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The mechanisms controlling chromosome number, size, and shape, and the relationship
of these traits to genome size, remain some of the least understood aspects of genome
evolution. Across vascular plants, there is a striking disparity in chromosome number
between homosporous and heterosporous lineages. Homosporous plants (comprising
most ferns and some lycophytes) have high chromosome numbers compared to
heterosporous lineages (some ferns and lycophytes and all seed plants). Many studies
have investigated why homosporous plants have so many chromosomes. However,
homospory is the ancestral condition from which heterospory has been derived
several times. Following this phylogenetic perspective, a more appropriate question
to ask is why heterosporous plants have so few chromosomes. Here, we review life
history differences between heterosporous and homosporous plants, previous work on
chromosome number and genome size in each lineage, known mechanisms of genome
downsizing and chromosomal rearrangements, and conclude with future prospects for
comparative research.
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INTRODUCTION

The nuclear genetic material of eukaryotes is contained within chromosomes. The number, length,
and centromere location of chromosomes in an organism (the karyotype) varies considerably
among lineages (Ohno, 1984; Schubert and Lysak, 2011). In plants, chromosome number is
often phylogenetically conserved (Manton, 1950; Wagner and Wagner, 1979; Weiss-Schneeweiss
and Schneeweiss, 2013). Changes in chromosome number or structure can alter the balanced
chromosome pairing that is critical for cell division, leading to sexual sterility or death. Thus, an
understanding of how plant chromosome numbers evolve has implications for plant reproductive
biology, systematics, and genome evolution, among other processes (Haufler, 2002; Li Z. et al., 2020;
Fujiwara et al., 2021).

In vascular plants, there is a striking disparity in chromosome number between homosporous
and heterosporous lineages (Klekowski and Baker, 1966): homosporous lineages have high
chromosome numbers and often larger genomes, compared to heterosporous ones (Leitch
and Leitch, 2013; Figure 1). Thus, several studies have asked why homosporous plants have
so many chromosomes (Klekowski and Baker, 1966; Klekowski, 1969; Nakazato et al., 2008;
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Barker and Wolf, 2010). However, homospory is the ancestral
condition from which heterospory has been derived several
times (Bateman and DiMichele, 1994; Figure 2). Given that the
character state of high chromosome numbers in homosporous
plants is ancestral (Clark et al., 2016; Carta et al., 2020), it makes
more sense evolutionarily to ask why heterosporous plants have
comparably so few chromosomes.

This review covers the life history differences between
heterosporous and homosporous vascular plants, previous work
on chromosome number and genome size in each lineage,
and known mechanisms of genomic and chromosomal change.
We address the current evidence for the processes controlling
genome evolution and the variation in genome downsizing rates
between homosporous and heterosporous plants, as well as
how the pattern of spore production might be related to these
mechanisms. We conclude with prospects for research on this
relationship and what types of data will be needed to solve a
mystery that has haunted botanists for over half a century.

LIFE HISTORY OF HOMOSPOROUS AND
HETEROSPOROUS VASCULAR PLANTS

All seed plants, and some spore-dispersed plants, are
heterosporous (Figure 2). They produce two different types
of sporangia, resulting in the small microspores (sperm-
producing) that develop to become microgametophytes and
larger megaspores (egg-producing) that develop to form the
megagametophytes. In seed plant microsporogenesis, all four
meiotic products are retained and grow into pollen grains.
In contrast, during megasporogenesis, only one of the four
meiotic products survives. There are some exceptions to this
process, including apomictic species where a polar body fertilizes
the megaspore, as well as species where the polar bodies
develop into endosperm (e.g., Schmerler and Wessel, 2011;
Noyes and Givens, 2013).

Homosporous plants comprise most ferns, some lycophytes,
as well as bryophytes (the latter are non-vascular). They produce
a single type of spore that germinates into a gametophyte
theoretically capable of producing both egg and sperm. Most
ferns are homosporous, but one clade of aquatic ferns
(Salviniales) has evolved to become heterosporous. Heterospory
also evolved independently in the lycophytes. It is estimated that
heterospory has evolved at least 11 times throughout the history
of land plants (Bateman and DiMichele, 1994). However, we only
have three independent lineages of extant heterosporous plants
(Figure 2) with which to test patterns of associated characters.
These extant heterosporous lineages provide us with natural
replicates to study the evolution of this trait, as all three lineages
have homosporous sister lineages for comparison.

HISTORY OF CHROMOSOME
RESEARCH IN PLANTS

The study of plant chromosomes dates back to the nineteenth
century when researchers began using microscopy to study

cell biology. In the 1880s, the stages (Flemming, 1965)
and timing (Strasburger, 1894) of cell division were first
described, although the exact nature and importance of
chromatin were not yet understood (Volkmann et al., 2012).
In 1888, von Waldeyer-Hartz coined the term chromosome,
and the structure and heritability of chromosomes became
established soon after (Strasburger, 1894; Cremer and
Cremer, 1988; Winkelmann, 2007). Around the turn of the
twentieth century, researchers noticed plants with doubled
numbers of chromosomes (e.g., Oenothera, Lutz, 1907;
Strasburger, 1910). This work resulted in the theory that
genome doubling restored fertility to hybrid plants (Winge,
1917). During the following decades, additional work extended
the knowledge base of plant cytology, with a wide range of
heterosporous study systems including Nicotiana (Clausen
and Goodspeed, 1925), Oenothera (Gates et al., 1929), Viola
(Clausen, 1927), Gossypium (Skovsted, 1935), and the Salicaceae
(Blackburn and Harrison, 1924).

Around the same time, work also began on homosporous fern
genetics (Lang, 1923; Andersson-Kottö, 1927, 1929, 1938). These
initial studies provided the first chromosome counts and crossing
experiments in ferns; importantly, they presented the theory that
ferns with high chromosome numbers had diploid, not polyploid,
inheritance (Andersson-Kottö, 1929, 1938; Haufler, 2002). In the
1950 book, Problems of cytology and evolution in the Pteridophyta
(Manton, 1950), the chromosome numbers of about 100 species
of ferns were published for the first time. This work provided
an important reference for fern cytology and helped establish
the importance of base chromosome numbers in classification
(Manton and Sledge, 1954).

In 1966, the first connection was made between the
differences in chromosome numbers of homosporous and
heterosporous ferns. Klekowski and Baker (1966) used previously
published chromosome counts to show that within ferns and
lycophytes, homosporous species had an average sporophytic
count of 2n = 115, whereas for heterosporous species it was
2n = 27.24. In comparision, in angiosperms (all heterosporous)
was 2n = 31.98. These findings have been substantiated by
modern methodologies. Additionally, researchers have been able
to evaluate the chromosome number and genome size for
the ancestors of angiosperms and spore-dispersed plants. The
ancestral gametophytic chromosome number for angiosperms
has been estimated to be n = 7 (Carta et al., 2020),
whereas in homosporous ferns this is estimated to have been
n = 22 (Clark et al., 2016). These findings indicate that
chromosome number may be influenced by the shift in life
history to heterospory, although the mechanisms are still unclear
(Clark et al., 2016; Carta et al., 2020; Fujiwara et al., 2021;
Szövényi et al., 2021).

We downloaded (in January 2021) chromosome counts
from 377,715 records in the Chromosome Counts Database
version 1.47 (Rice et al., 2015). In addition, we examined
data on genome size from the Plant DNA C-values Database
(Pellicer and Leitch, 2020). Here, we also analyze the data,
removing likely recent polyploid species from the analysis
to include only the base chromosome number for each
species. We did this by allowing for aneuploid and dysploid
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FIGURE 1 | Chromosome counts and genome sizes for heterosporous and homosporous plant clades. Data were downloaded in January 2021 from the
Chromosome Counts Database version 1.47 (Rice et al., 2015) and the Plant DNA C-values Database (Pellicer and Leitch, 2020). (A) Boxplots of chromosome
counts (n = 7,900), including only the minimum reported count for a genus, boxes are central two quartiles and whiskers are interquartile range × 1.5 (data from Rice
et al., 2015). (B) Histogram with kernel density plot of chromosome counts for homosporous plants (blue, right y-axis; mean n = 42.25) and heterosporous plants
(orange, left y-axis; mean n = 12.74)—note scales are different to account for unequal sample size. (C) Boxplots of genome size estimates (1C), included are all
possible minimum values for each species. (D) Histogram with kernel density plot of genome size estimates for homosporous plants (blue, right y-axis; mean
1C = 12.52) and heterosporous plants (orange, left y-axis; mean 1C = 6.43), on different scales.
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FIGURE 2 | Land plant phylogeny (PPG, 2016). The three major clades of
vascular plants (lycophytes, seed plants, and ferns) are shown, along with the
three heterosporous lineages denoted with purple stars. Tip labels include
phylogenetically important clades as well as clades with current or
forthcoming genomic resources.

change, and retaining species within a genus, with up to
1.2 times the minimum chromosome number recorded for
the genus. We show chromosome numbers (Figures 1A,B)
and genome sizes (Figures 1C,D) for homosporous and
heterosporous vascular land plants. We present box plots
for four heterosporous and two homosporous lineages
(Figures 1A,C) and then also compare the distributions
of all homosporous plants versus all heterosporous plants
(Figures 1B,D). Note that our plots (Figures 1B,D) include
histograms and kernel density because the sample sizes were
very different between the groups and binning sizes made
comparisons difficult.

On average, homosporous plants have more than three
times as many chromosomes and more than three times the
genome size as heterosporous plants (Figure 1). In all four
heterosporous lineages (heterosporous lycophytes and ferns,
gymnosperms, and angiosperms; Figure 2), there is a reduction
in chromosome number. The pattern for genome size, however,
is slightly more complex. Gymnosperms are anomalous with
large genomes, despite relatively low chromosome numbers. It
has been hypothesized that at least some gymnosperms have an
unusually high density of long terminal repeat retrotransposons
(LTR-RTs), responsible for their large genome sizes (Nystedt
et al., 2013). Considering both chromosome number and
genome size, there are differences in genome architecture
and evolution between homosporous and heterosporous plants.
What remains to be discovered are the genetic mechanisms

that control these differences, and how they are influenced
by life history.

HOW CAN THE PATTERN OF SPORE
PRODUCTION BE RELATED TO
CHROMOSOME NUMBER?

At first glance, it seems unlikely that aspects of chromosome
number could be related to the spore types. Why would an
evolutionary transition to heterospory accompany the derived
character state of small genomes and low chromosome numbers?
This question has challenged botanists for decades, and no
simple hypothesis has yielded a satisfactory explanation. In
the 1960s, starting with the observation of high chromosome
numbers in homosporous pteridophytes (Klekowski and Baker,
1966), Klekowski (1969, 1972, 1973) developed a testable
hypothesis for a causal relationship, based on the different
reproductive modes that can occur in heterosporous versus
homosporous plants. In heterosporous plants, reproduction
can proceed via sporophytic selfing (sperm and egg from the
same parent plant, but different gametophytes) or outcrossing
(sperm and egg from different plants). In homosporous plants,
both sporophytic selfing and outcrossing are possible, but an
additional reproductive mode can occur called gametophytic
selfing (Haufler et al., 2016). This extreme form of self-
fertilization occurs when an egg is fertilized by a sperm
from the same gametophyte. A gametophyte generates gametes
via mitosis, so all gametes are genetically identical; therefore,
a sporophyte created from gametophytic selfing will be
homozygous at every locus in the genome.

Klekowski proposed that ferns primarily reproduced via
gametophytic selfing and consequently would have high
genetic load if they were diploid. Therefore, ferns with high
chromosome numbers must have polyploid, not diploid,
inheritance (Klekowski and Baker, 1966), directly opposing
early work on fern genetics (Andersson-Kottö, 1929). Klekowski
proposed that if these homosporous species became polyploid
through hybridization (allopolyploidy) then diverse alleles
could be maintained across the different parental genomes,
reducing genetic load despite extreme inbreeding (Klekowski,
1976). This occurs via homoeologous heterozygosity: when
matching chromosomes (homeologs) from different parental
genomes in a hybrid carry distinct alleles (Glover et al., 2016).
Furthermore, if the homoeologous chromosomes could pair,
even a sporophyte that is homozygous at all homologous loci
could create genetically variable meiotic products (Klekowski,
1972, 1973). Thus, the increased chromosome sets were needed
to overcome the extreme mating system in homosporous plants.

Throughout the 1970s, researchers gathered data that seemed
to support Klekowski’s hypothesis. Evidence from chromosome
studies, breeding studies, and genetic analyses seemed to
indicate that homoeologous recombination was possible in
homosporous ferns (Hickok and Klekowski, 1973; Klekowski
and Hickok, 1974; Chapman et al., 1979; Hickok, 1979). Most
of this work came from lab experiments, but starting in the
1980s, researchers began to examine how homosporous plants
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behaved in natural settings. The first observation was that
homosporous ferns appeared to be mostly outcrossing (Haufler
and Soltis, 1984; Gastony and Gottlieb, 1985; Wolf et al., 1987),
evidence that did not support high levels of gametophytic selfing
which would be required to provide the selective pressures
under Klekowski’s hypothesis. Furthermore, studies applying
electrophoresis of enzymes showed that even ferns with high
chromosome numbers expressed the typical diploid number
isozymes (Wolf et al., 1987). This was subsequently confirmed
with genomic sequencing in the homosporous fern Ceratopteris
(Marchant et al., 2019). Such evidence suggested that even
species that appear to be polyploid behave genetically as
diploids (Haufler and Soltis, 1986; Haufler, 1987, 1989) and that
gametophytic selfing might actually be rare in homosporous ferns
(Haufler et al., 2016).

Missing from this research, however, was a robust
evolutionary framework for comparative analyses; such a
phylogenetic perspective is critical for inferring the evolutionary
processes that influence genome structure. Reconstructing the
phylogeny for land plants started in the 1990s when rbcL was
developed as a phylogenetic marker for angiosperms, followed
shortly by large-scale phylogenetic analyses of ferns (Pryer et al.,
1995). By early in the twenty-first century, there was a good
working hypothesis for relationships among the major groups of
ferns (Pryer et al., 2004). Researchers also began assembling plant
genomic resources. Sequencing the Arabidopsis genome (The
Arabidopsis Genome Initiative, 2000) was an important first step,
soon followed by many more seed plant genomes. The 1000 Plant
Transcriptomes project was a major step in generating genetic
data for species across the land plant phylogeny (One Thousand
Plant Transcriptomes Initiative, 2019). The first linkage map
for a homosporous fern was published for Ceratopteris richardii
(Nakazato et al., 2006). However, the first fern genomes were
not completed until 2018 for heterosporous ferns (Li et al.,
2018), and 2019 for homosporous Ceratopteris (Marchant
et al., 2019). Whole genome sequences are also published for
liverworts (Bowman et al., 2017), mosses (Rensing et al., 2008),
and hornworts (Li F. W. et al., 2020). These bryophyte genomes
provide us with an outgroup for all vascular land plants. The
current phylogenetic, genomic, and transcriptomic resources are
very close to providing the resources necessary to answer some
of the old questions regarding heterosporous and homosporous
genomes and chromosome evolution (Fujiwara et al., 2021;
Szövényi et al., 2021).

MECHANISMS OF GENOMIC AND
CHROMOSOMAL CHANGE

Despite limited phylogenetic, genomic, and transcriptomic
resources, there is a growing body of research on broad patterns
of chromosomal and genomic evolution between homosporous
and heterosporous plant genomes. In most groups of organisms,
there is not a good correlation of chromosome number with
genome size. The reasons for this are complex and involve
the, often rapid, loss of genetic material after a whole-genome
duplication (WGD) event (Leitch and Bennett, 2004). In

contrast, some studies suggest that genome size is positively
correlated with chromosome number in homosporous ferns
(Nakazato et al., 2008; Bainard et al., 2011; Clark et al., 2016;
Fujiwara et al., 2021), indicating that ferns have fundamentally
different mechanisms of genome downsizing compared to other
organisms (Barker and Wolf, 2010; Leitch and Leitch, 2012).
Here, we cover some hypotheses about the differences in genome
downsizing, architecture, and chromosome structure between
homosporous and heterosporous plants.

Genome Downsizing
In angiosperms, polyploidy (and associated WGD) has played
a major role in the evolution of the vast majority of species,
including both recent and ancient WGD events (Cui et al.,
2006; Van de Peer et al., 2009, 2017). However, the long-
term evolutionary effects of WGD are complex, and polyploid
lineages include a mix of evolutionary dead ends as well as
critical lineages that survive, exploit new niches, and radiate,
perhaps as a consequence of polyploidy (Van de Peer et al.,
2017). When polyploids are initially formed they have twice as
many genes as they typically need, relaxing selection pressure
on retention of the duplicated copies. This, combined with a
documented breakdown in the meiotic process in polyploids
(Ramsey and Schemske, 2002; Chester et al., 2012) can lead to
rapid loss of chromosomal segments, resulting in downsizing
of the genome (Leitch and Bennett, 2004; Li Z. et al., 2020;
Bowers and Paterson, 2021). Studies of recent allotetraploids
reveal extensive chromosomal variation, including intergenomic
translocations, which all appear to be part of the process of
rapid genome downsizing in angiosperms (Lim et al., 2008;
Chester et al., 2012). These genomic changes ultimately lead to
the restoration of disomic inheritance and bivalent chromosome
pairing in lineages that have experienced WGD (Li Z. et al., 2020).

Much less is known about genomic change following WGD
in homosporous plants, which has yet to be studied extensively
(Szövényi et al., 2021). Overall, it is thought that genome
downsizing proceeds slower in ferns than angiosperms (Barker
and Wolf, 2010), and diploidization in ferns may be driven by
pseudogenization and/or gene silencing rather than gene loss
(Haufler, 1987; Barker, 2013; Clark et al., 2016). The latter process
potentially leads to larger genomes, or rather genomes that do
not decrease in size following polyploidization. Differences in
downsizing rates may be a consequence of several processes.
If fern genome downsizing is slower, it could be because ferns
lose fewer chromosomal regions per generation. However, the
cause could also be a reduction in the size, not the rate, of
the chromosomal segments being lost. Recent work suggests
that the rate of genome evolution may influence speciation
rate. This is supported by high rates of genome evolution in
the species-rich Polypodiales, which contain over three-quarters
of extant fern diversity (PPG, 2016; Fujiwara et al., 2021).
The mechanisms influencing fern genome evolution, however,
are less clear. This illustrates the need for experiments that
track chromosomal changes following polyploidy in ferns, and
compare this to genome downsizing in heterosporous plants (Lim
et al., 2008; Chester et al., 2012). Understanding the processes that
influence genome architecture and the rate of genomic change
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between lineages may help advance our knowledge of broad-scale
speciation dynamics of all land plants (Fujiwara et al., 2021).

Genome and Chromosome Architecture
In addition to genome size, heterosporous and homosporous
genomes have some critical differences in structure and
composition. Our current knowledge of these differences in
homosporous plants is limited to genome skimming and
transcriptome studies, but these are important to inform
future comparative genomic work. In heterosporous seed plants
(angiosperms and gymnosperms), one aspect of genome size
variation is transposable elements, such as LTR-RTs, which
increase in copy number over time and can cause even diploid
genomes to become very large (Wendel et al., 2016). Baniaga
and Barker (2019) found that LTR-RT are also present in
homosporous fern genomes, but have much older insertion
times than in angiosperm taxa; this means that the LTR-RTs of
homosporous ferns have had time to increase in copy number,
inflating genome size. In addition, they found that heterosporous
ferns (Azolla and Salvinia) and lycophytes (Selaginella) have
LTR-RTs insertion times more similar to angiosperms than to
homosporous ferns (Baniaga and Barker, 2019). These findings
are consistent with the observation that homosporous fern
genomes have a greater proportion of repeat elements than
angiosperm genomes (Wolf et al., 2015). Baniaga and Barker
(2019) hypothesized that LTR-RTs are associated with high
methylation in homosporous ferns (Takuno et al., 2016): LTR-
RTs are silenced by methylation, and methylation can also
silence genes on the same chromosome because it targets repeat
elements. Homosporous ferns may ultimately not purge these
methylated and silenced LTR-RTs and other genes, leading to
their large genome size (Baniaga and Barker, 2019). However,
long-read sequencing and high-quality genome assemblies are
needed to understand the evolutionary dynamics of repeat
elements in homosporous ferns. Future comparative genomic
work could investigate the role of mating systems and life history
on repeat elements in homosporous and heterosporous genomes
(Baniaga and Barker, 2019). Additionally, genomic data from
a homosporous lycophyte (Lycopodiales) is needed to compare
gene structure across homosporous lineages.

The distribution of genes and repeat elements along
chromosomes also differs between heterosporous and
homosporous plants. The structure of angiosperm chromosomes
seems to be fairly well conserved, with most genes occurring
between the repeat-rich pericentromeric and telomeric regions
(Szövényi et al., 2021). Comparatively, in seed-free plants, genes
and repeats are interspersed along the chromosomes rather than
separated into repeat-rich and gene-rich areas (Banks et al., 2011;
Liang et al., 2020). However, this has only been studied in mosses
and lycophytes (Banks et al., 2011; Shakirov and Shippen, 2012;
Bowman et al., 2017; Li F. W. et al., 2020). Chromosome-scale
genome assemblies are needed to investigate such structure
in homosporous ferns, as well as understand the variation in
chromosome structure between homosporous lineages.

Variation in chromosome size is another major difference
between heterosporous and homosporous plants, with a
3,100-fold variation in angiosperms compared to 31-fold in

homosporous ferns and lycophytes (Clark et al., 2016). Our
understanding of the mechanisms controlling chromosome
size, particularly in ferns, is limited (Szövényi et al., 2021).
Schubert and Oud (1997) showed that there is an upper limit
to chromosome arm length in angiosperms, and Liu et al.
(2019) found support for conservation of chromosome size
within the fern genus Asplenium. Work in angiosperms has
found that mitotic divisions may fail when the chromosome
arm: spindle length ratio is above a certain point (Schubert
and Oud, 1997). Investigating this ratio in homosporous and
heterosporous ferns and lycophytes could be a fruitful avenue of
study, as there may be fundamental differences in cell division
between these lineages and seed plants. Overall, investigating
patterns of both chromosome- and genome-scale structure will
greatly benefit our understanding of both heterosporous and
homosporous genomes.

DISCUSSION: COMPARATIVE ANALYSES
OF HOMOSPORY AND HETEROSPORY

If we are to understand the relationship between genome
architecture and spore type, then the necessary studies must
begin with comparative analyses from a phylogenetic perspective.
Given the three independent origins of heterospory (Figure 2),
we ask what genomic characteristics are uniquely shared on
the three branches subtending these heterosporous clades?
Understanding what parts of the genome have changed following
a transition to heterospory is critical for developing hypotheses
explaining why these evolutionary steps have occurred. Within
a few years, we should have sufficient numbers of homosporous
genomes to search for statistically significant differences in gene
family expansion and contraction, signatures of selection, trends
in rates of pseudogenization, distribution and insertion rates of
various groups of transposable elements and retrotransposons,
and comparative patterns of synteny and general genome
architecture. This work would then inform novel hypothesis-
driven approaches that could include comparative analyses of
genes related to meiosis and chromosome structure, such as
those associated with spindle fiber genes, cell cycle genes,
telomere structure, centromere structure, kinetochores, and
recombination. We would also benefit from a return to
chromosome analysis, but with genomic perspectives, using
approaches such as fluorescent in situ hybridization combined
with chromosome painting (e.g., Schubert and Lysak, 2011;
Šimoníková et al., 2019).

We currently have the resources to explore some potential
drivers of genomic change in homosporous ferns. To explain
the observed chromosomal differences between homosporous
and heterosporous genomes, a few theories have been proposed
based on the disparate life histories of these two groups. For
example, even if gametophytic selfing is not particularly common
in homosporous ferns, it could still play a role in genome
evolution, especially in chromosome structure. Marchant (2019)
suggested that if there is a major chromosomal change in
meiosis, the resulting gametophyte could successfully self-
fertilize because both sperm and egg would carry the same
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mutation. All chromosomes would pair without issue, fixing
a new chromosome arrangement. Such an event could not
occur in a heterosporous plant with obligate gametophytic
outcrossing (Marchant, 2019). Gametophytic selfing would
reduce negative selection on chromosomal malformations or
other components such as repetitive elements (Baniaga and
Barker, 2019) in homosporous plants, potentially leading to
larger and more dynamic genomes than in heterosporous plants.
Similarly, dysploidy and polyploidy might be more successful
in lineages with gametophytic selfing, such as Ophioglossaceae,
which have underground gametophytes (Soltis and Soltis, 1986;
Hauk and Haufler, 1999), as well as very large genomes
(Bainard et al., 2011).

This hypothesis proposed by Marchant (2019) suggests that
homosporous fern genomes are more stable following WGD,
due to gametophytic selfing. This would relax evolutionary
pressures to downsize the genome, as all chromosomes could
pair without issue, resulting in more consistent successful gamete
production. One could test this hypothesis by examining natural
and artificial polyploids to see if genomic segments are lost as
fast as they are in seed plants (e.g., Lim et al., 2008; Chester
et al., 2012). Furthermore, chromosome structural analyses will
be needed to test Marchant’s (2019) hypothesis for fixation
of chromosomal changes via gametophytic selfing. This could
be accomplished through comparative karyotype analysis or
computational analysis of synteny in a series of sister taxa.

Another potential driver of chromosome evolution in plants is
transmission ratio distortion (TRD): the preferential inheritance
of one allele over the other (Huang et al., 2013). TRD
can be caused by several mechanisms, including germline
selection (Hastings, 1991) and meiotic drive (Pardo-Manuel
et al., 2001). Both of these processes can influence genome
structure by preferentially selecting for a certain gene or
chromosome structure, although they affect homosporous and
heterosporous plants differently. During megasporogenesis in
most heterosporous angiosperms, four cells result from meiosis
but only one of the two outer cells survives to become the
megagametophyte; the remaining polar bodies die. Certain genes,
chromosomes, or portions of chromosomes can be preferentially
transported to these outer cells, increasing the probability of
being passed to the next generation. There are physical attributes
of chromosomes that help to transport all or a portion of a
chromosome to the outer cells during meiosis (Burt and Trivers,
2009). For example, there is a bias against inversions and for
deletions, because smaller chromosomes move faster along the
spindle and therefore are more likely to end up in the outer two
cells at the end of meiosis (Burt and Trivers, 2009).

In most homosporous ferns, spores are produced from one
archesporial cell, which goes through four rounds of mitosis
to produce 16 cells; then, these mother cells go through one
round of meiosis to produce 64 viable spores (Manton, 1950).
Because all meiotic products survive, meiotic drive (as it exists in
angiosperms) does not occur in homosporous plants. Therefore,
there is no selection pressure on chromosome size or composition
during gamete formation, although it may occur at other points
such as germline mitosis (Hastings, 1991; Clark et al., 2016).
The effect of TRD on genome composition in heterosporous

plants could be part of the reduction of chromosome number and
genome size in angiosperms. Comparative analyses are needed to
measure the extent and affect of TRD on genome composition in
homosporous and heterosporous plants.

The presence of TRD in homosporous ferns could be tested
using reduced representation sequencing such as restriction site-
associated DNA sequencing (RADseq). Two parental species
could be crossed to form a hybrid, then spores from the
hybrid germinated. Using RADseq, the parents, hybrid, and
gametophytes derived from the hybrid would be genotyped.
Because ferns have an independent gametophyte stage, meiotic
products can be assessed directly without the need for a test cross.
Thus, progeny arrays of gametophytes could be genotyped to
estimate meiotic product ratios and determine if certain alleles
are being preferentially transmitted.

Finally, there are several natural study systems to leverage for
work on genomic change following a transition to heterospory.
As mentioned previously, there are three independent evolutions
of heterospory in land plants: heterosporous ferns (Salviniales),
lycophytes (Selaginellales and Isoetales), and the seed plants.
The heterosporous ferns and lycophytes both have sister
homosporous lineages that would be an ideal comparative
system. By first using these two groups to understand how
heterospory influence genome evolution in spore-dispersed
plants, we could build a foundation to compare homosporous
fern genomes to heterosporous seed plants genomes. Another
natural system for exploring the evolution of heterospory is
Pteris platyzomopsis (Pteridaceae). This fern appears to be an
example of incipient heterospory; it produces spores in two
size classes and has dioecious gametophytes, although egg-
producing gametophytes will also produce antheridia after a
certain period of time (Tryon, 1964). Pteris platyzomopsis has a
base chromosome number of n = 38 (Tryon and Vida, 1967),
which is similar to other homosporous species, but nothing is
known about its genome size or structure. More research is
also needed on the life history of this species. Incorporating
P. platyzomopsis in comparative work will be important to
understand the evolution of heterospory at the genomic level.

CONCLUSION

The disparity between chromosome number in homosporous
and heterosporous plants is one that has challenged scientists
for decades (e.g., Klekowski and Baker, 1966). To conduct
the necessary comparative analyses, more high-quality genomes
from homosporous ferns and lycophytes are needed, which is
something many authors have been seeking for almost 20 years
(Pryer et al., 2002; Sessa et al., 2014; Wolf et al., 2015; Kuo and
Li, 2019). Today, however, our genomic resources are growing
rapidly and in a few years, there may be enough homosporous
genomes to begin comparative analyses with heterosporous
lineages (Kuo and Li, 2019; Szövényi et al., 2021). When
investigating broad-scale patterns in vascular plant evolution, it is
important to include an evolutionary perspective. In this review,
we examined the multiple origins of heterospory in plants and
considered which traits might be affecting their chromosome
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numbers, genome size, and genome composition. A combination
of new data and new ways of looking at the problem may
determine which factors are involved and which assumptions we
have overlooked.
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