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The FtsH family of proteases are membrane-anchored, ATP-dependent, zinc
metalloproteases. They are universally present in prokaryotes and the mitochondria
and chloroplasts of eukaryotic cells. Most bacteria bear a single ftsH gene that
produces hexameric homocomplexes with diverse house-keeping roles. However, in
mitochondria, chloroplasts and cyanobacteria, multiple FtsH homologs form homo-
and heterocomplexes with specialized functions in maintaining photosynthesis and
respiration. The diversification of FtsH homologs combined with selective pairing of
FtsH isomers is a versatile strategy to enable functional adaptation. In this article we
summarize recent progress in understanding the evolution, structure and function of
FtsH proteases with a focus on the role of FtsH in photosynthesis and respiration.

Keywords: FtsH protease, mitochondria, protein engineering, functional adaptation, evolution, chloroplasts,
photosystem II repair

THE BASICS OF FtsH PROTEASES

Discovery of FtsH
FtsH proteases belong to the ATPase Associated with diverse cellular Activities (AAA+) super
family. FtsH was first identified by Santos and De Almeida following the isolation of a mutant
of Escherichia coli that displayed elongated cells and was sensitive to heat-shock, and hence named
filamentous temperature sensitive H (ftsH) (Santos and De Almeida, 1975). However, later studies
demonstrated that the ftsH mutation was only responsible for heat-induced growth arrest and
not the filamentation defect (Ogura et al., 1991). FtsH orthologs were later identified in almost
all cellular organisms except for some archaebacteria (Summer et al., 2006; Wagner et al., 2012;
Giménez et al., 2015). For a period of time, E. coli FtsH was also designated as HfIB until it was
confirmed to be encoded by the same gene (Herman et al., 1993). FtsH proteases have been found
to target a broad-range of proteins, both membrane-bound and soluble, and to participate in the
regulation of diverse pathways (Ogura et al., 1999; Ito and Akiyama, 2005; Janska et al., 2013; Kato
and Sakamoto, 2018).

The Layout of Domains in the FtsH Primary Structure
FtsH proteases are present in prokaryotes, and mitochondria and chloroplasts of eukaryotic cells
(Adam et al., 2005; Tatsuta and Langer, 2009). The typical bioinformatic features of FtsH (Figure 1)
include an N-terminal transmembrane domain consisting of one or two transmembrane helices,
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followed by a highly conserved AAA+ ATPase domain
containing Walker A and B structural elements, a second region
of homology motif that is responsible for the binding and
hydrolysis of ATP (Ito and Akiyama, 2005; Suno et al., 2006), and
a downstream M41 peptidase domain featuring a zinc-binding
proteolytic site capable of digesting unfolded proteins into ∼12
amino-acid long oligopeptides (Suno et al., 2006). The ATPase
domain is highly conserved across species, while the C-terminal
tail of the protease domain and the regions connecting the
transmembrane domains are less conserved (Langer, 2000; Suno
et al., 2006; Graef et al., 2007).

Formation of FtsH Complexes
Both in vivo and in vitro studies suggest that the proteolytic
activity of FtsH requires the formation of oligomeric complexes
(Akiyama et al., 1995; Krzywda et al., 2002; Suno et al.,
2006; Lee et al., 2011; Boehm et al., 2012). Structural data
reveal that an FtsH complex consists of six protomers, with
the soluble ATPase and protease domains interacting with the
neighboring protomers to form a hexagonal particle (Figure 2;
Suno et al., 2006; Lee et al., 2011; Boehm et al., 2012). In
organisms containing multiple FtsH homologs, the pairing
of protomers is strictly regulated, resulting in the formation
of distinctive FtsH homo- and heterocomplexes conferring
specialized functions (Lee et al., 2011; Boehm et al., 2012; Gerdes
et al., 2012; Wagner et al., 2012; Scharfenberg et al., 2015;
Kato and Sakamoto, 2018). In most cases, FtsH homologs form
either homohexamers or heterohexamers. Exceptions include
Afg312, a human mitochondrial FtsH, that can form both
homocomplexes and heterocomplexes with paraplegin (Casari
et al., 1998; Karlberg et al., 2009; Gerdes et al., 2012; Patron et al.,
2018) and FtsH3 and FtsH10 in Arabidopsis mitochondria which
form both homo- and heterocomplexes (Piechota et al., 2010).
A variety of experimental data suggest that FtsH heterocomplexes
in diverse organisms contain two types of FtsH protomer in a
1:1 stoichiometry (Lee et al., 2011; Boehm et al., 2012; Langklotz
et al., 2012; Kato and Sakamoto, 2018; Steele and Glynn, 2019).
However, possible exceptions are some type A/type B FtsH
heterocomplexes isolated from Arabidopsis which have been
suggested to contain the two forms in a 1:2 ratio (Moldavski
et al., 2012) although a recent study supports a 1:1 ratio
(Kato et al., 2018).

Studies on FtsH heterocomplexes show that the pairing
of FtsH isomers is highly specific, hence the formation of
hexamers requires a selective matching mechanism. Early
research suggested that the transmembrane domain helps homo-
oligomerization of E. coli FtsH (Makino et al., 1999). However,
later studies on FtsH from Thermophilus maritima and Thermus
thermophilus demonstrated that heterologous expression of the
ATPase domain, protease domain, or the complete cytosolic
domain, can still form hexamers (Langklotz et al., 2012).
Therefore, the tendency to form hexameric oligomers is
determined by the soluble domains. Mutations in the protease
domain have been shown to convert yeast Yta10/Yta12 FtsH
heterocomplexes into Yta12 homocomplexes (Lee et al., 2011).
This work implies that the structure of the protease domain plays
a key role in selecting the appropriate FtsH protomer. However,

the residues responsible for determining specificity are not totally
conserved in FtsH sequences, and the resolution of the yeast FtsH
structure is still too low to identify specific interactions for these
residues in the complex. Therefore, the underlying mechanism
requires further investigation.

The Molecular Mechanism of FtsH
Complexes
It is widely accepted that FtsH complexes conduct ATP-
dependent proteolysis by unfolding and translocating the target
substrate through the central pore of the ATPase complex to
the protease domain for degradation (Yamada-Inagawa et al.,
2003; Okuno et al., 2006; Suno et al., 2006; Carvalho et al.,
2021). However, the detailed molecular mechanism for substrate
recognition and proteolysis is still under investigation. Current
models suggest a ∼20 amino acid flexible linker between the
transmembrane and ATPase domains creates space for substrates
to gain access to the protease (Lee et al., 2011; Puchades et al.,
2017; Carvalho et al., 2021). A phenylalanine residue positioned
on the top surface near the central pore of ATPase domain (in
the FVG motif) is responsible for substrate binding (Bieniossek
et al., 2006; Narberhaus et al., 2009). ATP hydrolysis induces
conformational changes in the ATPase domain so that the
phenylalanine slides into the central pore with the substrate
(Suno et al., 2006). For each ATP-driven movement, the substrate
can be translocated ∼35 Å in distance with the unfolded
peptide chain translocated via internal channels to the protease
catalytic site for degradation. From an energy perspective, 8 ATP
molecules are consumed for each peptide cleavage reaction based
on experimental data (Murata and Nishiyama, 2018). Theoretical
considerations suggest 6 ATP molecules per cleavage event is the
minimum requirement (Suno et al., 2006).

Multiple atomic-resolution structures of FtsH, mostly of the
soluble domains of homocomplexes from bacteria, are available
in the protein databank (Bieniossek et al., 2006; Suno et al.,
2006; Puchades et al., 2017; Carvalho et al., 2021). The structures
reveal that the protease domains form a rigid hexameric “disk”
underneath the ATPase domains; whereas the ATPase “disk”
is flexible (Bieniossek et al., 2006; Suno et al., 2006). The
structural symmetry of the ATPase domains is inconsistent across
species. Early works on E. coli FtsH (PDB: 1LV7) suggested
a sixfold symmetry for the ATPase domains (Krzywda et al.,
2002; Scharfenberg et al., 2015). FtsH structures from Aquifex
aeolicus (PDB: 4WW0) and Thermotoga maritima (PDB: 2CE7
and 2CEA) suggest that the ATPase domains display a twofold
symmetry in the ADP-bound state (Bieniossek et al., 2006, 2009;
Vostrukhina et al., 2015). Two protomers on the opposite side
of the central pore display an identical interdomain angle that
is different to the other four protomers. In a separate study,
the crystal structure of an ADP-bound FtsH complex from
T. thermophilus (PDB:2DHR) revealed a threefold symmetry
(Suno et al., 2006) so that the ATPase domain displays alternating
“open” or “closed” conformations in the ring. In contrast,
analysis of a cryo-EM structure of the yeast mitochondrial
Yme1 mitochondrial homocomplex has revealed a spiral staircase
conformation of the ATPase domains which has led to the
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FIGURE 1 | Schematic representation of domains of FtsH2 from Synechocystis sp. PCC 6803. Annotations: transmembrane domain (TM), ATPase domain
(AAA + ATPase) and protease domain (Protease) are illustrated as colored boxes. The TM domain includes two transmembrane helices (yellow) and a soluble linker
exposed to the thylakoid lumen (blue). The soluble regions exposed to the cytoplasm include a flexible linker (green), ATPase (cyan), and protease domains (red). The
amino-acid residues that separate each domain are labeled below the colored boxes. Annotated functional motifs include the proposed substrate entry point (FVG);
ATP hydrolysis motifs Walker A and B, and the second region of homology (SRH); and the zinc-binding proteolytic site (HEXXH, X represents any amino acid).

FIGURE 2 | Top (A) and side (B) views of the cytoplasmic region of hexameric FtsH complex from T. thermophilus (PDB:2DHR). Annotations: protomers are defined
according to the status of its ATPase domains (“open” confirmation in cyan and “closed” confirmation in pale-cyan). The protease domains of “open” protomers are
labeled pink, and the “closed” counterparts are in blue-white. Selected motifs presented in a non-translucent color include Walker A (green ribbon) and B (blue
ribbon), and the zinc coordinates of the protease site (red sticks). The proposed FVG motif responsible for substrate binding is displayed as a red sphere, and ADP
molecules are shown as orange spheres.

suggestion that ATP hydrolysis leads to progressive rotary
conformational changes (Puchades et al., 2017).

We speculate that the differences in symmetry among
FtsH structures might be artifacts of crystallization and cryo-
EM, as the sequence identity and structure of the ATPase
domains are highly conserved and hence likely to operate
in a similar fashion. In addition, the “staircase” structure of
Yme1 was obtained from an ATPase-inactivated mutant. On
the flipside, it is plausible that FtsH orthologs have adopted
different ATP hydrolysis strategies during evolution to improve
energy efficiency. Depending on the nature of the substrates
and reaction conditions, energy-dependent enzymatic activities
require optimization of power and efficiency. For example,
the number of c-subunits of ATP synthases in each species is
adjusted to achieve a specific proton per ATP ratio for balanced
performance (Kramer and Evans, 2011).

The gap between the ATPase domain and membrane is
considered a limiting factor for substrates to gain access to the
protease (Lee et al., 2011; Carvalho et al., 2021). Structural studies
on native FtsH from yeast determined the gap to be ∼13 Å,
which would suggest that only unfolded substrates can reach
the central pore (Lee et al., 2011). However, recent structural

and mutagenesis work suggests that the gap can be enlarged via
tilting of the linker region (Carvalho et al., 2021). Therefore,
the width of the gap may not be a strict gatekeeper element for
substrate specificity.

FtsH Supercomplexes
In vivo FtsH activities are regulated by members of the band 7
(or SPFH) protein family that includes the stomatins, prohibitins,
flotillins and HflK/C (Tavernarakis et al., 1999; Gehl and
Sweetlove, 2014). In E. coli, FtsH activity is negatively regulated
through the action of a large complex consisting of the HflK and
HflC subunits (Kihara et al., 1996, 1997, 1998; Akiyama, 2009).
A recent cryo-EM structure of a HflK/C-FtsH super-complex
has revealed that the HflK and HflC subunits assemble within
the membrane to form a ring with a large dome in a “hat-
like” structure (Ma et al., 2022). Up to four FtsH complexes can
be contained within the HflK/C complex. The transmembrane
helices of HlfK and HflC form a circular barrier that prevents
the FtsH complexes from moving out into the surrounding
membrane thereby potentially preventing unwanted degradation
of proteins. The work also showed that FtsH activity is negatively
correlated with the abundance of HflK/C. The related prohibitin
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complexes might play a similar role in regulating FtsH activity
in mitochondria (Steglich et al., 1999) and cyanobacteria (Boehm
et al., 2012; Bec̆ková et al., 2017; Zhang et al., 2021), and more
generally members of the SPFH family could form ring-like
structures in the membrane and have scaffolding functions (Gehl
and Sweetlove, 2014; Wai et al., 2016).

The Cellular Locations and Functions of
FtsH Proteases
In E. coli, there are five proteases (ClpXP, ClpAP, HslUV, Lon
and FtsH) of the AAA+ protease family involved in ATP-
dependent proteolysis (Langklotz et al., 2012). Of these, FtsH
and Lon proteases are membrane-anchored, and FtsH is essential
for cell viability (Ogura et al., 1999). In most prokaryotes, FtsH
is encoded by a single gene, and localized in the cytoplasmic
membrane (Tomoyasu et al., 1995). In cyanobacteria, typically
4 FtsH homologs are present which form specialized complexes
in the cytoplasmic and thylakoid membranes (Boehm et al.,
2012; Sacharz et al., 2015). In eukaryotes, FtsHs are exclusive
to mitochondria and chloroplasts in accordance with the
prokaryotic origin of FtsH proteases (Wagner et al., 2012).
However, all FtsH homologs in eukaryotes are encoded by
nuclear genes, implicating gene transfer during endosymbiosis.

FtsH proteases perform both protease and chaperone roles
to maintain cellular homeostasis (Wagner et al., 2012). Previous
studies revealed that FtsH in E. coli cells regulates heat-stress
response via degradation of heat-shock transcription factor σ32

(Tomoyasu et al., 1995). FtsH is also required to balance the
turnover rate of LpxC deacetylase, an important regulatory
mechanism to maintain the lipopolysaccharide/phospholipid
ratio (Ogura et al., 1999). FtsH plays a crucial role in removing
inactive membrane-bound Sec translocons (Kihara et al., 1995;
Akiyama et al., 1996). Interestingly, rapid removal of Sec
translocons by FtsH can be a greater risk to cell viability than
allowing inactivated Sec translocons to accumulate (Kihara et al.,
1995). Chaperone activities of FtsH have been reported from
studies on bacteria, mitochondria and chloroplasts (Ogura et al.,
1991; Bailey et al., 2001; Wagner et al., 2012; Li et al., 2013;
Mishra et al., 2019). FtsH is essential in E. coli, Bradyrhizobium
japonicum, Helicobacter pylori and Borrelia burgdorferi (Wang
et al., 2021); whereas, it is dispensable in Bacillus subtilis,
Lactococcus lactis, Caulobacter crescentus, Staphylococcus aureus,
and Pseudomonas aeruginosa (Kamal et al., 2019). However, the
lack of FtsH reduces their cell fitness (Chu et al., 2016).

FtsH proteases are safeguards of photosynthesis and
respiration and are found in the thylakoid and the mitochondrial
inner membranes, where the major photosynthetic and
respiratory electron transport machineries are located. Both
photosynthesis and respiration are subject to oxidative stress,
hence the proteins involved are often short-lived due to damage
by reactive oxygen species (ROS) (Krynická et al., 2014; Steele
and Glynn, 2019). Spatially coordinated FtsH complexes can
efficiently recognize and remove damaged proteins, thus leave
room for de novo produced replacements to be incorporated to
reactivate the pathway (Janska et al., 2010; Nixon et al., 2010;
Kato and Sakamoto, 2018). In the case of photosynthesis, efficient

FtsH-mediated repair of damaged photosystem II (PSII) is an
important determinant of primary productivity (Nixon et al.,
2005; Boehm et al., 2012; Wagner et al., 2012).

PHOTOSYNTHESIS AND FtsH

Photosynthesis and Photosystem II
Repair
Oxygenic photosynthesis is the primary energy harnessing
process on Earth and a prominent source of oxygen for the
atmosphere (Nelson and Ben-Shem, 2004). Water photolysis
catalyzed by PSII generates molecular oxygen and reducing
power to produce organic matter. The process is chemically
challenging due to the high redox potentials generated in the
reaction center, which leads to protein damage (Vass et al., 2007;
Vass, 2012; Bricker et al., 2015). Nature’s solution to mitigate
photodamage is to restrict hazardous reactions to a single
subunit, namely the D1 protein, to enable rapid replacement of
inactivated D1. The PSII repair strategy is energy efficient as it
enables recycling of nearly all the subunits and cofactors of PSII
(Nixon et al., 2010; Nickelsen and Rengstl, 2013).

Maintaining photosynthetic activity requires the PSII repair
rate to match the rate of damage to D1. When D1 damage exceeds
repair, inactivated PSII accumulates, and net photosynthetic rate
falls. This phenomenon, termed chronic photoinhibition, can
be lethal if prolonged (Aro et al., 1993; Edelman and Mattoo,
2008; Nixon et al., 2010; Nickelsen and Rengstl, 2013). Removal
of damaged D1 is a crucial step that leads to reassembly and
reactivation of PSII. The current view is that upon photodamage,
PSII undergoes partial disassembly which allows D1 to be
exposed for replacement (Krynicka et al., 2015). Specialized FtsH
complexes extract D1 from the membrane which allows the
replacement copy to be assembled into the PSII chassis (Bailey
et al., 2001; Silva et al., 2003; Nixon et al., 2005).

Efficient D1 replacement is vital to maintain photosynthetic
activity. D1 is the most conserved protein known to date
(Cardona et al., 2019; Sánchez-Baracaldo and Cardona, 2020),
and consists of 5 transmembrane helices with a peripheral
N-terminal tail that is crucial to initiate degradation (Komenda
et al., 2007), and a C-terminal post-translational cleavage site for
controlled assembly of the inorganic oxygen-evolving complex
(Nixon et al., 1992; Anbudurai et al., 1994; Oelmüller et al.,
1996; Suorsa and Aro, 2007). Under strong illumination, D1
is among the fastest turned-over proteins in cells, with a
half-life as short as 15–20 min (Jansen et al., 1996, 1999;
Yao et al., 2012; Kale et al., 2017). It is reported that the
biosynthesis rate of D1 in mature chloroplasts accounts for
50% of net protein synthesis, however, the abundance of D1 is
only ∼0.1% of protein content (Nelson and Ben-Shem, 2004).
Hence the rate and efficiency of D1 replacement are important
metrics to evaluate the productivity and light tolerance of
a photoautotroph.

Role of FtsH in Photosystem II Repair
Thylakoid FtsH has been shown to selectively remove damaged
D1 in both cyanobacterial and plant models. Initial suggestions
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for a role for FtsH came in 1999, when Spetea et al. (1999)
reported that D1 degradation was a multi-stage, ATP- and
zinc-dependent process using an in vitro proteolysis assay; and
suggested multiple proteases including thylakoid FtsH could be
involved. Since then, extensive mutagenesis works have been
conducted to evaluate the significance of each protease candidate
(Bailey et al., 2002; Silva et al., 2003; Huesgen et al., 2006;
Kapri-Pardes et al., 2007). In both plants and cyanobacteria,
only FtsH complexes are essential for efficient PSII repair
(Nixon et al., 2005).

The molecular mechanism of FtsH-mediated D1 degradation
remains elusive. Pulse-chase labeling experiments show that
newly synthesized D1 accumulates as an unassembled membrane
protein in an FtsH2-deficient Synechocystis mutant, indicating
FtsH-mediated proteolysis of damaged D1 is vital for D1
incorporation (Silva et al., 2003; Komenda et al., 2006). FtsH
complexes co-purify with PSII complexes (Silva et al., 2003)
but the direct interaction between FtsH and D1 has yet to be
observed, possibly due to rapid D1 degradation. D1 mutants
lacking 20 amino-acids of the N-terminal tail display an FtsH
null-like phenotype in cyanobacteria (Komenda et al., 2007)
which would suggest that the N-terminal tail of D1 exposed on
the membrane surface is crucial to initiate proteolysis. Hence in
the current D1 degradation model (Figure 3), the N-terminus
of D1 facilitates the initial contact with the FVG motif of an
FtsH complex and is then pulled into the central pore of FtsH
for degradation. FtsH complexes involved in PSII repair are

heterohexameric and composed of type A and type B FtsH
subunits (Sakamoto et al., 2003; Boehm et al., 2012). Site-
directed mutagenesis of type B FtsH protomers has revealed that
inactivation of ATPase activity compromises PSII repair, but that
inactivation of the protease activity does not (Zhang et al., 2010;
Yu, 2013). Hence only one functional protease domain might be
needed for FtsH function. The hypothesis is also in agreement
with the structural model proposed from a T. thermophilus FtsH
study (Suno et al., 2006).

Cells lacking thylakoid FtsH can maintain photosynthesis
under low light intensity. Photodamage is inevitable even under
low irradiance, which indicates the presence of auxiliary D1
degradation routes (Silva et al., 2003; Adam et al., 2005; Nixon
et al., 2005). Increased accumulation of truncated D1 fragments
is observed in the Arabidopsis and Chlamydomonas reinhardtii
FtsH mutants, highlighting the involvement of other proteases,
although cleavage by ROS cannot be ruled out (Kato et al., 2012;
Malnoë et al., 2014).

In vitro biochemical analyses indicate Deg proteases, a class of
ATP-independent serine proteases, as responsible for the cleavage
of D1 in the lumenal loop region between transmembrane
helix C and D (Sun et al., 2007; Kato et al., 2012). 16 Deg
proteases are found in Arabidopsis thaliana, of which Deg2 and
Deg7 are localized in the stroma (Sun et al., 2010; Luciński
et al., 2011); whereas, Deg1, Deg5 and Deg8 reside in the
thylakoid lumen (Kapri-Pardes et al., 2007; Sun et al., 2007).
The potential benefit from Deg cleavage is that once D1 is

FIGURE 3 | Schematic representation of FtsH-mediated D1 degradation. Upon inactivation, PSII undergo partial disassembly, resulting in transient complex RC47
(PDB:4V62) containing inactivated D1 (pink and purple), D2 (orange), CP47 (green), and small chlorophyll-binding subunits (white). The N-terminal loop of D1 (purple
cylinder) is exposed for degradation. The thylakoid FtsH complex (adapted using crystal structure of the whole cytosolic domains of FtsH from T. thermophilus,
PDB:2DHR) participates in D1 removal. In the current model, the N-terminal D1 loop feeds through the FtsH linker region (gray dotted lines) and is pulled by the
ATPase domains (cyan) down the central pore, and translocated to the protease domain (red). Both RC47 and FtsH complexes are plotted to scale using the lipid
membrane as size reference. The missing transmembrane region of FtsH is illustrated as a cartoon: transmembrane helices (gold cylinders) and lumenal region (blue
cylinders). The yellow reference rulers represent the dimension (unit: Å) of the Inertia Axis Aligned Bounding Box (IAAB) for the respective protein, which are
calculated by Guardado-Calvo’s Python scripts for pymol (https://pymolwiki.org/index.php/Draw_Protein_Dimensions).
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broken into multiple smaller degradants, additional proteases,
such as Clp can be involved to accelerate D1 replacement (Kato
et al., 2012). Several studies on Arabidopsis mutants lacking
Deg protease subunits observed reduced D1 repair rate under
strong illumination, hence the involvement of Deg proteases in
D1 repair is physiologically relevant, too (Kapri-Pardes et al.,
2007; Sun et al., 2007, 2010; Schuhmann and Adamska, 2012).
However, an Arabidopsis mutant lacking Deg1, 5, and 8 is still
able to grow photoautotrophically unless challenged with strong
abiotic stress (Butenko et al., 2018). In contrast, mutants lacking
all type A or type B FtsH subunits abolish autotrophic growth and
are embryo lethal (Yu et al., 2004, 2005; Zaltsman et al., 2005a).
Therefore, Deg proteases play a more minor role in PSII repair
(Yu et al., 2004, 2005; Zaltsman et al., 2005a).

However, in the Synechocystis model, mutants lacking all three
annotated Deg proteases do not display measurable defects in
PSII repair, which casts doubt over the universality of Deg-
mediated cleavage (Barker et al., 2006). It is possible that D1
turnover in viridiplantae is more sophisticated as they possess
more complex thylakoid structures and are typically exposed
to stronger light irradiance. Overall, current models suggest
that FtsH complexes are the main proteases involved in D1
degradation in both cyanobacteria (Silva et al., 2003) and
chloroplasts (Kato et al., 2009) and that the Deg and Clp proteases
play a supplementary role (Kato and Sakamoto, 2018).

Regulation of FtsH Involved in
Photosystem II Repair
Several proteins associated with the thylakoid membranes are
reported to regulate FtsH activity. Psb29 from Synechocystis plays
an important role in the accumulation of FtsH. Psb29 is a “pin”
shaped protein that is needed for formation of the FtsH2/FtsH3
complex (Bec̆ková et al., 2017). Synechocystis mutants lacking
Psb29 are more susceptible to light stress, although not as
severe as that of the FtsH2 deletion mutant. Psb29 interacts
with FtsH2/FtsH3 complexes in vivo, however, the regulatory
mechanism requires further investigation. THF1, which is the
ortholog of Psb29 in plants, appears to play an equivalent role
as levels of FtsH in Arabidopsis mutants lacking THF1 are also
repressed, and the plants exhibit defective thylakoid formation
and leaf variegation (Wang et al., 2004; Huang et al., 2013).

EngA is a GTPase that directly interacts with FtsH complexes.
Its abundance negatively correlates with FtsH activities (Kato
et al., 2018) so that Arabidopsis mutants over-expressing EngA
display a leaf-variegation phenotype that is comparable to the
FtsH-deficient var mutants (Chen et al., 2000; Takechi et al.,
2000). Thylakoid FtsH exhibits a high turnover rate, especially
under strong light (Zaltsman et al., 2005a; Li et al., 2017). EngA
is therefore postulated to be a negative regulator acting on FtsH
turnover (Kato et al., 2018).

FIP is a small thylakoid-anchored protein carrying a zinc-
finger domain at the C-terminus (Lopes et al., 2018). It interacts
with type A FtsH subunits in Arabidopsis, and possibly plays a
role in assembly. The expression of FIP is downregulated when
plants are exposed to abiotic stress, including excessive light, salt,
oxidative agents and osmotic pressure. FIP knockdown mutants

also display greater resilience to stress conditions. Hence, FIP
negatively regulates FtsH activity. Unlike EngA mutants, over-
expression of FIP does not result in aberrant plant development
(Wang et al., 2017). Therefore, the impact of FIP on FtsH could be
weaker. Further proteomic analysis on FIP mutants would help
to clarify the role of FIP, as the initial report largely focused on a
transcriptional analysis (Lopes et al., 2018).

The Potential Co-evolution of
Photosystem II and FtsH
The FtsH-mediated PSII repair cycle is a conserved feature
for efficient oxygenic photosynthesis (Shao et al., 2018). Thus,
understanding the co-evolution of PSII and FtsH might provide
insights into the origin of oxygenic photosynthesis. A recent
phylogenetic analysis has revealed that the FtsH protease complex
involved in PSII repair forms a separate clade and is independent
of the clade of FtsH protease subunits found in extant anoxygenic
photosynthetic bacteria (Shao et al., 2018). Hence, the evolution
timeline of the FtsH protease involved in PSII repair seems
to match the early origin of PSII (Shao et al., 2018). In
addition, the branching of the phylogenetic tree for FtsH in
phototrophic bacteria closely resembles that of the type I and type
II reaction centers, supporting the gene duplication hypothesis
of oxygenic photosynthesis instead of horizontal gene transfer
(Shao et al., 2018).

RESPIRATION AND FtsH

FtsH Proteases Maintain Protein Quality
in Mitochondria
Like chloroplasts, mitochondria are also organelles of prokaryotic
origin that were acquired by a eukaryotic host via endosymbiosis
(Osteryoung and Nunnari, 2003). Mitochondria are cellular
powerhouses dedicated to the supply of cellular ATP through
aerobic respiration (Bertram et al., 2006). The respiratory
reactions, also known as oxidative phosphorylation (OXPHOS),
take place in the inner membrane of mitochondria (Chaban et al.,
2014). Respiratory complexes embedded in the mitochondrial
inner membrane perform a series of redox reactions that
lead to the reduction of molecular oxygen to water and the
formation of a proton motive force across the membrane which
is then used to produce ATP via the ATP synthase (Hatefi,
1985; Chaban et al., 2014). Respiratory complexes are also
prone to oxidative stress and require maintenance (Remmen
and Richardson, 2001; Sweetlove et al., 2002; Augustin et al.,
2005).

FtsH proteases are found on both sides of the mitochondrial
inner membrane, namely m-AAA and i-AAA, originally
identified in studies on yeast (Thorsness et al., 1993; Guelin
et al., 1994; Tzagoloff et al., 1994; Leonhard et al., 1996).
The soluble domains of m-AAA are exposed to the inner
matrix, whereas that of i-AAA face the intermembrane space
(Figure 4; Leonhard et al., 1996; Steele and Glynn, 2019).
Mitochondrial FtsH complexes target diverse substrates and
exhibit functional overlap with other proteases. The maintenance
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FIGURE 4 | Schematic representation of mitochondrial FtsH complexes. The i-AAA is a homocomplex facing the intermembrane space, the m-AAA is a
heterocomplex (blue and bronze) facing the mitochondrial matrix. Both complexes are modeled using the cryo-EM structure of yeast m-AAA (Lee et al., 2011). The
unassembled Foa (orange cylinders) subunit of respiratory complex V (PDB: 6CP6) is a membrane protein substrate of m-AAA. MrpL32 (red cylinders) is a subunit of
the mitochondrial ribosome (PDB: 5MRC), which consists of protein (yellow) and RNA (purple-gray) components. MrpL32 is a soluble substrate that requires
post-translational modification by m-AAA. The proteins are scaled using the membrane width as reference. The yellow reference rulers represent the dimension (unit:
Å) of the Inertia Axis Aligned Bounding Box (IAAB) for the respective protein, which are calculated by Guardado-Calvo’s Python scripts for pymol
(https://pymolwiki.org/index.php/Draw_Protein_Dimensions).

of some respiratory complexes requires the participation of
both m-AAA and i-AAA. For example, the stability of ATP
synthase is reduced in Arabidopsis and yeast mutants lacking
either m-AAA or i-AAA. However, Arabidopsis mutants lacking
i-AAA retain the ability to degrade the unassembled a subunit
of the ATP synthase (Marta et al., 2007). These results indicate
that both FtsH complexes are involved in the assembly of ATP
synthase, but m-AAA might be crucial for removal of damaged or
unassembled ATP synthase subunits. Other respiratory proteins
that require m-AAA-mediated maintenance include cytochrome
bc1 and cytochrome c oxidase (Guélin et al., 1996; Stiburek et al.,
2012). The m-AAA protease also plays a crucial role in ribosomal
protein biosynthesis. It facilitates post-translational maturation
of MrpL32, a subunit of the mitochondrial ribosome that is
essential to assemble functional ribosomes (Nolden et al., 2005).

i-AAA on the opposite side plays a crucial role in maintaining
lipid metabolism in mitochondria. Phosphatidylethanolamine
and cardiolipin constitute up to 50% of the phospholipid in the
inner membrane (Calzada et al., 2016; Schlame and Greenberg,
2017; Tatsuta and Langer, 2017). However, their biosynthesis
requires the phosphatidylserine and phosphatidic acid precursors
to be transported across the intermembrane space (Calzada
et al., 2016; Schlame and Greenberg, 2017; Tatsuta and Langer,
2017). i-AAA regulates membrane biogenesis via restricting the
number of lipid transfer proteins, e.g., PRELID1 and STARD7
(Potting et al., 2010; Wai et al., 2016; Saita et al., 2018). i-AAA
also regulates protein transport between the cytoplasm and

mitochondria by selective removal of the TIM translocase (Baker
et al., 2012; Spiller et al., 2015). The release of cytochrome c from
mitochondria during cell apoptosis is also regulated by i-AAA
(Jiang et al., 2014; Saita et al., 2017).

Functions and Regulation of
Mitochondrial FtsH Complexes
Mitochondrial FtsH complexes are thought to have functional
overlaps with other mitochondrial proteases, hence it is
challenging to pinpoint the molecular targets of FtsH complexes
(Patron et al., 2018). However, many links between FtsH
mutations and diseases are well established through medical
research (Karlberg et al., 2009; Gerdes et al., 2012; Patron
et al., 2018). Human i-AAA mutations that destabilize complex
formation lead to neuromuscular disorders including intellectual
disability, motor developmental delay, optic atrophy, ataxia and
movement deficiencies (Hartmann et al., 2016; Sprenger et al.,
2019). Two types of m-AAA proteases are present in human: the
AFG3L2 homocomplex and the AFG3L2/SPG7 heterocomplex
(Martinelli et al., 2009; Tatsuta and Langer, 2009; Pierson et al.,
2011). Recessive mutations in SPG7 (paraplegin) cause hereditary
spastic paraplegia (HSP7) (Casari et al., 1998). The clinical
features include weakness and spasticity of the lower limbs,
loss of vibratory sense and urinary urgency (Patron et al.,
2018). Mutations in AFG3L2 cause spinocerebellar ataxia type
28 (SCA28), a juvenile-onset disease featuring progressive gait
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and limb ataxia with abnormal eye movement (Cagnoli et al.,
2006; Di Bella et al., 2010). A potential explanation for these
FtsH-related diseases is that impaired FtsH activities destabilize
respiration performance, leading to reduced energy output. The
development and operation of the nervous system is particularly
energy dependent, hence mitochondrial FtsH dysfunction causes
severe neurodegenerative diseases (Tymianski and Tator, 1996;
Adamo et al., 1999; Langer, 2000; Lee and Bendayan, 2004).

In plants, several mitochondrial FtsH subunits are crucial to
mitigate heat stress. For example, Arabidopsis mutants lacking
FtsH11 fail to grow at 30◦C (Janska et al., 2010). A similar
phenomenon is observed in the maize ndl-1 mutants (Liu et al.,
2019). A striking discrepancy is that a phylogenetic analysis
suggests Ndl-1 is an m-AAA protease closely related to FtsH3 and
FtsH10 in Arabidopsis. However, Arabidopsis mutants lacking
FtsH3 or FtsH10 display a wild-type-like phenotype, and the
mutants lacking both proteins only exhibit a minor growth
defect, i.e., smaller size and shorter roots (Kolodziejczak et al.,
2018; Liu et al., 2019). FtsH11 in Arabidopsis belongs to the
i-AAA group, therefore, Ndl-1 and FtsH11 should be localized
on the opposite side of the mitochondrial inner membrane.
This apparent inconsistency in phenotype between the two plant
species might reflect functional divergence of the FtsH proteases
during evolution.

Prohibitins and stomatins are prominent modulators of the
activities of mitochondrial FtsH proteases. As membrane
scaffolding proteins, they act on the ultrastructure and
dynamics of mitochondrial inner membranes (Artal-Sanz
and Tavernarakis, 2009; Ikon and Ryan, 2017). Mutagenesis
studies show that the activity of m-AAA is negatively correlated
to the abundance of prohibitins (Koppen et al., 2007; Piechota
et al., 2010). On the opposite side of the membrane, i-AAA
complexes form super-complexes with stomatins (Wai et al.,
2016). It is postulated that stomatins play a similar modulator role
to prohibitins in regulating i-AAA activity in the intermembrane
space (Wai et al., 2016). The molecular interactions between
mitochondrial FtsH complexes and prohibitins or stomatins
could be similar to that recently described for the interaction
between E. coli HflK/C and FtsH (Yokoyama and Matsui, 2020;
Ma et al., 2022).

EVOLUTION AND DIVERGENCE OF FtsH
IN OXYGENIC PHOTOSYNTHETIC
ORGANISMS

Photosynthetic Organisms Contain
Diverse FtsH Complexes
Phylogeny mapping of 6,028 FtsH orthologs from 3,100 species
has revealed that cyanobacteria carry ∼4 FtsH homologs per
genome, the highest number among prokaryotes. Whereas the
average number of FtsH homologs in fungal genomes is 2; that of
animals is 4 and that of photosynthetic eukaryotes is 8 (Shao et al.,
2018). This phylogenetic analysis concluded that FtsH orthologs
cluster into three groups, Group 1 contains most bacterial and
photosynthesis-related FtsH, Group 2 contains m-AAA forming

homologs, Group 3 contains i-AAA-related FtsH and FtsHi
(Figure 5). However, there are exceptions, e.g., FtsHi3 from
Arabidopsis belongs to Group 2. Therefore, the FtsHi proteases
in plants have a mixed ancestry.

FtsH in Cyanobacteria
Cyanobacteria are a phylum of prokaryotes that perform
oxygenic photosynthesis. It is widely accepted that chloroplasts
in algae and plants are derived from an ancient cyanobacterium
via endosymbiosis (Raven and Allen, 2003; Sakamoto et al., 2004;
Kutschera and Niklas, 2005; Ayuso-Tejedor et al., 2010; Falcón
et al., 2010). Like chloroplasts, cyanobacteria feature a thylakoid
membrane system where photosynthesis takes place. Three
classes of FtsH complexes are present in the Synechocystis model,
the FtsH1/FtsH3 complex is present in cytoplasmic membranes
and regulates iron acquisition (Boehm et al., 2012; Krynická
et al., 2014, 2019); FtsH2/FtsH3 is anchored in the thylakoid
membranes and is involved in PSII repair, osmoregulation and
inorganic carbon assimilation (Stirnberg et al., 2007; Zhang et al.,
2007; Boehm et al., 2012); the FtsH4 homocomplex is also located
in the thylakoid membranes but its function is not yet clear (Silva
et al., 2003; Boehm et al., 2012; Krynická et al., 2014; Sacharz et al.,
2015).

In spite of different cellular localizations, FtsH1 and FtsH2
share the highest sequence identity and are both categorized
as type B FtsH; while their partner FtsH3 resembles the type
A FtsH subunits described for Arabidopsis (Sakamoto et al.,
2003; Bec̆ková et al., 2017). In both cyanobacteria and plants,
disruption of type B FtsH leads to a dramatic reduction in levels
of the thylakoid type A subunit (Sakamoto et al., 2003; Boehm
et al., 2012). The speculation is that unassembled FtsH subunits
are prone to degradation, hence unable to accumulate in the
thylakoid membranes (Boehm et al., 2012). This hypothesis is
further strengthened by the work on the FtsH1/FtsH3 complex,
in which controlled repression of FtsH3 also led to a reduction in
FtsH1 levels in Synechocystis (Krynická et al., 2014).

The physiological function of FtsH4 is not yet clear.
Confocal microscopy of mutants expressing GFP-tagged FtsH4
revealed that FtsH4 is exclusively localized in the thylakoid
membranes (Krynická et al., 2014; Sacharz et al., 2015).
However, deletion of FtsH4 has not yet yielded a distinctive
phenotype (Mann et al., 2000; Bailey et al., 2001). We speculate
that FtsH4 could be a “failsafe” option for a broad range
of degradants, which are predominantly removed via other
proteases than the AAA + family of proteases. Hence probing
the function of FtsH4 might require disruption of multiple
proteases. Biochemical analysis shows that although the thylakoid
membranes contain FtsH2, FtsH3, and FtsH4 subunits, the
pairing of the protomers to produce hexameric complexes is
strictly controlled by the FtsH type; no FtsH4 heterocomplexes
have been reported.

FtsH in Algae and Plants
Photosynthetic eukaryotes contain increased numbers of FtsH
subunits. Green algae are the evolutionary link between
cyanobacteria and plants, hence it is unsurprising that the
number of FtsH homologs in algae is more than that of
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FIGURE 5 | Phylogenetic analysis of FtsH orthologs from selected species. Annotations are: FtsH from Escherichia coli (begins with “Ec”), Synechocystis sp.
PCC 6803 (begins with “S6803”), Saccharomyces cerevisiae S288C (begins with “Sc”), Homo sapiens (begins with “Hs”), Chlamydomonas reinhardtii (begins with
“Cr”), and Arabidopsis thaliana (begins with “At”). Homologs with pale-green background correspond to Group1, that of pink correspond to Group2, orange and
yellow correspond to Group3 as designated in the Shao et al. (2018) article. The tree was generated using MUSCLE (https://www.ebi.ac.uk/Tools/msa/muscle/). The
sequences of At_FtsH were obtained from Tair (https://www.arabidopsis.org/index.jsp), and that of Cr_FtsH were collected from Phytozome Chlamydomonas
reinhardtii v5.6 (https://phytozome-next.jgi.doe.gov). The remaining sequences were collected from NCBI (https://www.ncbi.nlm.nih.gov/protein/). The information
was accessed on November 10, 2021.

cyanobacteria and fewer than plants. For instance, the model
green alga C. reinhardtii encodes six FtsH and three FtsHi
homologs (Malnoë et al., 2014; Mishra and Funk, 2021; Zou and
Bozhkov, 2021). FtsHi (recently reviewed by Mishra and Funk,
2021) represents a clade of FtsH with inactivated proteolytic
capacity. Among the six homologs, CrFtsH1 and CrFtsH2 are
involved in the quality control of thylakoid membrane proteins,
such as the repair of PSII and the removal of cytochrome b6f
(Malnoë et al., 2014; Bujaldon et al., 2017; Wang et al., 2017).

In A. thaliana, 12 FtsH and 5 FtsHi homologs have been
identified (Wagner et al., 2012). They form five paired branches in
the phylogram: AtFtsH1/5, AtFtsH2/8, AtFtsH7/9, AtFtsH3/10,
and AtFtsH4/11 (Figure 5). The FtsH isoforms of each pair are
functionally redundant and structurally interchangeable, except
for the AtFtsH4/11 pair (Janska et al., 2010; Wagner et al.,
2012; Mishra and Funk, 2021). Numerous studies have been
conducted to elucidate the functions of each FtsH homolog
(results summarized in Table 1).

Five FtsH homologs are localized on the thylakoid membrane.
AtFtsH1 and 5 belong to type A FtsH and AtFtsH2 and 8 are type
B (Wagner et al., 2012). Together, they form heterocomplexes
responsible for PSII repair (Kato and Sakamoto, 2018). AtFtsH2
and AtFtsH5 are the dominant isoforms in thylakoid membranes;
disruption of either homolog leads to leaf-variegation phenotypes
(Chen et al., 2000; Takechi et al., 2000; Sakamoto et al., 2002;
Zaltsman et al., 2005b). Mutants lacking AtFtsH1 and AtFtsH8
do not display a clear change in phenotype to WT, however,
dual disruption of AtFtsH1/5 or AtFtsH2/8 produces mutants
with severe albino-like leaves. Hence, AtFtsH1 and 8 contribute
to activity, but are insufficient to substitute for the dominant
isoform (Wagner et al., 2012). Over-expression of AtFtsH8
can complement the loss of functional AtFtsH2, indicating the
physiological impact of AtFtsH8 is restricted by its quantity in
the wild-type plants (Yu et al., 2004).

The import of FtsH into the chloroplast and insertion
into the thylakoid membrane is determined by the N-terminal
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TABLE 1 | Summary of the phenotypes from FtsH mutants of Arabidopsis thaliana.

Genotype FtsH location Phenotype Reference(s)

ftsH1 (typeA) null Thylakoid membrane WT-like phenotype Sakamoto et al., 2003; Zaltsman et al.,
2005b

ftsH5 (type A) null Thylakoid membrane Weak leaf variegation (var1) Sakamoto et al., 2002; Wagner et al.,
2011

ftsH1, ftsH5 null Thylakoid membrane Albino-like, embryo lethality, loss of
photoautotrophic growth

Yu et al., 2004, 2005; Zaltsman et al.,
2005b

ftsH2 (type B) null Thylakoid membrane Yellow variegated 2 (var2)
severe leaf variegation

Chen et al., 2000; Takechi et al., 2000;
Bailey et al., 2002; Wagner et al., 2011

ftsH8 (type B) null Thylakoid membrane WT-like phenotype Sakamoto et al., 2003; Zaltsman et al.,
2005b; Wagner et al., 2011

ftsH2, ftsH8 null Thylakoid membrane Albino-like, embryo lethality, loss of
photoautotrophic growth

Yu et al., 2004, 2005; Zaltsman et al.,
2005b

ftsH1, ftsH8 null Thylakoid membrane WT-like phenotype Zaltsman et al., 2005b

ftsH6 null Thylakoid membrane Enhanced heat-tolerance and
thermomemory

Sedaghatmehr et al., 2016

ftsH7 null Chloroplast envelope WT-like phenotype Wagner et al., 2011

ftsH9 null Chloroplast envelope Unknown Ferro et al., 2010; Wagner et al., 2011

ftsH12 null Chloroplast envelope Embryo lethality Ferro et al., 2010

ftsHi1 null Chloroplast envelope Embryo lethality Kadirjan-Kalbach et al., 2012; Mishra
et al., 2019

ftsHi1 missense mutant Chloroplast envelope Pale seedling Kadirjan-Kalbach et al., 2012; Mishra
et al., 2019

ftsHi2 null Chloroplast envelope Embryo lethality Schreier et al., 2018; Mishra et al., 2019

ftsHi3 null Chloroplast envelope Residual albino growth Kikuchi et al., 2018

ftsHi4 null Chloroplast envelope
or thylakoid membrane

Embryo lethality Lu et al., 2014; Mishra et al., 2019

ftsHi5 null Chloroplast envelope Embryo lethality Wang et al., 2018; Mishra et al., 2019

ftsH11 (i-AAA) null Chloroplast envelope Reduced heat-tolerance Urantowka et al., 2005; Chen et al.,
2006; Wagner et al., 2011, 2016

ftsH4 (i-AAA) null Mitochondrial inner membrane Abnormal leaf morphology in late
rosette development under short-day
conditions

Gibala et al., 2009; Wagner et al., 2011

ftsH3 (m-AAA) null Mitochondrial inner membrane WT-like phenotype Piechota et al., 2010; Wagner et al.,
2011

ftsH10 (m-AAA) null Mitochondrial inner membrane WT-like phenotype Piechota et al., 2010; Wagner et al.,
2011

ftsH3, ftsH10 null Mitochondrial inner membrane Decreased size of seedlings and
developmental delay

Kolodziejczak et al., 2018

sequence. Type A FtsH subunits are inserted via the secretion
pathway (Sec), which inserts unfolded proteins into the
membrane; however, type B FtsH subunits are inserted via the
twin-arginine translocation pathway (TAT), which transports
fully folded protein across the membrane (Rodrigues et al.,
2011). In vitro import studies suggest that the mature
thylakoid FtsH subunits from Arabidopsis might contain a single
transmembrane alpha helix (Rodrigues et al., 2011) rather than
the two transmembrane helices predicted for cyanobacterial FtsH
subunits based on N-terminal sequencing of the protein subunits
(Boehm et al., 2012).

The role of thylakoid AtFtsH6 remain elusive, despite its
wide conservation in plants (Sun et al., 2006; Johnson et al.,
2014; Yu et al., 2014; Xue et al., 2015). AtFtsH6 is rapidly
induced under heat stress, and is involved in the degradation
of heat-shock protein HSP21 (Sedaghatmehr et al., 2016).
Mutants lacking AtFtsH6 are reported to display stronger
thermomemory and thermotolerance, but the phenotype is weak
(Sedaghatmehr et al., 2016).

In Arabidopsis, the following FtsH isoforms are anchored in
the chloroplast envelope membrane: FtsH7, 9, 12 and FtsHi1-
i5 (Kadirjan-Kalbach et al., 2012; Wagner et al., 2012; Mishra
et al., 2019). Notably, FtsH7, 9 and i3 are members of the
Group 2 clade (Figure 5). Both FtsH7 and FtsH9 contain an
additional protease domain between the second transmembrane
helix and the ATPase domain. FtsHi3 also contains a protease
domain upstream of the ATPase domain, however, its zinc-
binding catalytic site is missing, and the C-terminal protease
domain is also lost (Mishra and Funk, 2021). Mutants lacking
AtFtsH7 retain a wild-type-like phenotype and the function
of AtFtsH9 is unclear (Wagner et al., 2011). In contrast, the
remaining FtsH homologs found in the chloroplast envelope
membrane are essential for embryogenesis (Wagner et al., 2012;
Mishra and Funk, 2021).

In Arabidopsis, FtsHi1, 2, 4, and 5 lack the HEXXH motif
necessary for substrate degradation (Figure 1); whereas the entire
protease-inactive domain of FtsHi3 is relocated upstream of the
ATPase domain (Wagner et al., 2012; Mishra and Funk, 2021).

Frontiers in Plant Science | www.frontiersin.org 10 April 2022 | Volume 13 | Article 837528

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-837528 March 31, 2022 Time: 14:54 # 11

Yi et al. FtsH Review

FtsH12 and FtsHi have been speculated to form complexes,
because the mortality rate of a FtsH12 knockout mutant is
comparable to that of FtsHi2, 4, and 5 single mutants (Ferro
et al., 2010; Wagner et al., 2012). Four FtsHi (FtsHi1, 2, 4,
and 5) have been confirmed to form complexes with Ycf2 and
AtFtsH12 on the stroma-side of the chloroplast envelope and
are thought to be involved in substrate transport (Kikuchi et al.,
2018). Interestingly, Ycf2 is a distant relative of FtsH that has
remained encoded by the chloroplast genome (Downie et al.,
1994; Bungard, 2004). A phylogenetic analysis of Ycf2 suggests
the gradual loss of the protease catalytic site during evolution,
and the enlargement of the soluble region between the two
transmembrane helices (Kikuchi et al., 2018).

AtFtsH3/4/10 are found in mitochondria. AtFtsH3 and
AtFtsH10 are m-AAA proteases that form both homo- and
heterocomplexes (Janska et al., 2010). Surprisingly, neither of
them is essential for growth under optimal conditions (Wagner
et al., 2012). AtFtsH4 and AtFtsH11 are related to i-AAA, and are
present as homocomplexes in mitochondria (Janska et al., 2010).
AtFtsH4-deficient mutants develop a distinct asymmetric shape
and irregular serration of expanding leaf blades (Gibala et al.,
2009). Despite being paired with AtFtsH4, AtFtsH11 was thought
to be targeted to both mitochondria and chloroplasts (Urantowka
et al., 2005), however, recent work suggests that AtFtsH11 is
exclusively targeted to the chloroplast envelope (Ferro et al.,
2010; Wagner et al., 2016). Mutants lacking AtFtsH11 are
sensitive to high temperature with growth arrested at 30◦C
(Janska et al., 2010).

In summary, FtsH homologs in plants preserve genetic
redundancy, functional overlap, and structural plasticity to
deliver diverse functions. The functional redundancy among
isoforms enables FtsH homologs to adapt to emerging
environmental demands, resulting in a robust and flexible system
to maintain cellular homeostasis through evolution.

OUTLOOK

The FtsH family of proteases are versatile tools to regulate
diverse pathways by removing both soluble and membrane-
bound proteins (Kihara et al., 1995; Tomoyasu et al., 1995;
Silva et al., 2003; Krynická et al., 2014). FtsH is proficient in
maintaining membrane protein quality, hence plays a crucial role
in energy metabolism, including photosynthesis and respiration.
FtsH functions as a hexameric complex, with the type of
protomer defining substrate specificity. The proteolytic activities
can be further adjusted by modulator proteins. The molecular
mechanisms that regulate FtsH activities at multiple levels make
the FtsH-mediated proteolysis system reliable and adaptable.

The cellular localization and subunit composition of many
FtsH complexes have been determined. However, we think

the following questions could be important to address in the
future. The first question is how the composition of FtsH
complexes is controlled. Mutagenesis studies have revealed that
the protease domain is important to prevent formation of
undesirable protomer pairing, however, the protease domain is
also variable across species. The high-resolution structures of
intact FtsH complexes have not yet been determined but will be
crucial for understanding how specific protomers are selected for
assembly into heterocomplexes.

The second question is how substrates are targeted for
degradation. Although a structure of a FtsH complex has been
determined with a target protein stuck in the proteolytic chamber
(Puchades et al., 2017), there is still no structural information
regarding the entry of substrates through the central pore of
the ATPase domain.

The third question is how the proteolytic activity of
FtsH complexes is regulated. Despite recent advances in
the structural analysis of the HflK/C-FtsH super-complex
(Ma et al., 2022), the molecular mechanisms that modulate
FtsH activities in the thylakoid and mitochondrial inner
membrane remain unclear. In particular, further investigations
are required to verify the role of prohibitins in photosynthetic and
eukaryotic organisms.
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