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The loss of submerged macrophytes from freshwater ecosystems is accelerating
owing to the combined effects of eutrophication and climate change. Submerged
macrophytes depend on spring clear water; however, increased water temperatures
and excessive phosphorus (P) inputs often lead to the dominance of phytoplankton.
It is still not clear how the stoichiometric characteristics of carbon (C), nitrogen (N),
and P in different tissues of submerged macrophytes respond to P enrichment and
temperature increases. In this study, we established 36 mesocosm ecosystems to
explore the effects of warming and P addition on the leaf, turion, stem, and seed
stoichiometry of Potamogeton crispus. The results revealed that different functional plant
organs show distinct responses to P addition and warming, which demonstrates the
importance of evaluating the responses of different submerged macrophyte organs to
environmental changes. In addition, interactive effects between P addition and warming
were observed in the leaf, turion, and seed C:N:P stoichiometry, which highlights the
importance of multifactorial studies. Our data showed that warming caused a decrease
in the C content in most organs, with the exception of the stem; P addition increased
the P content in most organs, with the exception of seed; N content in the turion
and seed were influenced by interactive effects. Collectively, P addition could help
P. crispus to resist the adverse effects of high temperatures by aiding growth and asexual
reproduction, and asexual propagules were found to be more sensitive to P enrichment
than sexual propagules.

Keywords: stoichiometric characteristics, eutrophication, climate change, growth organs, reproductive organs

INTRODUCTION

Submerged macrophytes are the primary producers in lakes and play an important role in
maintaining clean water (Su et al., 2017). However, globally, the loss of submerged aquatic
vegetation is accelerating. A meta-analysis of 155 lakes found that, in 65.2% of the lakes, the aquatic
vegetation cover decreased (Zhang et al., 2017). Eutrophication (Sondergaard et al., 2010) and
climate change (Phillips et al., 2016) are the two main causes of the decline and disappearance of
submerged macrophytes. Currently, eutrophication is accelerating, and eutrophication in lakes in
mid- and low-latitude regions is more serious than that in lakes in high-latitude regions (Izmailova
and Rumyantsev, 2016). The shallow lakes in the middle-lower reaches of the Yangtze River
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suffer from high-nutrient input from both inflows and sediments
(Jin et al., 2005; Le et al., 2010; Qin et al., 2020). Shallow
lakes with a large surface area to volume ratio and no
thermal stratification are more sensitive to climate warming
than other types of lakes (Gerten and Adrian, 2000; Mooij
et al., 2005). The frequency and intensity of extreme climate
events (such as heatwaves) are expected to increase over the
next 100 years (Ferreira et al., 2010; Perkins et al., 2012).
A regional model predicts that temperature will increase by
4.9 ± 0.95◦C (RCP 8.5) over southern China by the century’s
end, compared with the temperature from 1980 to 1999
(Chen and Frauenfeld, 2014a). Furthermore, the duration and
intensity of heatwaves are predicted to increase significantly
in the middle and lower reaches of the Yangtze River
(Qi and Yang, 2019).

Carbon (C) is the most essential element that constitutes
the dry matter in plants; nitrogen (N) determines plant growth
by regulating the number and size of organs, and balancing
nutrition and reproductive growth, whereas phosphorus (P)
influences leaf formation and shape, as well as the plant’s
flowering and seed formation (Plénet et al., 2000; Marschner,
2012). The N/C and P/C ratios determine the relative growth
rate of plants (Ågren, 2004), and the N/P ratio reflects the
restriction of plant growth (Wang et al., 2014). During plant
growth, the C:N:P stoichiometry responds to environmental
conditions (Zhang et al., 2013) and is related to important
ecological processes, such as N2 fixation (Sañudo-Wilhelmy
et al., 2001), litter decomposition (Güsewell and Gessner, 2009),
species diversity (Ren et al., 2017; Chen and Chen, 2021), and
the ability of organisms to adapt to environmental stress (Xie
et al., 2018). Plant stoichiometry varies with the growth rate
and the surrounding environment. Control experiments have
shown that rising temperatures affect the growth, stoichiometry,
and palatability of submerged macrophytes (Short et al., 2016;
Zhang et al., 2019; Xu et al., 2020). Elevated temperatures
lead to a decrease in N and P contents in aquatic plants,
which results in an increase in C/N and C/P ratios. A study
on terrestrial plants and phytoplankton showed that this effect
was caused by an increase in nutrient use efficiency (An
et al., 2005; De Senerpont Domis et al., 2014). The increase
in temperature also changes the diffusion rate of nutrients in
the water, owing to changes in the boundary layer surrounding
organisms, which leads to changes in the stoichiometry of
organisms (Raven and Geider, 1988). Studies have shown that
warming may reduce the C/N ratio of terrestrial plants by
increasing plant productivity, biological activity, and nutrient
absorption (Welker et al., 2005; Aerts et al., 2009). However, in
temperate terrestrial ecosystems, plant C/N and C/P ratios may
increase (Sardans et al., 2012). The recognized importance of
P as a limiting factor in terrestrial and aquatic ecosystems is
increasing (Peñuelas et al., 2012). Nutrient addition can positively
impact the nutritional quality of aquatic plants (Burkholder et al.,
2007; Sardans et al., 2012; Bakker and Nolet, 2014). However,
eutrophication can reduce the C/P ratio of algae in rivers (Frost
and Elser, 2002; Dang et al., 2009), and low C/P ratios yield
greater advantages to fast-growing species and disadvantages to
slow-growing taxa (Frost and Elser, 2002), which may reduce

TABLE 1 | Effects of different temperature scenarios and phosphorus addition on
the TC, TN, and TP contents and the C/N, C/P, and N/P ratios in P. crispus leaves.

Parameters Factors SS df MS F p-value

Leaf TC T changes 1360.615 2 680.308 7.179 0.001

P addition 645.826 1 645.826 6.815 0.010

T changes
*P addition

939.096 2 469.548 4.955 0.008

Leaf TN T changes 117.051 2 58.525 0.717 0.489

P addition 21.698 1 21.698 0.266 0.607

T changes
*P addition

23.054 2 11.527 0.141 0.868

Leaf TP T changes 61.672 2 30.836 5.157 0.007

P addition 5.491 1 5.491 0.918 0.253

T changes
*P addition

24.191 2 12.095 2.073 0.079

Leaf C/N ratio T changes 6.349 2 3.174 0.598 0.669

P addition 0.045 1 0.045 0.011 0.918

T changes
*P addition

0.280 2 0.140 0.026 0.974

Leaf C/P ratio T changes 7732.952 2 3866.476 5.154 0.007

P addition 135.756 1 135.756 0.181 0.671

T changes
*P addition

1853.307 2 926.654 1.235 0.293

Leaf N/P ratio T changes 46.807 2 23.403 6.410 0.002

P addition 0.346 1 0.346 0.095 0.759

T changes
*P addition

16.202 2 8.101 2.219 0.111

Bold numbers indicate significant differences (p < 0.05). *Meant interaction.

ecosystem biodiversity (Evans-White et al., 2009). In addition,
changes in the N/P ratio often favor algal species that can compete
for restricted nutrients, which gives them a potential advantage
(Granéli et al., 2008) and causes problems for the restoration
of submerged macrophytes. In summary, these studies have
found that temperature rise and nutrient enrichment have
opposing effects on the stoichiometric characteristics of aquatic
organisms. Temperature rise is expected to increase the ratio,
whereas nutrient enrichment is expected to decrease the ratio.
However, there are few reports about how the stoichiometry
of submerged macrophytes responds to external environment
change (Güsewell, 2004).

Potamogeton crispus is a perennial aquatic plant and the
dominant species in freshwater areas of East Asia (Kunii, 1982;
Xie et al., 2003). In particular, it is one of the few species that
survives in nutrient-rich Chinese lakes (Lu et al., 2012). It has
a strong resistance to stress brought on by pollution, and its
ability to absorb nutrients is often used in wetland restoration
(Jin et al., 1994; Xu et al., 2015). In the subtropical and temperate
regions of the northern hemisphere, the life cycle of P. crispus
differs from that of most submerged macrophytes. The optimum
temperature range for P. crispus is 10–20◦C, thus its biomass
and productivity peak in the spring (Kunii, 1982). In summer,
the leaves and stems rot and die, and propagule turions and
seeds fall into the water body. P. crispus can reproduce either
asexually or sexually (Shen et al., 2008). Turions formed at the
top of the stem are important for the asexual reproduction
of P. crispus. Seeds are produced at the same time as turions
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FIGURE 1 | The stoichiometric characteristics of the (A) TC, (B) TN, and (C) TP contents and the (D) C/N, (E) C/P, and (F) N/P ratios of P. crispus leaves under
different treatments. The C in “No phosphorus added” represent controls (C), T in “No phosphorus added” represent constant warming (T), and V in “No phosphorus
added” represent variable warming (V). Meanwhile, the C in “Phosphorus Added” represent phosphorus addition (C + P), T + P in “Phosphorus Added” represent
constant warming and phosphorus addition (T + P), and V + P in “Phosphorus Added” represent variable warming and phosphorus addition (V + P).

are formed (Sastroutomo et al., 1979; Rogers and Breen, 1980;
Kunii, 1982), but the germination rate of P. crispus seeds is low
under natural conditions. Therefore, P. crispus relies mainly on
asexual reproduction, especially turion reproduction (Chen et al.,
2006). P. crispus can grow well in water with a total nitrogen
concentration of less than 2 mg/L and a total phosphorus
concentration of less than 0.4 mg/L (Ma, 2007), but it cannot
survive nutrient concentrations that are very high (Zhang, 2006).
Currently, few studies have explored how nutrient increase and
global warming, and their interactive effects, impact the C:N:P
stoichiometric ratios of the different organs associated with plant
growth and reproduction.

In this study, we used outdoor mesocosms to investigate the
effects of warming and P enrichment on the C:N:P stoichiometric
relationship within the organs of P. crispus. Our hypotheses
are as follows: (1) the contents of C, N, and P in the
organs of P. crispus will increase with additional P input, but
the stoichiometric ratio will decrease; (2) P. crispus is not
tolerant of high temperatures; thus, the contents of C, N, and
P in the organs will decrease with increasing temperature,
thereby increasing the stoichiometric ratio; (3) the stoichiometric
characteristics of P. crispus’ organ responses vary under the
interactive effects of warming and P input; and (4) seed
stoichiometry is more stable than that of other organs because

its function is to maintain the ability to reproduce in response to
environmental changes.

MATERIALS AND METHODS

Experiment Design
The outdoor mesocosm system was described in the study of Xu
et al. (2020). The experiment was conducted from March 7 to
May 30, 2018. Both water and plant samples were collected from
Liangzi Lake. The treatments included two factors, temperature
rise and P addition, with each treatment replicated six times.
Tanks were randomly assigned to one of the six experiments,
and the six treatments were divided into two categories: no
phosphorus added and phosphorus added. The treatments were
as follows: (1) no phosphorus added, which comprised natural
water temperature with no added P (C); fixed heating with no
added P (T), which comprised a constant increase in temperature
that was 4◦C above control conditions (in keeping with RCP
8.5 in the region by 2100) (Intergovernmental Panel on Climate
Change (IPCC), 2013; Chen and Frauenfeld, 2014b); fluctuation
of heating with no added P (V), where random temperature
fluctuations between 0 and 8◦C were applied based on the fixed
heating group T. The total amount of warming over the duration
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TABLE 2 | Effects of different temperature scenarios and phosphorus addition on
the TC, TN, and TP contents and the C/N, C/P, and N/P ratios in P. crispus stems.

Parameters Factors SS df MS F p-value

Stem TC T changes 1779.633 2 889.816 0.912 0.403

P addition 10085.212 1 10085.212 10.334 0.002

T changes
*P addition

5331.021 2 2665.510 2.731 0.067

Stem TN T changes 4.549 2 2.275 0.042 0.959

P addition 0.392 1 0.392 0.007 0.932

T changes
*P addition

81.699 2 40.850 0.753 0.472

Stem TP T changes 16.423 2 8.212 1.219 0.298

P addition 109.468 1 109.468 16.250 0.000

T changes
*P addition

26.859 2 13.430 1.994 0.139

Stem C/N ratio T changes 111.827 2 55.913 0.443 0.642

P addition 135.114 1 135.114 1.071 0.302

T changes
*P addition

192.797 2 96.398 0.764 0.467

Stem C/P ratio T changes 3109.184 2 1554.592 1.144 0.321

P addition 23060.584 1 23060.584 16.966 0.000

T changes
*P addition

5365.556 2 2682.778 1.974 0.142

Stem N/P ratio T changes 7.533 2 3.766 3.247 0.041

P addition 16.745 1 16.745 14.436 0.000

T changes
*P addition

1.718 2 0.859 0.741 0.478

Bold numbers indicate significant differences (p < 0.05). *Meant interaction.

of the experiment was equal for both temperature treatments
(T and V). (2) Phosphorus added, which entailed P addition
without warming (C + P) composed of the addition of 25
µg/L of KH2PO4 to the water every 2 weeks; fixed heating
treatment and the P addition group (T + P), which comprised
a constant increase in temperature that was 4◦C above control
conditions and the addition of 25 µg/L KH2PO4 every 2 weeks;
fluctuation of heating and P addition (V + P), which had the
same temperature setting as treatment V and had 25 µg/L
KH2PO4 added every 2 weeks. The heating treatment began
on the first day.

Sampling and Analysis
Water samples were collected from each tank using a Plexiglas
tube (diameter 70 mm; length 1 m) and then taken to the
laboratory to measure the total nitrogen (TN), total phosphorus
(TP), and Chl-a in the water according to the standards
of the Chinese water analysis methods (Wang et al., 2008).
An ultraviolet spectrophotometer (Cleverchem380, DeChem-
Tech., Germany) was used to calculate the TP and TN
weekly. The chlorophyll-a concentration was determined by
filtering 500 ml of the water using Whatman GF/C filters
and then using a spectrophotometer (UV-2800, Unico, China)
after ethanol extraction (Supplementary Table 1). P crispus
stems and leaves were collected every month from each tank,
whereas the turions and seeds were collected at the end of
the experiment to analyze the C, N, and P contents. The

plant samples were dried in an oven at 70◦C for 48 h
to a constant weight, after which the dried samples were
ground into powder using a ball mill (Mini Beadbeater-
16, Biospec product, United States). The C and N contents
were analyzed using an elemental analyzer (FlashEA1112, CE
instrument, Italy) (Bradshaw et al., 2012; Lü et al., 2012).
The P content was analyzed via digested plant samples with
H2SO4-H2O2 and molybdenum antimony spectrophotometry
(Kuo, 1996).

Statistical Analysis
Two-way ANOVA was used to explore the effects of warming,
P addition, and those of their interaction, on the TP, C/N, N/P,
and C/P ratios of P. crispus turions, seeds, leaves, and stems using
IBM SPSS Statistics 25 (SPSS, Chicago, Illinois, United States).
The figures were drawn using Origin 2018 software (Origin Lab
Corp., Massachusetts, United States).

RESULTS

Effect of Warming and P Addition on the
C, N, and P Contents and Stoichiometric
Characteristics of Potamogeton crispus
Leaves
The leaf C content was significantly influenced by warming
(p = 0.001), P addition (p = 0.01), and their interactive
effects (p = 0.008). Leaf C content decreased when temperature
increased, and it also decreased when P addition, warming, and
warming and P addition interacted (Table 1 and Figure 1A).
The N content and C/N ratio in the leaf showed no
response (p > 0.05) (Table 1 and Figures 1B,D). The P
content of the leaves was significantly affected by warming
and it significantly decreased when temperature increased
(p = 0.007) (Table 1 and Figure 1C). Furthermore, the
C/P ratio (p = 0.007) and N/P ratio (p = 0.002) in
the leaf were significantly affected by warming, and both
significantly increased as temperature increased (Table 1 and
Figures 1E,F).

Effect of Warming and P Addition on the
C, N, and P Contents and Stoichiometric
Characteristics of Potamogeton crispus
Stems
The C (p = 0.002) and P (p = 0.000) contents and C/P
ratio (p = 0.000) in the stem of P. crispus varied significantly
with P addition. Specifically, the C and P contents of
the stems increased with P addition, and the C/P ratio
decreased with P addition (Table 2 and Figures 2A,C,E),
whereas the N content and C/N ratio showed no significant
response (p > 0.05) (Table 2 and Figures 2B,D). The
N/P ratio was significantly affected by warming and P
addition, increasing significantly with warming (p = 0.041)
and decreasing when P was added (p = 0.000) (Table 2 and
Figure 2F).
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FIGURE 2 | The stoichiometric characteristics of the (A) TC, (B) TN, and (C) TP contents and the (D) C/N, (E) C/P, and (F) N/P ratios of P. crispus stems under
different treatments. The C in “No phosphorus added” represent controls (C), T in “No phosphorus added” represent constant warming (T), and V in “No phosphorus
added” represent variable warming (V). Meanwhile, the C in “Phosphorus Added” represent phosphorus addition (C + P), T + P in “Phosphorus Added” represent
constant warming and phosphorus addition (T + P), and V + P in “Phosphorus Added” represent variable warming and phosphorus addition (V + P).

Effect of Warming and P Addition on the
C, N, P Contents and Stoichiometric
Characteristics of Potamogeton crispus
Turions
The C content of P. crispus turions was significantly affected by
warming and when the temperature increased, the C content of
P. crispus turions decreased significantly (p = 0.001) (Table 3
and Figure 3A). N content in the turions was significantly
affected by warming (p = 0.036), P addition (p = 0.000), and
their interactive effects (p = 0.006). Furthermore, when the
temperature increased, the N content of the turions decreased
significantly. The N content of the turions also decreased
significantly with P addition, warming, and their interactive
effects (Table 3 and Figure 3B). Turion P content was affected
by P addition, warming (p = 0.000), and their interactions
(p = 0.000). When only P was added, the turion P content
decreased, and when P addition and warming interacted, the P
content increased (Table 3 and Figure 3C). The turion C/N ratio
significantly changed under warming (p = 0.017) and P addition
(p = 0.000), both of which significantly increased (Table 3
and Figure 3D). Turion C/P and N/P ratios were significantly

influenced by P addition (p = 0.000 and p = 0.000, respectively),
and both significantly decreased with the interactive effects of
warming and P addition (p = 0.000 and p = 0.007) (Table 3 and
Figures 3E,F).

Effect of Warming and P Addition on the
C, N, P Contents and Stoichiometric
Characteristics of Potamogeton crispus
Seeds
The P. crispus seed C content was significantly affected by
warming and P addition, and it decreased with increasing
temperatures (p = 0.015) and P enrichment (p = 0.000)
(Table 4 and Figure 4A). The N content (p = 0.035) and
C/N ratio (p = 0.016) were significantly affected by the
interaction between warming and P addition. Furthermore, the
N content increased under the interaction between warming
and P addition, whereas the C/N ratio decreased under this
interaction (Table 4 and Figures 4B,D). The P content, C/P
ratio, and N/P ratio showed no significant response (Table 4 and
Figures 4C,E,F).
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TABLE 3 | Effects of different temperature scenarios and phosphorus addition on
the TC, TN, and TP contents and the C/N, C/P, and N/P ratios in P.crispus turions.

Parameters Factors SS df MS F p-value

Turion TC T changes 293.050 2 146.525 7.049 0.001

P addition 56.192 1 56.192 2.703 0.101

T changes
*P addition

33.482 2 16.741 0.805 0.448

Turion TN T changes 26.264 2 13.132 3.376 0.036

P addition 142.479 1 142.479 36.633 0.000

T changes
*P addition

40.789 2 20.395 5.244 0.006

Turion TP T changes 2.030 2 1.015 2.809 0.062

P addition 6.684 1 6.684 18.501 0.000

T changes
*P addition

7.190 2 3.595 9.951 0.000

Turion C/N ratio T changes 785.359 2 392.679 4.126 0.017

P addition 2601.546 1 2601.546 27.333 0.000

T changes
*P addition

563.060 2 281.530 2.958 0.054

Turion C/P ratio T changes 7751.299 2 3875.649 1.651 0.194

P addition 38866.707 1 38866.707 16.553 0.000

T changes
*P addition

50552.946 2 25276.473 10.765 0.000

Turion N/P ratio T changes 1.823 2 0.911 0.804 0.448

P addition 99.824 1 99.824 88.118 0.000

T changes
*P addition

11.538 2 5.769 5.092 0.007

Bold numbers indicate significant differences (p < 0.05). *Meant interaction.

DISCUSSION

The Response of Potamogeton crispus
Turions and Seeds to Warming and P
Addition
P. crispus practices both asexual and sexual reproduction and
relies mainly on specialized turions for reproduction (Shen
et al., 2008). Many researchers believe that low temperatures
and sufficient light are beneficial for the germination of turions,
whereas high temperatures inhibit their germination (Jian et al.,
2003; Gao et al., 2005; Chen et al., 2006). The C and N contents
in turions decreased slightly when the temperature increased,
possibly because their growth was inhibited as the temperature
increased, which results in a decrease in available inorganic
C for turion sequestration. The N content of plants at high
temperatures is usually related to respiration (Tjoelker et al., 1999;
Crous et al., 2017). The previous studies have shown that an
increase in C utilization leads to a decrease in the N content of
submerged plants (Madsen et al., 1998; Dülger et al., 2017; Zhang
et al., 2020). Our results are consistent with this observation
because there is a negative covariance between plant C and N
contents (Zhang et al., 2020), which indicates that these plants
can self-regulate their internal nutritional composition. However,
the N content decreased after P was added, as well as under the
combined effects of P input and warming, which was inconsistent
with our hypothesis. One possible explanation for this is that
algal growth increases as the external nutrient load increases

(Strecker et al., 2004; Daufresne et al., 2009) because algae may
compete with submerged plants for inorganic C and light (Jones
et al., 2002). Nitrogen is the basic component of all enzymes and
chlorophyll in plants and plays a key role in controlling carbon
assimilation and primary production (LeBauer and Treseder,
2008; Chen et al., 2013). As the C and N contents of the external
nutrient load were low, the C and N contents of turions decreased
after warming and the addition of P. Regarding the germination
conditions of turions, their P content increased after the addition
of P, which was consistent with our hypothesis. The addition of
P led to a significant increase in the C/N ratio of the turions
and a decrease in the C/P and N/P ratios. Under the interactive
effects of warming and P enrichment, the C/P and N/P ratios
decreased, which indicates that the utilization rate of P increased.
The interactive effect of P addition and warming may increase
the rate of P utilization by turions. Thus, warming may inhibit
the growth of turions.

Carbon provides the foundation for growth, reproduction,
and structure (Hessen et al., 2004; Elser et al., 2007). Under
phosphorus addition, the decrease in seed C content may be
caused by the distribution of more nutrients to the turions.
Different C contents may be linked to the germination rate
of the propagules. Whereas seeds, as sexual propagules, are
important in long-distance transmission, the studies have shown
that the germination rate of P. crispus seeds is extremely low,
only 0.001% (Rogers and Breen, 1980); however, turions, the
asexual propagules of P. crispus, are widely transplanted in
artificial cultivation technology. The decrease in the C content
after heating may have been caused by the high temperature.
Other studies have demonstrated that temperature controls the
germination rate and kinetics of charophytes, and that higher
temperatures are not conducive to seed germination (Bonis and
Grillas, 2002). Therefore, high temperatures can inhibit seed
production. However, after the interaction of P and heating, the
N content of the seeds increased and the C/N ratio decreased
significantly. This suggests that when both factors act on the seeds
simultaneously, the utilization efficiency of N may increase. These
changes may further affect the germination rate and average
germination time of propagules (Caliskan and Makineci, 2014),
thereby affecting the distribution and abundance of the plant’s
population. The stoichiometry of seeds was less sensitive to
warming and P input and may be more stable than other organs
because its function is to maintain the ability to reproduce in
response to environmental changes.

The Response of Potamogeton crispus
Leaves and Stems to Warming and P
Input
P. crispus grows poorly under warmer conditions and most
of them decay in the summer (Chen, 1985). The optimal
temperature range for P. crispus is 10–12◦C, and temperatures
above and below this range affect its growth. Regarding the effects
of temperature and nutrients on cold-water plants, the studies
have shown that elevated temperatures deplete nutrient elements,
thereby limiting the growth of P. crispus, and the effects on
P. crispus stoichiometry are highly dependent on the nutrient
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FIGURE 3 | The stoichiometric characteristics of the (A) TC, (B) TN, and (C) TP contents and the (D) C/N, (E) C/P, and (F) N/P ratios of P. crispus turions under
different treatments. The C in “No phosphorus added” represent controls (C), T in “No phosphorus added” represent constant warming (T), and V in “No phosphorus
added” represent variable warming (V). Meanwhile, the C in “Phosphorus Added” represent phosphorus addition (C + P), T + P in “Phosphorus Added” represent
constant warming and phosphorus addition (T + P), and V + P in “Phosphorus Added” represent variable warming and phosphorus addition (V + P).

TABLE 4 | Effects of different temperature scenarios and phosphorus addition on the TC, TN, and TP contents and the C/N, C/P, and N/P ratios in P. crispus seeds.

Parameters Factors SS df MS F p-value

Seed TC T changes 1728.250 2 864.125 4.285 0.015

P addition 7299.843 1 7299.843 36.200 0.000

T changes
*P addition

541.646 2 270.823 1.343 0.264

Seed TN T changes 27.473 2 13.737 1.935 0.148

P addition 3.864 1 3.864 0.544 0.462

T changes
*P addition

48.644 2 24.322 3.426 0.035

Seed TP T changes 6.111 2 3.056 1.813 0.166

P addition 0.739 1 0.739 0.438 0.509

T changes
*P addition

3.759 2 1.879 1.115 0.330

Seed C/N ratio T changes 402.631 2 201.316 1.900 0.153

P addition 226.661 1 226.661 2.140 0.145

T changes
*P addition

892.274 2 446.137 4.211 0.016

Seed C/P ratio T changes 7959.555 2 3979.778 2.174 0.117

P addition 286.484 1 286.484 0.156 0.693

T changes
*P addition

5126.994 2 2563.497 1.400 0.250

Seed N/P ratio T changes 0.404 2 0.202 0.393 0.676

P addition 0.169 1 0.169 0.329 0.567

T changes
*P addition

0.784 2 0.392 0.762 0.468

Bold numbers indicate significant differences (p < 0.05). *Meant interaction.
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FIGURE 4 | The stoichiometric characteristics of the (A) TC, (B) TN, and (C) TP contents and the (D) C/N, (E) C/P, and (F) N/P ratios of P. crispus seeds under
different treatments. The C in “No phosphorus added” represent controls (C), T in “No phosphorus added” represent constant warming (T), and V in “No phosphorus
added” represent variable warming (V). Meanwhile, the C in “Phosphorus Added” represent phosphorus addition (C + P), T + P in “Phosphorus Added” represent
constant warming and phosphorus addition (T + P), and V + P in “Phosphorus Added” represent variable warming and phosphorus addition (V + P).

conditions of the environment (Zhang et al., 2020). P. crispus
grows faster in nutrient-rich sediments than in nutrient-poor
sediments (Zhang et al., 2019). However, warming and nutrient
addition may lead to increases in algae, turbidity, and total
suspended matter, which may also inhibit the growth of P. crispus
(Yan et al., 2021). Global warming and eutrophication can
affect the structure and function of aquatic ecosystems by
inhibiting the growth of submerged plants, which may lead to
the freshwater ecosystem stability becoming more vulnerable in
winter and spring. In this experiment, the content of C and P
in the leaves decreased significantly with increasing temperature,
which indicates that higher temperatures inhibit the growth
of P. crispus leaves, which is in line with our hypothesis.
Plants grown at higher temperatures have a lower respiration
rate, which affects their metabolism and leaf growth (Dusenge
et al., 2019). During the vigorous growing season, there is a
high demand for P to produce sufficient rRNA and synthesize
proteins. Therefore, during this period, the P content in the
plant increases, which leads to a decrease in the N/P ratio
(Gorokhova and Kyle, 2002). The C/P ratio of plant leaves
is an important indicator of the physiological metabolism of
plants, which can reflect the efficiency of plant P utilization;
consequently, fast-growing organisms usually have a lower C/P
ratio (Elser et al., 2000; Sterner and Elser, 2017). Our study
showed that adding P increased the leaf utilization rate of P,
which was reflected in the decrease in the C/P and N/P ratios

of the leaves. The temperature-plant physiological hypothesis
(Reich and Oleksyn, 2004) suggests that when temperatures
rise, plants invest less nutrients into producing the proteins to
maintain biochemical reactions (Oleksyn et al., 1998; Tjoelker
et al., 1999; Xia et al., 2014), and thus, the C/P and N/P
ratios increase significantly. Our results were consistent with
this hypothesis. After heating, the C/N ratio of P. crispus leaves
increased, reflecting the lower N-based biomass per unit C
of the plant, which suggests that climate warming improved
its nutrient use efficiency. Studies have shown that P. crispus
is affected by an increase in temperature during the growing
season and that the C/N ratio increases. Other angiosperms
and phytoplankton communities have also shown a similar
temperature-driven increase (Reich and Oleksyn, 2004; Domis
et al., 2014; Zhang et al., 2016). However, in this experiment,
the leaves were not sensitive to N reactions; therefore, the C/N
ratio increased but not significantly. In nature, warming does
not have an inhibitory effect on all organisms, and the overall
trend indicates that warming is beneficial to smaller biota, such
as phytoplankton. It does this by increasing the mineralization of
organic carbon and offsetting the direct impact of the increase
in the carbon storage capacity of the ecosystem caused by the
increase in atmospheric carbon dioxide (Daufresne et al., 2009;
Finkel et al., 2010). This may explain why some studies have not
detected an effect of rising ambient temperature on the C/N ratio
of certain plants.
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Submerged plants tend to elongate their stems to reduce the
stress associated with low-light conditions (Chen et al., 2016). In
this experiment, when nutrient enriched, the C and P contents
in the stem of P. crispus increased during the elongation stage.
Stems play an indispensable role in connecting the aboveground
and underground parts of plants. Therefore, P. crispus stems
may need to meet its internal nutrient transport requirements
to resist the stress associated with light reductions (Marschner,
2011; Grasset et al., 2015). This study proves that the addition of
P increases the efficiency of the stem. Taken together, the stems
also follow the temperature-plant physiology hypothesis (Reich
and Oleksyn, 2004), and the N/P ratio increases significantly
when the temperature increases. Studies have shown that under
moderate nutrient concentrations (TN: 3 mg/L, TP: 0.2 mg/L),
warming reduces the stem N/P ratio of P. crispus (Yan et al.,
2021). However, in this study, the interaction did not have a
significant effect on the N/P ratio, which may be caused by
different nutrient concentrations. In this experiment, warming
led to a reduction in the C and P contents in leaves, but had no
significant effect on the C and P contents in stems. Furthermore,
warming had less effect on the N content of the leaves and stems.
This result indicated that warming was not conducive to the
effective utilization of C and P in P. crispus leaves, which results
in a decrease in the leaves’ ability to accumulate C and P. The
leaves of submerged plants may become more heated than the
stems because of their larger surface area. In addition, we found
that nutrient addition had a greater effect than warming on the
stoichiometric characteristics of stems.

CONCLUSION

We conclude that different plant organs exhibit different
responses to P addition and warming, which demonstrates the
importance of assessing the responses of different submerged
plant organs to environmental changes. Furthermore, interactive
effects between P addition and warming were observed in the
leaf, turion, and seed C:N:P stoichiometry, which highlights the
importance of multifactorial studies on this topic. Our data
indicated that warming resulted in a decrease in the C content in
most organs except the stems; P addition increased the P content
in most organs except the seeds and turions; and the N content in
the seeds were affected by an interactive effect of both conditions.
We also found that P addition had a greater effect than warming
on the stoichiometric characteristics of the stem. Overall, the

addition of P can help P. crispus to resist the adverse effects of
high temperatures by aiding growth and asexual reproduction,
and asexual propagules are more sensitive to P enrichment than
sexual propagules.
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