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Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts that improve the
nutrition and health of their host. Most, but not all the crops form a symbiosis with AMF.
It is the case for canola (Brassica napus), an important crop in the Canadian Prairies that
is known to not form this association. From 2008 to 2018, an experiment was replicated
at three locations of the Canadian Prairies and it was used to assess the impact
of canola on the community of AMF naturally occurring in three cropping systems,
canola monoculture, or canola in two different rotation systems (2-years, canola-wheat
and 3-years, barley-pea-canola). We sampled canola rhizosphere and bulk soils to:
(i) determine diversity and community structure of AMF, we expected that canola will
negatively impact AMF communities in function of its frequency in crop rotations and (ii)
wanted to assess how these AMF communities interact with other fungi and bacteria.
We detected 49 AMF amplicon sequence variants (ASVs) in canola rhizosphere and
bulk soils, confirming the persistence of a diversified AMF community in canola-planted
soil, even after 10 years of canola monoculture, which was unexpected considering that
canola is among non-mycorrhizal plants. Network analysis revealed a broad range of
potential interactions between canola-associated AMF and some fungal and bacterial
taxa. We report for the first time that two AMF, Funneliformis mosseae and Rhizophagus
iranicus, shared their bacterial cohort almost entirely in bulk soil. Our results suggest
the existence of non-species-specific AMF-bacteria or AMF-fungi relationships that
could benefit AMF in absence of host plants. The persistence of an AMF community
in canola rhizosphere and bulk soils brings a new light on AMF ecology and leads to
new perspectives for further studies about AMF and soil microbes interactions and AMF
subsistence without mycotrophic host plants.
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INTRODUCTION

Arbuscular mycorrhizal fungi (AMF) are obligate plant
symbionts. 400 million years ago, plants were already in
association with AMF (Selosse et al., 2015). The arbuscular
mycorrhizal symbiosis has evolved with land plants and, as a
result, AMF associate with the roots of 90% of the plant species,
including most important crops, such as cereals, legumes,
and members of Solanaceae (Zhu et al., 2010). The arbuscular
mycorrhizal symbiosis brings several benefits for the plant.
The AMF facilitate plant nutrition in providing soil nutrients,
notably P and N (Smith and Read, 2008) and can mitigate abiotic
stresses, such as drought (da Silva Folli-Pereira et al., 2013;
Begum et al., 2019), and protect plant roots against soil-borne
pathogen attacks (St-Arnaud and Vujanovic, 2007; Lewandowski
et al., 2013; Del Fabbro and Prati, 2014). The association of crop
plants with AMF often increases crop yield (Hijri, 2016; Séry
et al., 2016; Buczkowska and Sałata, 2020).

In bulk and rhizosphere soils, AMF play an important role in
nutrient cycling and in structuring the microbial communities
(Smith and Smith, 2011; Iffis et al., 2016; Dagher et al., 2020).
AMF interact with the other members of the plant and soil
microbiome in various ways. With their hyphae, AMF can be
viewed as the bacterial highway of the soil: the labile interface
between the hyphae and the soil facilitates bacterial migration
(Abeysinghe et al., 2020; de Novais et al., 2020). AMF can also
interact with phosphorus solubilizing bacteria (Taktek et al.,
2017) or can form a tripartite interaction with other fungi to
facilitate symbiosis in plant (Liu et al., 2020). But, there is still
little knowledge about the interaction of AMF and other microbes
in soil and plant rhizosphere.

Certain vascular plants do not host AMF in their roots and
it is the case of canola (Brassica napus), an important crop
in the Canadian Prairies. Canola produces glucosinolates that
transform into isocyanates in soil (Smith et al., 2004; Ma et al.,
2015). Among others, glucosinolates and isocyanates are toxic,
which may explain the non-host plant status of canola. But,
from an analysis of canola-associated soil fungi based on fungal
internal transcribed spacer (ITS), Floc’h et al. (2021) reported the
presence of AMF from the Glomeraceae family in the rhizosphere
and bulk soil samples from fields that were in canola monoculture
for 10 years. The AMF depend on a host for their carbon
needs (Rich et al., 2017) and the persistence of AMF for such
a long period of time in absence of mycotrophic host plants
is unexpected. However, axenic AMF growth is known to be
stimulated in vitro by coculture with plant growth-promoting
bacteria (Abdellatif et al., 2019). Thus, the report of Floc’h et al.
(2021) motivated the verification of this hypothesis: We expect
that canola negatively impacts the AMF community in function
of its frequency in crop rotations. Furthermore, by using network
analysis, we will explore the potential interactions that AMF
develop with other microbes, such as fungi and bacteria, in the
canola rhizosphere and bulk soil.

In this study, we used a long-term assay held by Agriculture
and Agri-Food Canada in three locations of the Canadian Prairies
to identify the AMF living in canola rhizosphere and bulk soil and
the samples we used are those of Floc’h et al. (2021) from which
we extracted and amplified the 18S region of AMF ribosomal

DNA (rDNA) to only target AMF. We used network analysis to
explore the possible interactions of these AMF with the fungi and
bacteria also residing in the canola rhizosphere and bulk soil.

MATERIALS AND METHODS

A subset of plots from a long-term experiment initiated in
2008 and replicated at three locations in the Canadian Prairies
was sampled in 2018. The experiment tested the effects of
diversification in canola-based crop rotation systems. The
cultivar of canola used in this study is the canola glufosinate-
resistant L241C. Glufosinate amendment was 900 g ha−1. The
three crop diversification treatments used in this study were: (1)
monoculture of canola, (2) wheat-canola, and (3) pea-barley-
canola (Table 1). These treatments were applied in a randomized
complete block design with four blocks. Plot dimension was
3.7 × 15.2 m. All the rotation phases were present each year at
each of the three locations where the experiment was replicated,
but only the canola phases of the rotation were used in this study.

The three experiment sites were located in three pedoclimatic
zones of the canola-producing regions of Canada. Two sites
were in Alberta in the sub-humid brown soil zone: one site in
Lacombe (latitude 52.5◦N, longitude 113.7◦W) and the other
site in Lethbridge (latitude 49.7◦N, longitude 112.8◦W) and a
third site was in Swift Current Saskatchewan, in the semi-arid
brown soil zone (latitude 50.3◦N, longitude 107.7◦W). The fourth
site (Melfort), used in the study by Floc’h et al. (2021), was

TABLE 1 | Results of the Kruskal–Wallis tests of the effect of crop rotation
diversification on indices of arbuscular mycorrhizal fungi (AMF) alpha diversity in
canola rhizosphere and bulk soil (α = 0.05).

Rhizosphere

Index Crop rotationa Mean Sd χ2 Dfb p-value

Shannon LL 0 0 4.8875 2 0.0868

W-LL 0.0583 0.0391

P-B-LL 0.174 0.1172

Simpson LL 0 0 4.8186 2 0.0898

W-LL 0.0407 0.0273

P-B-LL 0.1148 0.0749

Richness LL 0.1667 0 4.068 2 0.1308

W-LL 0.5083 0.0615

P-B-LL 0.7917 0.2046

Bulk soil

Shannon LL 0.069 0.0503 1.9619 2 0.3749

W-LL 0.1215 0.0903

P-B-LL 0.2271 0.1178

Simpson LL 0.0481 0.0351 1.9619 2 0.3749

W-LL 0.0815 0.0549

P-B-LL 0.1519 0.0787

Richness LL 0.275 0.0791 3.838 2 0.1468

W-LL 0.6167 0.152

P-B-LL 0.9583 0.1947

aLL (for Liberty Link, cultivar L241C), Canola monoculture; W-LL, Wheat-Canola
rotation; PB-LL, Pea-Barley-Canola rotation.
bDf, Degree of freedom.
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discarded. Crops were grown according to best management
practices, as described in a study by Harker et al. (2015). The
growing season at all the sites was characterized by more frequent
rain events in July; just before sampling, Lethbridge was drier
(Supplementary Figure 1).

Rhizosphere and bulk soil samples were collected at the mid-
bloom stage (50% of flowers opened) of canola development.
This occurred in the fourth week of July 2018. Three to four
plants within each plot were randomly selected and uprooted
with a shovel. The shoots were removed and roots were placed
in plastic bags and brought to the laboratory on ice in a cooler.
The soil tightly attached to roots was considered as rhizosphere
soil. About 5 g of rhizosphere soil per plot was collected by
gently brushing the roots. The brushed roots were then gently
washed with sterile distilled water. Bulk soil was taken from
the top 0–7 cm soil layer by using a 2-cm diameter soil probe,
exactly in between two plant rows. The top 0–7 cm of the
soil is the “plow layer” in the Canadian Prairie agriculture, in
contrast to many soils in humid and subhumid climates, where
the plow layer is the top 0–15 or 0–20 cm. The samples were
kept at 4◦C before being shipped on dry ice to the laboratory
in Quebec City, Quebec, where they were preserved at −80◦C
until DNA extraction.

More details on site description, experimental design, and
sampling methods are provided in a study by Floc’h et al. (2020a).

Deoxyribonucleic Acid Extraction and
Amplification
As DNA does not persist well in soil (Romanowski et al., 1993;
Widmer et al., 1997; Nielsen et al., 2000), using 18S rDNA to
target the AMF community in the rhizosphere and bulk soil of
canola was the most adequate approach.

The bulk and rhizosphere samples DNA were extracted by
using the PowerSoilTM DNA Isolation Kit (Qiagen, Montreal,
Quebec, Canada) for the characterization of resident AMF. The
manufacturer’s instructions for both kits were followed, except
that soil and rhizosphere DNA were eluted in 50 µl. The
DNA extraction of each sample was performed in duplicate
and the duplicates were pooled. The quantity and quality
of the DNA extracts were first verified on 1.5% agarose
gel stained with Biotium GelRed R© diluted at ratio 1:10,000
(VWR, Montreal, Quebec, Canada), run at 70 V for 60 min,
and visualized by using the Gel Documentation System (Bio-
Rad Laboratories, Mississauga, Ontario, Canada). The quantity
and quality of the DNA extracts were also verified by
using the Qubit Fluorometer version 2.0 (Life Technologies,
Burlington, Ontario, Canada) and the Qubit double-stranded
DNA (dsDNA) HS Assay Kit. DNA extracts were stored at –
20◦C until use.

A partial sequence of approximately 800 bp of the nuclear
18S small subunit (SSU) ribosomal RNA gene of AMF was first
amplified by using the primer pair AML1/AML2 (Lee et al.,
2008). The amplification was performed in 20 µl of reaction
mixture in triplicate as follows: 1 µl of genomic DNA (gDNA),
200 µM of each deoxynucleoside triphosphate (dNTP), 2 mM of
Mg2+, 0.8 µM of each primer, and 2.5 U of Q5 High-Fidelity

DNA Polymerase NEBNext R© Q5 Hot Start HiFi PCR Master
Mix (BioLabs, Whitby, Ontario, Canada). The thermocycling
conditions were as follows: initial denaturation at 98◦C for
30 s, 20 cycles at 98◦C for 10 s, 64◦C for 30 s, 65◦C for
60 s, and final extension performed at 65◦C for 5 min. The
DNA was amplified in the Biometra TProfessional Thermocycler
(Biometra GmbH, Goettingen, Germany, United Kingdom). The
three amplicon replicates were pooled and purified by using
the QIAquick PCR Purification Kit (Qiagen, Montreal, Quebec,
Canada) and eluted in 50 µl of elution buffer. This step is
important to prevent interactions between the remaining primers
during nested PCR. PCR products were visualized in a GelRed-
stained 1.5% agarose gel.

To comply with the sequencing length capacity of the Illumina
MiSeq R© Reagent Kit version 3 (2 bp× 300 bp), a new primer pair
from Dr. F Stefani laboratory (Ottawa Research and Development
Centre, 960 Carling Avenue, Ottawa, ON K1A 06C, Canada)
yielding a 490-bp length amplicon (including primers) was used
to target the V3-V4 region of the nuclear 18S ribosomal RNA
(rRNA) gene: nu-SSU-0450-5′ (5′-CGCAAATTACCCAATCCC-
3′) and nu-SSU-0899-3′ (5′-ATAAATCCAAGAATTTCACCTC-
3′). Primers were named according to the primer nomenclature
system of Gargas and DePriest (1996). The number in the
primer name refers to the 5′ end position of the primer
on the 18S sequence standard of Saccharomyces cerevisiae
(GenBank accession Z75578). Primers were designed based on
the guidelines provided by the Integrated DNA Technologies
(IDT Incorporation, San Diego, California, United States).
Purified PCR products amplified with AML1/AML2 were used
as templates for nested PCR. A 1–3 bp “heterogeneity spacer”
was introduced between the 3′ end of the adapter and the
5′ end of the primer pair nu-SSU-0450-5′/nu-SSU-0899-3′ to
dampen the effect of the low sequence diversity issue of the
MiSeq platform. The amplification reaction mixture was the
same as for the first PCR, except for the primer concentration
which was 0.5 µM. The thermocycling conditions were as for
the first PCR except for the number of cycles which was reduced
to 15 and the annealing temperature which was 59◦C. The
nested PCR was performed in triplicate. Products were verified
by electrophoresis on a GelRed-stained 1.5% agarose gel and
replicates were pooled.

Library preparation followed the protocol described in a study
by Stefani et al. (2020). Briefly, the PCR products from the
nested PCR were purified by using the Agencourt AMPure R© XP
Beads (Beckman Coulter Incorporation, Indianapolis, Indiana,
United States), normalized to 1–2 ng/µl with the SequalPrepTM

Normalization Plate Kit (Thermo Fisher Scientific), and indexed
by using the Nextera Index Kit (Illumina, San Diego, California,
United States). Indexed amplicons were then purified and
normalized. Purified indexed amplicons were quantified by
quantitative PCR (qPCR) by using the LightCycler R© 480
System (Roche Molecular Systems Incorporation, Branchburg,
New Jersey, United States) with the KAPA Library Quantification
Kit for Illumina platforms (KAPA Biosystems, Massachusetts,
United States) to determine the volume of each sample
to makeup a 1-nM amplicon pool for library preparation.
Paired-end sequencing (2 × 300 bp) was carried out by
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FIGURE 1 | Taxonomic profile of the canola arbuscular mycorrhizal fungi (AMF) community at genus level in function of the crop rotations and biotope. Three
degrees of crop rotation systems were used: canola monoculture, wheat-canola rotation, and pea-barley-canola rotation.

using the Illumina MiSeq R© Sequencer for 500 cycles at the
Centre d’expertise et de service Génome Québec (Montreal,
Quebec, Canada).

Amplicon Sequence Variant
Determination and Bioinformatic Pipeline
Bioinformatics used quantitative insights inoto microbial
eology 2 (QIIME2) version 2021.4 (Bolyen et al., 2019). The
bioinformatic pipeline used for the processing of nu-SSU-0450-5′
and nu-SSU-0899-3′ 18S small subunit rRNA gene sequences
was DADA2 version 1.18.0 (Callahan et al., 2016). First, we
used Cutadapt version 3.4 to remove the primer part of the
nu-SSU-0450-5′ and nu-SSU-0899-3′ RNA gene sequences with
“minimum-length” at 50 and “p-error-rate” at 0.1, “—p-times”
at 2 and “—p-overlap” at 6. Then, we excluded the sequences
with less than 193 bp on the forward sequences and 195 bp
on the reverse sequences with the command “—p-trunc-len”
with “—p-mas-ee” set to 2, as the base quality of the sequences
tended to diminish below that threshold in our data. Next, the
Amplicon Sequence Variant (ASV) table was calculated and
chimeras were eliminated. A total of 1,905 ASVs were identified
by using the naïve Bayesian classifier method on the National
Center for Biotechnology Information (NCBI)/nt database.
Only the 62 ASVs belonging to the Mucoromycota and to
the Glomeromycota or to an unknown order were kept into a
phylogenetic analysis conducted to identify with certainty the
ASVs that belong to the group AMF.

The phylogenetic tree was constructed from the alignment
of the 62 retained ASVs, 144 sequences from Krüger et al.
(2012), and 8 sequences from NCBI/nt database with multiple

alignment using fast fourrier transform (MAFFT) (default
settings) with the software UGENE version 39.0 (Okonechnikov
et al., 2012). A maximum-likelihood tree was calculated in
RAxML version 8.2.10 (Stamatakis, 2014) via cyberinfrastructure
for phylogenetic research (CIPRES) (Miller et al., 2011) with
bootstrap resampling set to 1,000 and the GTRGAMMA
sequence evolutionary model chosen. The ASVs that were not
identified as AMF in the tree were removed to produce a tree
with 49 AMF ASVs.

The MiSeq sequencing data generated as part of this study are
publicly available on Zenodo.1

Data Processing and Statistical Analyses
We were not able to perform PERMANOVA to assess the effect
of crop diversification on AMF community structure due to
data structure and neither we were able to do ANOVA to test
for the effect of crop diversification on AMF alpha diversity:
AMF were sometimes not found in samples leading to an empty
row in our matrices. We, thus, used discriminant analysis with
the software JMP version 16 (Gonzales, 2021) for community
structure and replacement from indicator species analysis and the
Kruskal–Wallis test for alpha diversity.

As we wanted to know with what microbes AMF could
potentially interact with, we used the exact same samples
from a study by Floc’h et al. (2021), in which we reused the
ITS and 16S ASV tables of this study in our analysis. The
protocols of DNA extraction and amplification, sequencing, and
bioinformatic processing of ITS and 16S sequences are described
in a study by Floc’h et al. (2021).

1https://zenodo.org/record/5639078
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FIGURE 2 | Canonical analysis of AMF community from the canola rhizosphere. Circles in red, blue, and green represent the different crop rotations, while vectors
show different AMF amplicon sequence variant (ASV), which are likely to be preferentially associated with each of the crop rotations. The more separated the circles
are, the more the community structure between the crop rotations is different. The more the arrow is directed to the center of a circle, the more the ASV was
associated with a certain crop rotation.

To assess the interactions between AMF and fungi and
between AMF and bacteria, we created a co-occurrence
interkingdom network by using the package SpiecEasi version
1.1.0 in R version 4.1.0 (Kurtz et al., 2015). The analysis
considered rhizosphere and bulk soil fungal, bacterial, and AMF
communities. The input data consisted of the raw abundance
matrices of the AMF, ITS, and 16S ASVs. We first filtered the ITS
and 16S datasets to remove ASVs with a frequency lower than
20% to avoid rare species. The SpiecEasi run was conducted with
the algorithm “mb” with the lambda min ratio set at 10−2 and
50 repetitions. We then imported the networks into Cytoscape
version 3.8.2 (Smoot et al., 2011) for plotting and used the
“organic” layout to draw the networks. Edges were defined as co-
occurrences or mutual exclusion based on the positive or negative
values of inverse covariance linking the nodes.

RESULTS

Raw Sequencing Datasets
The 7,513,787 reads obtained from sequencing were inputted in
the pipeline yielding 4,253,351 non-chimeric reads with a mean

of 50,635 reads per sample. Rarefaction curves reached saturation
for all the samples (Supplementary Figure 2). These reads were
assigned to 1,205 ASVs, which were classified into 49 AMF
ASV after phylogenetic filtering and clustering (Supplementary
Figure 3), totalizing 222,628 reads distributed heterogeneously
across our 72 samples.

Taxonomic Profiles and Crop Rotation
Effect on the Arbuscular Mycorrhizal
Fungi Communities of Canola
Rhizosphere and Bulk Soils
The taxonomic profiles of the AMF community differed in
canola rhizosphere and bulk soils and varied with crop rotations
(Figure 1). However, no significant effect of crop rotations on the
alpha diversity of AMF in canola rhizosphere or bulk soil could
be detected (Table 1).

In the rhizosphere of monocultured canola, AMF were
only represented by two genera: Claroideoglomus (99.1%) and
Archaeospora (0.9%). The 2-crop system (wheat-canola) showed
three genera: Claroideoglomus (17.7%), Diversispora (59.7%),
and Paraglomus (22.6%). Finally, the 3-crop system (pea,
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FIGURE 3 | Fungal cohorts of canola AMF in the rhizosphere. The nodes in blue are the AMF ASV and the nodes in green are the fungal ASV (FASV). Red edges
signify mutual exclusion, whereas green edges signify positive co-occurrence of species.

barley, and canola) showed six genera: Claroideoglomus (57.2%),
Funneliformis (0.8%), Diversispora (2.2%), Archaeospora (28.8%),
Glomus (3.1%), and one unknown AMF genus (7.7%).

In bulk soil, canola monoculture showed again only
two genera of Glomeromycota, Funneliformis (65.1%) and
Paraglomus (34.9%). The 2-crop system (wheat-canola) showed
two genera: Funneliformis (90.39%) and Rhizophagus (9.61%) and
the 3-crop system (pea, barley, and canola) showed four genera:
Claroideoglomus (19.54%), Funneliformis (11.42%), Diversispora
(48.64%), and Paraglomus (20.4%).

Crop rotations influenced canola AMF community
structure both in the rhizosphere and bulk soil as shown by
canonical analyses (Figure 2 and Supplementary Figure 4).
In the rhizosphere, two AMF ASV (ASV40 Claroideoglomus
spp. and ASV42 Archaeospora spp.) were associated with
canola monoculture, five ASVs (ASV86 and ASV1487
belong to Diversispora, ASV358 and ASV1667 belong to
Claroideoglomus, and ASV711 belongs to Paraglomus) were
associated with the two-crop rotation system and six ASVs
(two Claroideoglomus, two Glomus, one Paraglomus, and an
unidentified AMF) were associated with the three-crop rotation
system (Supplementary Figure 4).

In bulk soil under canola monoculture, we found ASV149
(Paraglomus occultum) and ASV18 [Funneliformis mosseae
(F. mosseae)], under the two-crop system, we found two
Funneliformis: ASV1254 and ASV10, one Rhizophagus ASV1809,
and one Glomus ASV1396, and under the three-crop system,
we found three different Diversispora: ASV1774, ASV47, and

ASV22, two Claroideoglomus: ASV79 and ASV203, and, finally,
two Paraglomus: ASV61 and ASV1462.

Network Analysis and the Microbial
Cohorts of Canola-Associated
Arbuscular Mycorrhizal Fungi
Network analysis revealed that 24 AMF ASVs are putatively
interacting in the rhizosphere and 26 AMF ASVs are putatively
interacting in the bulk soil (Figures 3–7). Potential interactions
between AMF were always co-occurrences, while no mutual
exclusions were found.

Microbial networks were broadly different in terms of
connectivity. Fungi-AMF networks showed relatively few
potential interactions: 41 nodes and 33 edges in the rhizosphere
(Figure 3) and 50 nodes and 48 edges in the bulk soil (Figure 4),
whereas potential interactions in the bacteria-AMF network were
more abundant with 130 nodes and 142 edges in the rhizosphere
(Figure 5) and 175 nodes and 227 edges in the bulk soil
(Figure 6). The occurrence of AMF ASVs rarely corresponded
with the occurrence of fungal ASV (FASV). In contrast, all the
AMF ASV, except two (AMF ASV1722 and AMF ASV1724, both
identified as Glomus indicum), have potential relationships with
at least one bacterial ASV (BASV), in each of the interkingdom
networks (Figures 5, 6).

In the rhizosphere, AMF cohorts rarely shared common
genera with the same type of relationship, but in the bulk
soil (Supplementary Table 1), the cohorts were dominated by
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FIGURE 4 | Fungal cohorts of canola AMF in bulk soil. The nodes in blue are the AMF ASV and the nodes in green are the FASV. Red edges signify mutual exclusion,
whereas green edges signify positive co-occurrence of species.

Vicinamibacteraceae, as this clade was present 21 times across
all the AMF cohorts (Supplementary Table 2). In the bulk
soil, AMF ASVs rarely shared an important fraction of their
bacterial or fungal cohort (Supplementary Tables 1, 2), but
AMF ASV58 (F. mosseae) and AMF ASV59 [Rhizophagus iranicus
(R. iranicus)] almost entirely shared their microbial cohort
(Figure 7). All the BASV shared between the two AMF ASVs were
shared with the same type of relationship.

DISCUSSION

How an Arbuscular Mycorrhizal Fungi
Community Persists After 10 Years of
Canola Monoculture?
Arbuscular mycorrhizal fungi depend entirely on a host plant,
as they cannot produce palmitic acid by themselves (Trépanier
et al., 2005). It is believed that they cannot complete their life
cycle, reproduce, and maintain their community in soil without a

living host plant. As the experiment was conducted with a canola
cultivar possessing the gene of resistance to the herbicide Liberty R©

and was grown with the Liberty R© herbicide technology, weeds
could have hardly supported AMF in this study. Weeds were for
all-purpose absent, especially in canola plots. Harker et al. (2015)
reported weeds 4 years from the onset of this experiment and
their weed count, which was done before preseeding burnout,
reflects the size of the seed bank at that time. The glufosinate is a
powerful non-selective herbicide that killed 90% of the common
weeds in North America at a rate of 70 g ha−1 (Hoss et al., 2003).
In the present experiment, glufosinate was applied at a rate of
900 g ha−1; thus, after 10 years, an impact of weeds on the AMF
community is very unlikely. Canola, as other Brassicaceae plants,
is well documented to be non-mycorrhizal plants (Tommerup,
1984; Anthony et al., 2020) and it was assumed that its successive
monoculture leads to a poor presence or absence of AMF in
its soil. This study clearly demonstrated the persistence of AMF
communities in the soil in which canola was cultivated as a sole
crop for a long period of 10 years, even if the community is very
poor (Supplementary Table 3). More importantly, we retrieved
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FIGURE 5 | Bacterial cohort of canola AMF in the rhizosphere. The nodes in blue are the AMF ASV and the nodes in orange are the bacterial ASV (BASV). Red
edges signify mutual exclusion, whereas green edges signify positive co-occurrence of species.

sequences of several AMF taxa from a narrow zone of influence
(rhizosphere) of this presumably non-host crop plant. This could
be explained by the following hypotheses:

(i) Arbuscular mycorrhizal fungi may colonize epidermis and
external cell layers of canola roots without establishment of
functional mycorrhizal symbiosis. Such superficial colonization
of canola roots could be sufficient for AMF to undergo limited
growth and spore production contributing to their maintenance.
Mycorrhizal colonization of the superficial layer of the root cortex
of Arabidopsis thaliana (A. thaliana), another non-host plant
of the same family as canola, was previously reported (Veiga
et al., 2013; Cosme et al., 2018). AMF can be detrimental to
several non-AMF host plant genera, such as Stelaria and Pinus,
by infecting their root interior (Wagg et al., 2011; Veiga et al.,
2012); it is possible that AMF could infect canola in a similar
way. Fonseca et al. (2001) reported that when Brassica rapa was
inoculated with AMF, it reacts and increases the concentration
of δ15N and δ13C in the shoot, but the influence of AMF in
this case is to be relativized as the well-watered regime of the
experiment emphasized the dry weight of the plants. Da̧browska

et al. (2012) also reported that canola gene BnMT2 is involved
with mycorrhizal symbiosis and changed its expression patterns
when canola was inoculated with Glomus spores, leading to
longer shoots and lower fresh biomass on 10-week-old canola
seedlings that suggested a negative effect of the inoculation of
AMF spores on canola. As canola roots are not a beneficial
environment for AMF, their presence in the canola rhizosphere
and soil could be from another reason.

(ii) Bacteria are closely or loosely interacting with AMF
mycelia forming biofilms (Seneviratne et al., 2008; Lecomte
et al., 2011; Iffis et al., 2014; Guennoc et al., 2017). These
biofilms can help the AMF acquire phosphate through phosphate
rock solubilization (Taktek et al., 2017) or allow AMF to
resist harsh environmental conditions (Iffis et al., 2016). Root
endophyte bacteria could be actively recruited by AMF after their
penetration into the root interior and have beneficial effects on
the plant host (Ujvári et al., 2021). They can also increase AMF
root colonization (Bourles et al., 2020; Sangwan and Prasanna,
2021; Ujvári et al., 2021). According to Scheublin et al. (2010)
and Agnolucci et al. (2015), the most common culturable bacteria
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FIGURE 6 | Bacterial cohort of canola AMF in bulk soil. The nodes in blue are the AMF ASV and the nodes in orange are the BASV. Red edges signify mutual
exclusion, whereas green edges signify positive co-occurrence of species.

ever identified in the biofilms forming on AMF spores are
Pseudomonas, Streptomyces, Arthrobacter, and Oxalobacteraceae.
In a study by Taktek et al. (2015), the most frequent bacteria
encountered were Burkholderia; Lecomte et al. (2011) reported
the dominance of Variovorax, Bacillus, Kocuria, Microbacterium,
and Sphingomonas; Iffis et al. (2016) reported that Sphingomonas,
Pseudomonas, Massilia, and Methylobacterium as their most
abundant species associated to AMF vesicles in roots. These
taxonomic profiles are very different from what we could
identify in AMF cohorts by network analysis, as these genera
were not detected in this study. With our more inclusive
method, we found a high frequency of Vicinamibacterales in
the cohorts of AMF living in canola rhizosphere and bulk soil,
in the Canadian Prairie. Vicinamibacterales was associated with
tolerance to trace metal contamination of soil, in particular
Cu, but its ecological role still remains obscure (Chun et al.,
2021). The fact that almost all the AMF in canola rhizosphere
and bulk soil had a bacterial cohort in the network analysis

comfort the possibility that bacteria could bring advantage to
AMF in a hostile environment, facilitating interface with non-
host plant. Bacteria acting as host for AMF remains another
possibility (Hildebrandt et al., 2006; Horii and Ishii, 2014;
Abdellatif et al., 2019).

Arbuscular mycorrhizal fungi may get some palmitate from
canola through complex interactions with other microbes, such
as mycorrhiza helper bacteria or Trichoderma spp. and soil fungi
could also be one of the reasons. AMF were able to maintain their
presence in canola rhizosphere and bulk soil through the years.
However, the number of interactions of AMF with fungi recorded
here was much lower than the number of interactions with
bacteria (Figures 3–6). It is possible that soil fungus increases
yield and overall production of host plants when co-inoculated
with AMF and in presence of pathogenic fungi (Martínez-Medina
et al., 2009; Nzanza et al., 2012; Commatteo et al., 2019). It
can also allow AMF to colonize the rhizosphere of Brassicaceae,
such as A. thaliana or canola (B. napus) (Poveda et al., 2019;

Frontiers in Plant Science | www.frontiersin.org 9 February 2022 | Volume 13 | Article 828145

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-828145 February 21, 2022 Time: 14:0 # 10

Floc’h et al. Mycorrhizal Fungi of Canola Rhizosphere

FIGURE 7 | Bacterial cohort shared between AMF ASV58 (Funneliformis mosseae) and AMF ASV59 (Rhizophagus iranicus). The nodes in blue are the AMF ASV and
the nodes in orange are the BASV. Red edges signify mutual exclusion, whereas green edges signify positive co-occurrence of species.

Jatana et al., 2021). For example, Nectria and Leptosphaeria were
found in association with AMF spores (Hijri et al., 2002).
However, soil fungi ecology remains largely unknown and it is
difficult to assess their real ecological roles. The fungi associated
with AMF in network analysis could be AMF-helpers candidates,
such as FASV592 (unknown Nectriaceae), found in the microbial
cohort of AMF ASV82 (Claroideoglomus spp.) in the canola
rhizosphere. The fact that AMF ASV47 (Diversispora spp.) had
FASV377 Olpidium brassicae in its cohort is also of interest.
O. brassicae is the most common fungus found in canola roots
and its influence on canola is not yet fully understood (Lay
et al., 2018a,b; Floc’h et al., 2021). The fact that O. brassicae and
Diversispora spp. in canola bulk soil could share a relationship of
co-occurrence is to be noted and cooperation between AMF and
O. brassicae remains a possibility.

The presence of AMF in canola rhizosphere and bulk soil
could also be explained by a combination of these scenarios.
However, we do not rule out that dispersion of AMF propagules
by wind, rain, and animals may contribute to some extent
AMF to persist in canola monoculture overtime (Addy et al.,
1998; Smith and Read, 2008; Cornejo et al., 2009; Pepe et al.,
2018). Further investigations are needed to shed light on the
mechanisms by which AMF persist in soils in the absence of
non-host plants. Microbial complexity in soil and plant roots
is still poorly understood and microbial interactions in plant
microbiomes are just being investigated with mathematical tools
since two decades (Friedman et al., 2008; Kurtz et al., 2015). It
is also possible that the AMF community retrieved from canola
soil and rhizosphere was a remnant of the AMF community
of the previous crop from the rotations, other studies report
the presence of AMF taxa in the canola rhizosphere (Poveda

et al., 2019; Floc’h et al., 2021). Since we found AMF in 10-year-
old canola monoculture, AMF coexistence with canola is very
likely to be reality.

Effects of Rotation Systems on
Arbuscular Mycorrhizal Fungi
Communities and Interactions With Their
Associated Microbes
Crop rotation is often used in agriculture to mitigate the
accumulation of pathogens that occurs in monoculture and that
is the case for canola (Hummel et al., 2009; Harker et al., 2015).
Crop rotation is known to be a tool that affects the subterranean
microbiota of plants (Suzuki et al., 2012; Xuan et al., 2012;
Souza et al., 2013; Detheridge et al., 2016; Fan et al., 2020).
However, crop rotation, depending on their diversification,
impacts the community structure of canola fungal microbiota,
but not its bacterial microbiota in this experiment (Floc’h et al.,
2020a,b). Crop rotation is also known to have an impact on
the AMF community in host plants (Higo et al., 2014, 2018;
Detheridge et al., 2016; Bakhshandeh et al., 2017; Hontoria
et al., 2019). In this study, we were not able to test for the
effect of crop rotation on AMF community structure due to
data scarcity. However, our canonical analysis show a clear
differentiation between the AMF community of monoculture,
2-crop, and 3-crop systems (Figure 2 and Supplementary
Figure 4). With this, we can hypothesize that AMF community
composition, as the composition of fungal community in canola
rhizosphere and bulk soil, is influenced by crop rotation
diversification.
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Arbuscular Mycorrhizal Fungi ASV58
(F. mosseae) and ASV59 (R. iranicus)
Share Their Microbial Cohort in Canola
Bulk Soil
Funneliformis mosseae is a widely spread AMF taxon in natural
and disturbed environments. It is able to colonize a large range of
hosts (Tanwar et al., 2013; Yang et al., 2017; Feitosa de Souza et al.,
2018; Jie et al., 2019). It was commonly found in highly polluted
environments (Hassan et al., 2011; Li et al., 2020). Rhizophagus
is also a genus of AMF known for its adaptability and for being
an R-strategist (Campagnac and Khasa, 2013; Sêdzielewska Toro
and Brachmann, 2016; Buysens et al., 2017; Zhang et al., 2018;
Cruz-Paredes et al., 2020; Lee et al., 2020). Members of the
Rhizophagus genus have been commercialized and utilized as
biofertilizers for more than three decades (Badri et al., 2016; Hijri,
2016; Basiru et al., 2021). Rhizophagus is also known for its ability
to interact with plant growth-promoting bacteria (Battini et al.,
2016; Loján et al., 2017). These two AMF ASV seem to share
the same ecological niche and interact with the same bacteria.
To the best of our knowledge, it is the first time that an overlap
of 90% of bacterial cohort between two AMF species is reported.
We know very little about the potential ecology and functions of
the members shared in F. mosseae (AMF ASV58) and R. iranicus
(AMF ASV59) cohorts. Among 11 taxa shared between AMF
ASV58 and AMF ASV59, seven taxa were identified at genus level
and among those, only four genera were the subject of more than
two scientific publications: Sphingomonas, Altererythrobacter,
Luteolibacter, and Gemmatimonas (Supplementary Table 2).
Sphingomonas (BASV234) is the only one with a relation of
mutual exclusion with the two AMF ASVs. Sphingomonas was
isolated from spores of Rhizophagus irregularis and showed
biofilm-like formation on hyphae (Lecomte et al., 2011). It was
also found in leek rhizosphere (Nunes da Rocha et al., 2011)
and diverse environments including biological soil crusts and
freshwater (Ko et al., 2017; Lee et al., 2017; Zhang et al., 2017).
The other three taxa were also found in diverse environments
(Jiang et al., 2012; Yuan et al., 2017; Kang et al., 2019; Meng
et al., 2019; Dahal et al., 2021) and Gemmatimonas was reported
as a potential denitrifying bacterium (Chee-Sanford et al., 2019).
Potential interactions between F. mosseae and R. iranicus and the
bacterial taxa represented in their cohorts should deserve further
research attention.

CONCLUSION

A community of AMF can be found in the rhizosphere and
bulk soils of canola (B. napus), a non-host plant, even after
10 years of canola monoculture. This finding puts a new light
on the ecology of AMF in the rhizosphere and bulk soil in
absence of a mycotrophic host plant. AMF form a broad range

of potential interactions with diverse bacterial and fungal species
that may be important for AMF, especially in absence of host
plants. How AMF interact with other microbes is unclear, but
their associations in network analysis indicate the possibility of a
direct or indirect interaction with other fungi and bacteria, which
need to be clarified.
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