metabolite analysis can be applied
for the comprehensively detected phytochemical compounds in
the absence of knowledge of chemical components. In addition,
although the types of flavonoids in different developmental
stages of stem were the same, the content of compounds
showed a markedly different, particularly between the young
stem and the old stem. It suggested that flavonoids exhibited
quantitative pattern between different developmental stages in
E. phaseoloides stem. Thus, the metabolic profiling of flavonoids

can provide a theoretical basis for selecting the appropriate
development stage of stem to collect samples, to obtain more
accumulation of active ingredients from E. phaseoloides.
However, accurate characterization and quantification of
flavonoids in E. phaseoloides require targeted metabolomics and
more standards in future.

Analysis of Structural Genes,
Transcription Factors in E. phaseoloides
Stem
Flavonoids are synthesized by many pathways (including
phenylpropanoid biosynthesis, flavonoid biosynthesis,
anthocyanin biosynthesis, isoflavonoid biosynthesis, and flavone
and flavonol biosynthesis) and are regulated by many structural
genes (Koukol and Conn, 1961; Russell and Conn, 1967; Jez
et al., 2000; Jun et al., 2018; Wu et al., 2020). Herein, thirty-
four structural genes involved in flavonoid biosynthesis were
identified (Table 1). Functionally relevant amino acid residues of
most identified genes showed highly conservative. Hydroxylation
of the 5′ position by F3′5′H is a particularly important step,
which determines the B-ring tri-hydroxyl flavonoid end-product
(epigallocatechin-3-gallate or delphinidin) synthesized in plants
(Bailey et al., 2003). The F3′5′H candidate showed 60.36%
similarity to previously characterized Glycine max F3′5′H
sequences, but lacking functionally relevant amino acids P33,
P34, P36, and P40, and one substitution of an amino acid residue
in R/T389. The lacked functionally relevant amino acids may be
due to the obtained transcript sequence is incomplete. Thus, it
needs additional confirmation.

Dihydroflavonol is the common precursor for flavonol,
anthocyanin, and proanthocyanin. Flavonol biosynthesis is
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competing with anthocyanin or proanthocyanidin biosynthesis.
The anthocyanin or proanthocyanidin biosynthesis rate-limiting
genes were significantly upregulated in the S2 stage: (DFR_1
(log2Ratio[S2/S1]: 2.23), ANS_1 (log2Ratio[S2/S1]: 1.35),
ANS_2 (log2Ratio[S2/S1]: 3.03), LAR_2 (log2Ratio[S2/S1]: 1.58),
ANR_1 (log2Ratio[S2/S1]: 1.37), ANR_2 (log2Ratio[S2/S1]:
1.86)). Although flavonol biosynthesis key gene FLS_1 was
upregulated, the p-value is greater than 0.05 and the expression
level was obviously lower than anthocyanin or proanthocyanidin
biosynthesis key genes (Table 1 and Supplementary Table 10).
Thus, it speculated that the anthocyanin or proanthocyanidin
biosynthesis particularly anthocyanin biosynthesis was more
active at the S2 stage. In addition, FNSII was significantly
upregulated in the S3 stage (log2Ratio[S3/S2): 2.88) (Table 1 and
Supplementary Table 10), which indicated the flavones
biosynthesis was active at this stage. In brief, with the
development of E. phaseoloides stem, flavonol, anthocyanin,
and proanthocyanin biosynthesis were first active, and the
anthocyanin or proanthocyanin biosynthesis branch was
dominant. Subsequently, the flavones biosynthesis branch was
active at the late developmental stage of the stem.

In addition to structural genes, TFs also play important
roles in flavonoid biosynthesis (Baudry et al., 2004; Davies
et al., 2012; Lloyd et al., 2017; Liu et al., 2021). As two types
of the most reported TFs regulating flavonoid synthesis,
the MYBs and bHLHs were identified and classified. The
number and type of MYB genes identified in E. phaseoloides
were in the same range as previously reported in other
plant species, but no MYB4R proteins (Stracke et al., 2001;
Pucker et al., 2020b). As showed in MYB phylogenetic
tree (Figure 3), a total of 11 R2R3-MYBs, one R1-MYB,
and one 3R-MYB were closely clustered into the clades of
flavonoid biosynthesis-related Arabidopsis MYBs. Among them,
eight MYBs (EpMYB108, EpMYB111, EpMYB84, EpMYB85,
EpMYB78, EpMYB115, EpMYB86, and EpMYB76) were in
the same clade of AtMYB75/AtMYB90/AtMYB113/AtMYB114,
which have been confirmed to be related to anthocyanin
biosynthesis (Borevitz et al., 2000; Teng et al., 2005;
Gonzalez et al., 2008), and three MYBs (EpMYB5,
EpMYB135, EpMYB64) and two MYBs (EpMYB51 and
EpMYB122) were assigned into a big clade of AtMYB123 and
AtMYB11/AtMYB12/AtMYB111, which have been confirmed
to regulate the biosynthesis proanthocyanidin (Nesi et al.,
2001; Hancock et al., 2012) and flavonol (Stracke et al., 2007;
Stracke et al., 2010), respectively. The results indicate that
these MYBs may have the potential ability to regulate the
biosynthesis of flavonoids.

Most bHLHs involved in regulating anthocyanin biosynthesis
are belonged to subgroup III, which is functionally conserved
and has been demonstrated to participate in regulating plant
development and defense response (Ludwig et al., 1989; Bailey
et al., 2003; Heim et al., 2003; Song et al., 2021). A total of 23
subgroup III bHLHs were noted in this study, including nine
subgroup IIId+e, eight subgroup IIIb, three subgroup IIIf, two
subgroup IIIc, and one subgroup IIIa. It suggested that similar
bHLHs regulatory for regulation of flavonoid synthesis may exist
in E. phaseoloides. These predicted genes and related information

will facilitate research on further investigations of the potential
function of these genes in E. phaseoloides and other plants.

Analysis of Key Candidate Genes
Involved in Flavonoids Accumulation in
E. phaseoloides Stem
At present, transcriptome and metabolome combined analysis
has been widely used to explore the relationships between the
expression of genes and metabolites related to biosynthetic
pathways, so as to obtain metabolites-related functional genes
and regulator networks (Liu et al., 2020; Du et al., 2021; Fu
et al., 2021; Hou et al., 2021; Zou et al., 2021; Wu et al.,
2022). The transcriptome and metabolome association analysis
results showed that some transporter genes were also obviously
positively associated with various types of flavonoids. For
example, the TRANSPARENT TESTA protein [Maker00022863]
was the homolog of TRANSPARENT TESTA 12-like (TT12-
like), encoding a multidrug and toxin extrusion (MATE)
transporter, which is involved in proanthocyanidin biosynthesis
in Arabidopsis seed coat and Medicago truncatula hairy roots
(Debeaujon et al., 2001; Marinova et al., 2007; Zhao and Dixon,
2009). It is positively correlated with five flavonols, five flavones,
and one flavanone accumulation in this study. It indicated that
the TT12-like gene may be involved in other flavonoids transport,
such as flavonols, flavones, and flavanones.

As shown in the phylogenetic tree results (Figure 3),
EpMYB84 (Maker00010600, AtMYB4) and EpMYB76
(Maker00016264, AtMYB123 [AtTT2]), EpMYB135
(Maker00004321, AtMYB5), EpMYB64 (Maker00021702,
AtMYB82), and EpMYB51 (Maker00018152, AtMYB12 [PFG1])
were closely clustered into the clade of anthocyanin and
proanthocyanidin or flavanols biosynthesis-related Arabidopsis
MYBs, respectively. EpMYB84 and EpMYB76 are positively
correlated with one anthocyanin and two isoflavones,
respectively. However, EpMYB135 is positively correlated
with two isoflavones and negatively correlated with one flavonol.
EpMYB64 is negatively correlated with one dihydrochalcone.
EpMYB51 is positively correlated with one flavone. It is
speculated that these genes may regulate different types of
flavonoids with different additional regulators.

Moreover, there was also existed one metabolite associated
with multiple genes. A previous study of TTG1-like (also known
as AtAN11, Light-regulated WD1, or LWD1) indicated that
it acts as a clock protein, contributing to the regulation of
circadian period length and photoperiodic flowering (Wu et al.,
2016). AtMYB4 has been shown to act as a transcriptional
repressor for the expression of early phenylpropanoid genes
C4H (Jin et al., 2000). Our correlation results showed that the
Maker00007729 (AtTTG1-like [AtAN11]) is positively regulated
glepidotin B (dihyroflavonol) and kaempferol 3-sophorotrioside
(flavonol) biosynthesis by interaction with bHLH proteins such as
EpbHLH53 (Maker00018803, IIIb, AtbHLH116) and EpMYB119
(Maker00013914, AtMYB4). These findings suggested that the
WDR gene TTG1-like (AN11) regulated dihydrochalcones and
flavonol biosynthesis in specific combinations with IIIb bHLH
and R2R3MYBs in E. phaseoloides stem.
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This was the first report for flavonoid synthesis in the
genus Entada. Our data suggested that some genes might
be regulated together as a regulator network involved in
flavonoid biosynthesis, particularly flavonols and anthocyanins
in E. phaseoloides stems. Meanwhile, it also indicated that some
genes regulate not only one type of flavonoid but several distinct
subclasses of flavonoid biosynthesis. Taken together, these results
indicated that the process of flavonoids metabolism keeps notably
activated during the development of stems in E. phaseoloides,
and it is a complicated process coregulated by multiple genes.
However, these results were based on the bioinformatic analysis
data. Experimental verification such as transgenic studies will
be needed to confirm the roles of these genes in flavonoid
biosynthesis in E. phaseoloides in the future.

In spite of this, this study offered candidate genes involved
in flavonoid biosynthesis and characteristics of flavonoids
accumulation, improved our understanding of the MYBs and
bHLHs-related regulation networks of flavonoid biosynthesis
in E. phaseoloides stem, and also provided references for
the metabolic engineering of flavonoid biosynthesis in
E. phaseoloides stem.
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