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Species distribution models (SDMs) are widely used numerical tools that rely on

correlations between geolocated presences (and possibly absences) and environmental

predictors to model the ecological preferences of species. Recently, SDMs exploiting

deep learning and remote sensing images have emerged and have demonstrated high

predictive performance. In particular, it has been shown that one of the key advantages

of these models (called deep-SDMs) is their ability to capture the spatial structure of

the landscape, unlike prior models. In this paper, we examine whether the temporal

dimension of remote sensing images can also be exploited by deep-SDMs. Indeed,

satellites such as Sentinel-2 are now providing data with a high temporal revisit, and

it is likely that the resulting time-series of images contain relevant information about the

seasonal variations of the environment and vegetation. To confirm this hypothesis, we

built a substantial and original dataset (called DeepOrchidSeries) aimed at modeling

the distribution of orchids on a global scale based on Sentinel-2 image time series.

It includes around 1 million occurrences of orchids worldwide, each being paired

with a 12-month-long time series of high-resolution images (640 x 640 m RGB+IR

patches centered on the geolocated observations). This ambitious dataset enabled us

to train several deep-SDMs based on convolutional neural networks (CNNs) whose

input was extended to include the temporal dimension. To quantify the contribution

of the temporal dimension, we designed a novel interpretability methodology based

on temporal permutation tests, temporal sampling, and temporal averaging. We show

that the predictive performance of the model is greatly increased by the seasonality

information contained in the temporal series. In particular, occurrence-poor species and

diversity-rich regions are the ones that benefit the most from this improvement, revealing

the importance of habitat’s temporal dynamics to characterize species distribution.

Keywords: species distribution modeling, deep learning, image time-series, Sentinel-2, convolutional neural

networks, remote sensing, macroecology, data science
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1. INTRODUCTION

1.1. Context
Understanding and mapping species distributions is a major
topic in conservation biology (Pecl et al., 2017). Species
distribution models (SDMs) have recently become a key
instrument: over the last 20 years, 6,000 peer-reviewed studies
were found with this keyword according to Araújo et al. (2019).
These statistical algorithms learn the correlations between species
presence records (and possibly species absence records) and some
environmental predictors provided. Under certain modeling
assumptions (Zurell et al., 2020), they can estimate species
distribution by generalizing learned habitat preferences over
time and space (Phillips and Dudík, 2008; Thuiller et al., 2009).
A major issue for the use of SDMs concerns the ecological
relevance of the predictive variables used (Fourcade et al., 2018).
Furthermore, collecting appropriate data at a large scale is
usually very challenging. Global bio-climatic variables do not
systematically provide enough information to draw conclusions
on a species, presence. Many other factors like species dispersal
capacities (Monsimet et al., 2020) or shifts in land use actually
come into play.

After having revolutionized computer vision, neural networks
- and especially convolutional neural networks (CNNs) - are
also increasingly recognized in ecology (Williams et al., 2009;
Heikkinen et al., 2012; Botella et al., 2018; Brodrick et al.,
2019). They allow identifying environmental patterns on images
like tree crowns (Csillik et al., 2018) or forest type limitations
(Wagner et al., 2019). Local environment spatial structure has
already been proven to add relevant information to SDMs
involving convolutional layers (Deneu et al., 2021b).

In addition, remotely sensed data can grasp key features of
vegetation functioning and thus convey relevant insights on
species habitats (Remm and Remm, 2009; Adhikari et al., 2012;
He et al., 2015). Unmanned Aerial Vehicles (UAVs) allow finer
and finer-scale coverage at local, regional, or even country scale
(Kattenborn et al., 2020). Thanks to such imagery, the nature
and spatial structure of ecosystems can be characterized and
learned in SDM training. RGB and IR image patches around
species occurrences (or digitized geolocated presence of species)
are thus added to the environmental predictors, so as to include
information on vegetation and land-use heterogeneity around
the occurrences (Deneu et al., 2021a).

Satellite missions like Copernicus Sentinel-2 (S2) (Berger
et al., 2012) now provide RGB and IR channels with fine
spatial resolution and temporal revisit frequency worldwide (see
Section 2.1.1), which can feed high-resolution, CNN-based SDM
models. However, there is still much potential ahead for bringing
together remote sensing and deep learning (Camps-Valls et al.,
2021). Remote sensing datasets that are (i) readily available
for deep learning applications and (ii) exploiting the spatial,
spectral, and temporal dimensions of new satellite missions are
still very few. For instance, among the twenty-three benchmark
datasets implemented in TorchGeo (Stewart et al., 2021), only two
encompass a temporal dimension. There is then an opportunity
to build RGB+IR image time series around occurrences spread
worldwide. By sampling S2 data for a whole year, prominence
is given to the seasonal evolutions of the plants, habitats. These

time series are capturing the signature of ecosystems phenology
and productivity. Our hypothesis is that this information can
significantly help SDM predictions.

1.2. Contributions
This paper contribution is 2-folds: First, we built a substantial and
original dataset pairing nearly 1 million geolocated occurrences
of the Orchidaceae family with satellite image time series. This
dataset and the associated method scripts, released as open data
and code, should be useful for conservation biologists and SDM
users in general. To our knowledge, no similar ready-to-use
dataset is already available. Second, we designed interpretability
tests of the deep SDMs trained on this dataset in order to measure
the importance of seasonal landscape variability in characterizing
species habitat and niche. Figure 1 provides the visual abstract of
our method.

2. MATERIALS AND METHODS

2.1. DeepOrchidSeries Dataset
2.1.1. Raw Input Data Description

Orchid Occurrences Dataset
The Orchidaceae family is of great interest because of its diversity
(about 28,000 species estimated) and its aesthetic attractiveness
(Chase et al., 2015). Orchids are of major concern for ecologists
due to the numerous threats they are facing: habitat destruction,
climate change, pollution, and illegal harvesting for horticulture
and tourism industries (Wraith and Pickering, 2018). They are
also considered as a relevant proxy of their ecosystem’s health
(Newman, 2009). Moreover, orchids are found on all continents
in a wide range of habitats and they are blooming at very different
altitudes. Such a range or environmental amplitude is difficult
to achieve with other families, making the orchid family an
excellent candidate for the purpose of our study (i.e., to measure
the importance of seasonal variability in characterizing species
habitat and niche).

Rather than collecting a new set of orchid occurrences to
build our image time-series dataset, we decided instead to re-
use the one introduced by Zizka et al. (2021). Their objective
was different from ours (i.e., estimating the conservation status
of orchids) but the set of occurrences they collected from GBIF
meets two main criteria of interest for our study: (i) global scale
and (ii) suitable data quality, thanks to several data filtering
and cleaning processes (including the use of the R package
CoordinateCleaner v. 2.0-9, Zizka et al., 2019). The complete
process they use is summarized in the Supplementary Table 1

of their paper (Zizka et al., 2021). Another benefit of reusing
(Zizka et al., 2021)’s occurrence data is to support the potential
reuse of our deep-SDM for the automated assessment of the
orchid’s IUCN status. In the long term, this will improve the
reproducibility and comparability of newly developed methods
in this regard.

In total, the dataset contains 999,407 occurrences of
14,148 species with 70 records per species on average, 4
in median, and 3,537 species (25%) with more than 13
observations. The (heavily-tailed) distribution of the number
of occurrences per species is shown in Figure 2A (through a
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FIGURE 1 | Visual abstract of the proposed method. Layer 0: The dataset introduced in this paper (DeepOrchidSeries) is based on a filtered set of GBIF occurrences

(Global Biodiversity Information Facility) coming from the study of Zizka et al. (2021). Layer 1: Sentinel-2 image time series were collected around each occurrence

geolocation, keeping least cloudy data tiles every month between March 2020 and February 2021. Images are made of 640 x 640 m RGB+IR channels with 10 m

spatial resolution. The dataset is available on Zenodo and the method to create it on the Gitlab.inria platform. Layer 2: We then trained deep species distribution

models (deep-SDMs) based on a convolutional neural network (CNN) (Inception v3) to capture the spatio-temporal context and environmental preferences of species.

Next, we conducted experiments where the input temporal dimension was modified (randomized, averaged or sampled) so as to measure its contribution to model

performance. Layer 3: the results are finally broken down into three main dimensions of analysis: species frequency in the dataset, bioregion, and species diversity in

these bioregions. The analysis reveals that occurrence-poor species and diversity-rich regions are the ones that benefit the most from the improvement provided by

the temporal information.

Lorenz curve). Figure 2B represents the temporal distribution
of the occurrences in the dataset. Half of the observations dated
from 1997, one quarter from 2010. A total of 14.6% of the set
(145,641 occurrences) came with no timestamp at all. The oldest
occurrence was from 1901 as a result of the filtering process
that got rid of data records older than 1900. Only observations
with a position uncertainty higher than 100 km were discarded.

Perspectives and limits related to the use of such a large and
imbalanced occurrence dataset will be discussed in the final
Section 4.

Sentinel-2 Multispectral Images
Sentinel-2 multispectral data comes from two identical satellites
in the same orbit but diametrically opposite to one another.
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FIGURE 2 | (A) Distribution of Occurrences of species. Species are ordered by frequency. The dotted lines are flagging that 90% of the species are only gathering

9.1% of the occurrences. (B) Temporal distribution of occurrences. The two graphs are based on all dataset occurrences.

Sentinel-2A was launched on 23 June 2015 and its counterpart
Sentinel-2B on 7 March 2017. This satellite mission is part of
the European Earth observation project Copernicus1, previously
known as Global Monitoring for Environment and Security
(GMES, Drusch et al., 2012). Thirteen channels from the visible
to short-wave infrared are monitoring the planet, with 10,
20, or 60 m spatial resolution and a 5-day temporal revisit
above any point on Earth. Additional satellites 2C and 2D are
planned to ensure continuity in the coming years and the next
generation of Sentinel-2 satellites are being prepared. We only
kept four out of the thirteen channels, i.e., the three RGB channels
and the Infrared (IR) channel (842 nm). These wavelengths
are expected to convey the most relevant information about
the environment (He et al., 2015) and are also the finer in
terms of spatial resolution (10 m). The smallest geographic
units downloadable via the sentinelsat2 API are 109.8 km ×

109.8 km square data tiles in WGS84/UTM projection. They
were defined following a military grid splitting Earth planisphere.
The field square from a given satellite orbit at a given sensing
time interval does not always cover a whole tile so that several
products must be merged and cropped to get an image of the
whole tile.

Data products are made available to the user at two
distinct levels: Top-of-Atmosphere (TOA or 2C) and Bottom-
of-Atmosphere (BOA or 2A). The important difference is the
application of an atmospheric correction algorithm such as

1https://www.copernicus.eu/en
2https://sentinelsat.readthedocs.io/en/stable/

Sen2Cor (Louis et al., 2016; Ientilucci and Adler-Golden, 2019).
Water vapor and other atmospheric components alter the
satellite image caption with complex non-linear deformations.
When and how atmospheric correction should be performed
prior to exploiting remote sensing data depends on the
desired information and thus the targeted application. About
classification and change detection tasks, a recognized work
from Song et al. (2001) advises performing simple corrections
only when multi-temporal data is used. Otherwise, having both
training and test sets from the same relative scale proved to be
sufficient: no significant performance gain would result from the
addition of an atmospheric correction step. A more recent article
estimating the relation between sea surface salinity and Sentinel-
2 Imagery with a neural network and 2,700 points obtained better
results with TOA than BOA imagery (Medina-Lopez, 2020).
On their specific application, they found that the atmospheric
correction entailed information loss due to alteration of actual
multispectral relationships. They also observed that the time and
computational resources spared by using the level 2C products
were an important element to consider. Using L1C products
time-series, Rußwurm and Körner (2018) obtain state-of-the-
art land cover classification performances. Level 2A products
are not readily available at the global scale and, when needed,
atmospheric corrections have in this case to be applied by users.
Considering the conclusions of previous surveys and the large
size of the targeted data, we decided to work with TOA products.
Moreover, the atmosphere information could be valuable for
our application and we suggest that deep-SDMs are capable of
correctly learning without this additional filter.
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FIGURE 3 | Creation workflow of DeepOrchidSeries dataset. Input is a set of geolocated occurrences, output gathers image time series informing on species habitat

preferences. Code and details are available at https://gitlab.inria.fr/jestopin/sen2patch.

2.1.2. Dataset Construction
Figure 3 summarizes the workflow followed to obtain image
time-series from a set of geolocated occurrences. The first step
is to define the set of Sentinel-2 tiles containing all targeted
occurrences, for which more details are provided in the Global
scale processing paragraph. The second and third steps are used to
define the patch size and the time sampling strategy, respectively.
Our choices are presented in the two dedicated paragraphs
hereafter. Finally, the last paragraph introduces our method to
select the least cloudy S2 data.

We have furthermore considered only the four spectral bands
available at 10 m resolution, but our workflow could be applied
as well to bands at 20 m and 60 m resolution after a down-
sampling step. Sentinel-2 queries and downloads were made with
the Scihub Copernicus API3. We then extracted the patches
by parallelizing the processing by UTM zone to gain speed.
Code and details are available at https://gitlab.inria.fr/jestopin/
sen2patch.

Global Scale Processing
The first step consists then in defining the minimal set
of Sentinel-2 tiles containing all our orchid observations.
The Sentinelsat python API provides the option to query
data by various geographical means, mainly, coordinates,
polygons, tiles, or satellite orbits. However, querying the
API on an occurrence-by-occurrence basis for a dataset
containing nearly one million occurrences is counterproductive.
It is much more efficient to first download the tiles
containing occurrences and then extract them locally (as
shown in Figure 4A for the histogram of the number of
occurrences per tile). To do so, we implemented the following
two steps:

3https://scihub.copernicus.eu/, queries and downloads require an activated Scihub

Copernicus account.

• First, we created a dictionary linking each tile with its WGS84
geometry thanks to the Sentinel-2 Level-1C tiling grid provided
by the ESA Sentinel-2 official portal4.

• Then, an iterative process on all occurrences was implemented,
testing each time if the new observation is included in the
union of the already retained tiles set. If not, a tile containing
the occurrence location is downloaded and added to the set.

The final tiles set map is given in Figure 4C. It illustrates
the full geographical scope of the dataset with 7,563
targeted tiles. A total of 50% of all land areas (Antarctica
excluded) were included in the collected data. The color
scale proportional to the number of observations per
tile (with a log10-scale) further shows a geographic (or
observation) bias in the occurrences set: Europe, south
Australia, and New Zealand are gathering huge numbers
of records.

Patch Size
The size of the patches associated with each occurrence is
an important hyper-parameter to set. Patches should be large
enough to contain the most relevant spatial information, but not
too large to avoid introducing patterns that are too distant from
the occurrence. They should also be large enough to compensate
for the geographic imprecision of the occurrences (as shown
in geolocation uncertainty distribution Supplementary Figure 1

and Wüest et al., 2020), but not too large to avoid computational
issues. Considering all that constraints, our final choice was
patches of size 640 m × 640 m (only powers of two were
considered to optimize memory usage). Figure 4B illustrates
three different patch sizes around an observation on an island of
the South Australian coast. It shows that the 640m× 640m patch
(40.96 ha) captures important landscape patterns around the
record as well as potential threats due to surrounding land use.

4https://sentinel.esa.int/web/sentinel/missions/sentinel-2
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FIGURE 4 | (A) Histogram of the number of occurrences per tile, (B) different patch sizes comparison around an occurrence located at (–39.883306, 144.050000),

decimal degree system, (C) map of the selected tiles colored by the number of records contained (log10 scale). Three occurrences are located by α, β, and γ .

Figure 5 provides the three associated image time-series.

Time Series Extent and Temporal Resolution
One of the main contributions of our study is to consider time
series of satellite images rather than a single date image, with
the objective of better characterizing the habitat of species. Two
important parameters in this regard are the temporal extent of
the series and its resolution. Here too, there is a compromise
to be made. The extent and resolution must be high enough to
capture important (spatio-)temporal patterns, but cannot be too
high due to computational constraints. We finally chose a 1-year
time series with a resolution of 1 month (i.e., twelve images, one
per month).

Such 12-month time series allow grasping the main seasonal
variations of the environmental and ecological context including
vegetation phenology, yearly weather variations as well as
landscape annual variations linked to human activity (e.g.,
agriculture). Noticeably, such seasonal variations are often
neglected in SDMs devised at a global scale. Figures 5A,B show
significant seasonal changes that can largely help models to
differentiate species habitats. In Figure 5A, the tree cover greatly

vary depending on the season and in Figure 5B snow covers the
field half of the year. What if we only had 1 month of data?
Environmental contexts would be characterized very partially
and wrong inferences could be done on species ecological
preferences (imagine having only one image covered by snow
for Figure 5B). These examples illustrate the gain of ecologically
relevant information when considering a 12-month image-series.

Another parameter to be set is the starting date of the time
series. Ideally, it should be chosen so that the date of the
occurrences is included in the 1-year period covered for the
time series. There are various reasons in practice impeding a
perfect match between the occurrences dates and the associated
predictive data. To begin with, the Sentinel-2 satellite was
launched only in 2015 so that older occurrences cannot be
matched. Second, all occurrences do not comewith a precise date,
some having no date information at all. Third, some S2 tiles from
the defined minimal set would have to be downloaded a huge
number of times to inform all observations at different dates.
Lastly, there is no simple and open access to data older than a
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FIGURE 5 | Image time series associated with the three occurrences located in Figure 4C map. RGB images are shown on the first line and IR patches on the

second. (A) is almost cloud-free and globally normalized before visualization (i.e., all months are divided by TS maximum pixel), (B) is a cloudless time series with a

strong environmental gradient because of snow presence and is normalized by frame (i.e., each month data is divided by month maximum pixel, only for visualization),

(C) is an especially cloudy time series also normalized by frame.

rolling year on Copernicus Open Access Hub. Because of all that
constraints, we finally chose a fixed period for all 12-month time
series, with a starting date of 1 March 2020 and an ending date of
29 February 2021 (the choice of the recent period being linked to
the temporal distribution of the number of occurrences, as shown
in Figure 2B).

Data Selection Based on Cloud Cover
Remote sensing data at RGB/IR channels are directly dependent
on potential clouds covering the satellite’s field of view.
Fortunately, S2 products are including in their metadata the
percentage of the scene view corrupted by cloud cover. Thereby
when querying the Sentinelsat API over a given area and time
window, one can ask to only keep the less cloudy products.
The wider the chosen time window is, the more likely an
almost cloud-free product will be available within. Based on
this metadata, we selected the least cloudy S2 products within
each month in the targeted time window. With this selection
process, we expect the large majority of time series to be cloud-
free like Figures 5A,B. Figure 6 provides an overview of the
cloud coverage distribution in selected products compared to all
available products in the queried time window. When, despite
our efforts to select the least cloudy products, the obtained
satellite data around an occurrence present many cloudy frames,

it could nonetheless be interpreted as a piece of information
contributing to the species, ecological niche. Furthermore, in this
case, the environment structure can still be captured from clear
scenes at other dates of the time series (see for instance April,
May, and November 2020 on Figure 5C).

2.2. SDM Trained With Satellite Image
Series
In this section, we describe the architecture and learning
procedure of the deep-SDMs that we trained based on the
DeepOrchidSeries dataset described above. Given an image time
series as input, the model estimates orchids, relative probabilities
of presence.

2.2.1. Model Definition and Training Procedure

Model Architecture
The model used is an extended version of the Inception v3
(Szegedy et al., 2016) CNN. Inception networks are appreciated
because of their capacity to grasp patterns -here environmental
patterns- at multiple scales. It has been shown by Deneu et al.
(2021b) that this architecture provides better species prediction
performance than point neural networks, boosted trees, or
random forests. We use this work to justify our choice of model.
Nevertheless, testing other recent neural architectures specifically
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FIGURE 6 | Cloud cover percentages of the 1,067,989 tested products, 180,747 (16.9%) selected against 887,242 (83.1%) dismissed. (A) all months taken together,

(B) detailed by month.

designed to deal with spatio-temporal data is an avenue to
be exploited in the future, see the second perspective of the
discussion. In particular, the performance gain was shown to
be the most significant for rare species. In our context, the
Inception v3 architecture was modified so as to accept not only
RGB images but the full RGB+IR image time series. Our inputs
are of size (Nf ,Nx,Ny) with Nf the number of features equal to
12 ∗ 4 = 48 (12 months x 4 RGB+IR channels) and Nx =

Ny = 64 (corresponding to 640 x 640 m quadrats at 10 m
resolution). To speed up the training and regularize the model,
batch normalization (Ioffe and Szegedy, 2015) was applied on the
convolutional layer activations, just before the nonlinear ReLu
function. Dropout (Srivastava et al., 2014) was finally used to
prevent the network from overfitting (with a dropout probability
of 0.5).

Model Loss
The models were trained using the LDAM loss (Label-
Distribution-Aware Margin, Cao et al., 2019) designed for
strong class-imbalance multi-class classification problems. In
our context, it allows pushing upward rare species performance
without deteriorating predictions on common species. The
LDAM loss is a label-distribution-aware function that leads the
model to an optimized trade-off between per-class margins.
When considering two species only, say one rare and one
common, the decision boundary drawn by this loss will be
slightly shifted toward the common species in order to let the
benefit of the doubt to the rare species (refer to Cao et al., 2019
Figure 1 for a meaningful scheme). The LDAM loss has been
shown to perform very well in many deep learning benchmarks
involving both a strong imbalance between classes and a high
inter-class ambiguity.

Training Procedure
The models were fitted using stochastic gradient descent on
multi-GPU nodes from Jean Zay, an IDRIS supercomputer5.

5http://www.idris.fr/annonces/annonce-jean-zay-eng.html

They were trained during 70 epochs with a batch size equal to
64. The training process took around 100 h per model (with 8
gpus working in parallel).

Convolutional and linear layers weights were initialized from a
truncated normal continuous random variable. The deferred re-
weighting (DRW) training schedule associated with the LDAM
loss was used. DRW is a vanilla empirical risk minimization
(ERM) until a given epoch, here 65. Then, the training ends with
a re-weighted loss and SGD steps with a re-normalized learning
rate, both by batch species frequency. The learning rate was
initialized to 0.1 and later decayed by a factor of ten at epochs
50 and 65. A trained model is approximately 600 MB.

2.2.2. Performance Evaluation of the Model

Data Split
The DeepOrchidSeries dataset was split into three parts: (i)
Training set (90%), (ii) Validation set (5%), and (iii), Test set
(5%). Following the recommendations of Roberts et al. (2017),
the split was done using a spatial blocking strategy that enables
a more robust estimation of the performance of the model. The
spatial blocks were defined in the spherical coordinate system
according to a 0.025◦ grid, i.e., square blocks of 2.775 km at the
equator. Splitting by block is important to impede the model
from being validated or tested at locations very close to the
training occurrences. In addition to the spatial blocking, we also
used a stratified sampling strategy to ensure that any region of the
world has a minimal number of blocks in the training set. We,
therefore, used the WGSRPD level 2 regions (Brummitt et al.,
2001). Within each region, we randomly sampled 90% of the
blocks present and assign them to the training set. The remaining
blocks were assigned to either the validation set or the test set
(at random). Validation and test occurrences from species that
were not in the training set were removed. Table 1 provides the
number of occurrences and species in each set.

Evaluation Metrics
Our model being trained with a multi-class classification loss
on presence-only data, its output is a categorical probability
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TABLE 1 | Summary table of the number of occurrences and species in the

training, validation, and test sets.

Set Training Validation Test

#Occurrences 897,296 51,116 50,375

#Species 13,700 4,290 4,261

distribution of the form ηs(x) = P(Y = s|X = x) where x is the
input tensor (i.e., an RGB+IR image time-series), Y the observed
species and ηs(x) is the estimated probability that the observed
species is s conditionally to x. Because the output is a categorical
probability distribution, we have that the sum of probabilities
over all species is equal to one (

∑m
s=1 ηs(x) = 1). To evaluate

the model, we chose not to use pseudo-absences because of the
bias induced by such methods (Phillips et al., 2009; Botella et al.,
2020). Instead, we used a set-valued metric (Chzhen et al., 2021)
to assess the quality of the species assemblage predicted by the
model for a given input. Specifically, we chose the commonly
used top-k accuracy as suggested in Botella et al. (2019). It
measures the success rate of the model when it returns the top-k
most probable species for any input x. More formally

Ak =

∑n
i=1 Ak(i)

n
(1)

where n is the number of occurrences in the test set (or validation
set) and

Ak(i) =

{

1 if ηyi (xi) ≥ η̃k(xi)

0 otherwise

with yi the true species label of occurrence xi and η̃k(xi)
the outputs of the model re-ordered in decreasing order
of probabilities.
Because of the high-class imbalance of our dataset, a shortcoming
of this metric applied on all test occurrences taken together (or
micro-average, Sokolova and Lapalme, 2009) is that it gives far
too much importance to the most frequent species over the less
frequent ones. To compensate for this imbalance, it is preferable
to use the macro-average version of this metric (Sokolova and
Lapalme, 2009) consisting of first calculating the score of each
species and then averaging the scores over all species. More
formally, the macro-average top-k accuracy can be defined as

MSAk =

∑l
s=1 SAk,s

l
(2)

where l is the number of species in the test and SAk,s is the top-k
accuracy for species s defined as

SAk,s =

∑

yi=s Ak(i)

ns
(3)

with ns the number of occurrences of species s in the test set.
During the training phase of the model, the macro-average top-
k accuracy (MSAk) is computed on the validation set every two

epochs for k = 30. The model selected in the end is the one with
the highest value.

To analyze the performance of the model according to the
number of occurrences available in the training set, we also
measured the macro-average accuracy on subsets of species
categorized by a range of their number of occurrences. If we
denote as Ns the number of occurrences of a species s in the
training set, we can define as SI = {s| Ns ∈ I, ns > 0} the set of
species in the test set having a number of training occurrences in a
given interval I. The macro-average accuracy for a given interval
I is then defined as

MSAk,I =

∑

s∈SI
SAk,s

|SI |
(4)

Another batch of experiences will focus on performances per
geographic region. Spatial units are taken from the World
Geographical Scheme for Recording Plant Distributions book
(Brummitt et al., 2001). The level 3 division defines the botanical
countries that we exploit. Performance per region r is denoted
as RAk,r and is defined as the micro-average top-k accuracy
computed only on the occurrences encompassed in r:

RAk,r =

∑

xi∈r
Ak(i)

nr
(5)

where nr is the number of test occurrences in r. Regions with
nr fewer than 50 occurrences were excluded as statistically
insignificant. Further, performance per region is compared with
region’s species diversity. Therefore, we computed the diversity
index qDr of each region r according to the definition of
Hill (1973) and Jost (2006). It is a quantitative measure of
biodiversity combining, in a given region, species richness with
species relative prevalence. The term prevalence is used instead
of abundance to account for the observation bias in our data.
Species richness corresponds to the number of distinct species
observed (denoted Lr). Species relative prevalence is the share
of species occurrences compared to all region’s observations: ps,r
equals

ns,r
nr
, with ns,r the number of test occurrences from species

s in r. The general expression of the region’s diversity index is

qDr =



















(

∑Lr
s=1 p

q
s,r

)
1

1−q
if q 6= 1

exp
(

−
∑Lr

s=1 ps,rln(ps,r)
)

if q = 1

(6)

where q is a parameter weighting the trade-off between the
importance granted to species richness (small value) vs. relative
prevalence (big value). 0Dr results in regional species richness
and 1Dr is the exponential of the Shannon entropy (Shannon,
1948). Performance per region is then averaged per category I on
the diversity index and written as MRAk,I .

In the literature, the majority of studies involving species
diversity use it as a response variable. They are focusing on
its potential drivers like bio-climatic variables, topographic
heterogeneity, or forest structure (Thuiller et al., 2006;
Hakkenberg et al., 2016). Here, we exploit species diversity
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as an explanatory variable possibly explaining our model
performances. In a similar manner, Emerson and Kolm (2005)
defended that species diversity is a driver of speciation and
(Dawud et al., 2016) examined its influence on soil carbon stocks
among others.

2.2.3. Interpretability Experiments: Quantifying the

Contribution of Temporal Information
We designed several tests to analyze to what extent the trained
model uses the temporal information contained in the image
time series. The general principle is to transform the input data
in order to suppress some information and to retrain a new
model based on this transformed data. The comparison of the
model deprived of information with the original model then
allows quantifying the importance of the suppressed information.
Figure 7 gives a comprehensive overview of the procedure
detailed hereafter:

M Original time-series. This is the default original model
where the input image time series are kept unchanged (stacked
in chronological order). Here, the model can learn from the
temporal dynamics present in the series. The filters learned
by the Inception v3 model are themselves ordered feature
maps time series of 12 months and are likely to capture
spatio-temporal redundancies in the input data (e.g., seasonal
variations of the environment or phenological patterns).

M1 Random permutation. In this model, the 12 images of the
original time series are randomly shuffled so that the model
can no longer base its predictions on the actual temporal
sequencing (Garnot et al., 2019). All input variance and
spatial information remain nonetheless in the input. The filters
learned by the Inception v3 model can neither be specialized
by month nor can the model differentiate relations between
months input. It actually learns from the block of 12 months
considering them all equally. This procedure is comparable
to the variable importance technique where a given input
variable is randomized across samples to test how the model
performs without its contribution. However, here, we do not
randomize a given feature across samples, but features order
independently for each sample.

M2 Temporal averaging. In this model, the input image series
are reduced to the mean over the 12 months replicated twelve
times. Only the first moment of the distribution over the time
dimension is kept and the model only "sees" a mean landscape
averaged along the year. The objective here is to test to what
extent a simple temporal averaging is sufficient to sum upmost
of the temporal variation. Each month contributes equally
to the mean and the result is blurry. The variance between
months has been totally removed. Ecological gradients of the
different patch elements are reduced to their sum divided
by twelve.

M3 Temporal sampling. In this model, the input image series
are reduced to only 1 month picked at random and replicated
twelve times. The neural network is being provided with
only a twelfth of the predictive data and is deprived of any
temporal information.

Please notice that for each of the cases (M1, M2, and M3),
the data transformation is applied once on the whole dataset
(including training, validation, and test set) before the model is
trained and evaluated.

Model M1 being deprived only of the months, order
information, its comparison with ModelM can be interpreted as
a statistical test of the hypothesis that the composition of species
depends on the existence ofmonths specific features, in particular
the ones resulting from yearly seasonality cycles. The comparison
betweenM andM3 can be interpreted as a test of the hypothesis
that the species composition does or does not depend on any
temporal variability. Model M2 can be seen as an intermediate
scheme where the temporal variability is summarized only by the
mean of the distribution. Accordingly, the comparison between
M1 and M2 allows assessing how useful statistical moments
of a higher order than the mean are for characterizing the
temporal variability.

To compare the performances of two different models, sayM
and Mi with i ∈ {1, 2, 3}, for a given species s in the test set,
we set a metric down called relative performance change of Mi

compared toM, defined as

S1k,s(M,Mi) =
SAk,s(M)− SAk,s(Mi)

SAk,s(M)
(7)

where SAk,s is the top-k accuracy of species s (see Equation 3).
In the same manner that we defined the macro-average

accuracy per category I on the species training set’s number of
occurrences, we can now consider the mean relative performance
change per category between two models:

MS1k,I(M,Mi) =

∑

s∈SI
S1k,s(M,Mi)

|SI |
(8)

Relative region performance change R1k,r(M,Mi) is also

calculated as
RAk,r(M)−RAk,r(Mi)

RAk,r(M)
. This measure is averaged per

category I on the diversity index as well and is represented by
MR1k,I(M,Mi).

When computing S1k,s(M,Mi) (resp. R1k,r(M,Mi))
between M and Mi models for a given species s (resp. a given
region r), it is beforehand necessary to make sure that the
denominator, SAk,s(M) (resp. RAk,r(M)), is not null. It can
sometimes be when the model M fails to predict the correct
label for all s occurrences (resp. all occurrences in r). In this case,
no performance change can be calculated since it is already null.
Species s (resp. region r) is then removed from the calculation of
the mean performance change by categories on species training
set number of occurrences (resp. on regions diversity index).
This is why there is a drop of support between Figure 9 (resp.
Figure 10) left and right graphs, i.e., there are fewer species
(resp. regions) encompassed in the categories, as indicated on the
horizontal axis. This effect is a lot more important on the support
of the species mean performance change than on the region’s one.
To sum up, relative performance change cannot be calculated for
species or regions having already the lowest possible score with
the whole temporal information. They are in that case discarded
from the mean performance change calculation.
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FIGURE 7 | Scheme illustrating the three transformations applied to the input image time-series toward interpreting the contribution of the temporal information. Only

6 RGB images are depicted but these procedures are applied on the whole 12-month-long time series, IR channel included (here N = 6 but would normally equal 12).

The image time-series A (black legend) corresponds to the original data, i.e., to the images stacked in chronological order. The image series B1 (green legend) is

obtained by randomly permuting the original time series. The image series B2 (red legend) is made of 1 month picked at random and replicated N times. The image

series B3 (blue legend) is constructed by averaging the 12 images of the original time series and replicating the resulting mean image N times. Please note that the

same legend’s colors will be used in the figures of the paper presenting the results of these experiments.

3. RESULTS

3.1. Model Validation and Performance
The top-30 and macro-average top-30 accuracy of the four
models (M, M1, M2, and M3) are presented on Figure 8
(at each epoch of the training phase for the validation set
and on the test set for the final selected model). Due to the
long-tail distribution of species occurrences (Figure 2A), the
top-30 accuracy A30 is representative of the performance on
the most common species whereas the macro-averaged top-
30 accuracy MSA30 is more representative of the performance
of the rare species. The final increase in the MSA30 score at
epoch 65 is due to the DRW optimizer previously described:
re-weighting the loss toward training’s end enables a boost
on rare species performances (Cao et al., 2019). The top-
30 accuracy A30 tends to slightly decrease after the first

quarter of the training phase. Our hypothesis is that this is
mainly due to the use of the LDAM loss: as the training
goes by, the models are reaching a better estimation of
rare species ecological niche and tend to predict them more
often to the detriment of common species that were chosen
by default.

The model M trained and tested with the original time
series provides better results than the three other models

deprived of temporal information. M is the only one where the

temporal dynamics are undamaged and hence fully exploitable

to statistically draw predictions. The macro-average top-30

accuracy is 0.286 for the unaltered model M, against 0.216 for
M1 trained on shuffled data, 0.215 for M2 trained on the yearly
mean, and 0.149 forM3 trained on a single random month.

The following analyses can be made of these results:
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FIGURE 8 | Micro (A) and macro (B) average top-30 accuracy on models validation and test sets. Micro-average results tend to represent common species whereas

macro-average performances are more representative of rare species.

1. The strong performance decrease between M and M3 shows
that the temporal information contained in the time series is a
key factor of the predictive performance. For most species, it
appears to be as important as the spatial information alone (cf.
macro-average accuracy plot MSA30).

2. The comparison between M and M1 shows that the decisive
temporal information is largely related to the order of the
images in the time series, i.e., to the months, specific features
captured by the model (such as the ones resulting from yearly
seasonality cycles).

3. The comparison between models M1 and M2 shows that
their performances is almost identical (cf. MSA30 plot). This
means that the decisive information related to the unordered
temporal variability can be synthesized efficiently by the mean
of the time series. In other words, higher order statistical
moments of the temporal dynamic independent from the
time of the year are likely to be useless for predicting species
composition (e.g., the standard deviation of acquisition noise).

4. The comparison between modelsM1 andM3 shows that the
decisive temporal information is also largely explained by the
unordered temporal variability of the images (typically due to
some stochastic processes independent from the time of year).

3.2. Results by Number of Species
Occurrences
Figure 9A displays the performance of the four models as a
function of the number Ns of species occurrences in the training
set (cf. equation 4). Not surprisingly, we can observe that the
accuracy of the model is positively correlated with the number
of occurrences. The more the occurrences in the training set and
the better the top-30 accuracy. It should be noted, however, that

the performance on the rarest species remains much better than
that of a random predictor. Species having between 3 and 10
occurrences, for instance, are predicted in the set of the top-30
most probable species in 17% of the cases. A random predictor
over the 13,700 species of the training set would have a top-30
accuracy below 0.22%.

Figure 9B displays the mean relative performance change
between the unaltered model M and the three models Mi (i ∈
{1, 2, 3}) as a function of the number of species occurrences (as
shown in Equation 8). It shows that the relative performance drop
is inversely correlated with the species, number of occurrences.
In other words, the rarer the species (in the data), the higher the
performance gain obtained thanks to the temporal information.
This can be explained by the fact that this is precisely on rare
species predictions that the room for improvement is the bigger,
as depicted on graph Figure 9A. The use of time series thus
makes it possible to compensate for the lack of occurrence
data by increased knowledge of the temporal dynamics of
the environment.

3.3. Results by Region and Regional
Diversity Index
Figure 10 displays all results related to the regional analysis of
our models.

The first sub-graph Figure 10A shows that the predictive
performance of the four models is negatively correlated with
the regional diversity index. Regions with small diversity indexes
1Dr are the ones where the model predictions are the better.
On the contrary, regions with high diversities show the models
achieve poor performance. With q = 1, the diversity index
equals the Shannon entropy exponential. This measure strongly
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FIGURE 9 | Macro-average top-30 accuracy (A) and relative top-30 accuracy change (B) averaged per category of the number of species occurrences in the training

set. All models, performances are following the drop of Ns when relative performance changes are inversely proportional to it.

depends on species richness. Hence, areas with high diversities
are where there is a lot of possible different orchids. This
means many possible classes for the models and a high
risk of confusion between species with similar environmental
preferences.Moreover, these areas are often including a lot of rare
species and/or are still poorly observed. Regions with low 1Dr

values are regions with relatively low species richness and tend to
encompass common species that the models are predicting well
(as shown in Figure 9A).

The second sub-graph (Figure 10B) displays the relative
performance change when comparing the model M to Mi

models, as a function of the regional diversity index. The most
obvious trend is the red curve: when totally deprived of the
habitat temporal dynamics, predictions on most diverse regions
are proportionally more impacted than on low diversity regions.
The tendency is more irregular for M1 and M2 but is globally
valid too. It implies that, similar to rare species in Figure 9B,
the temporal information especially benefits highly diverse areas.
The enlightenment of this tendency also is that this is where
the room for improvement is the largest. Models especially
take advantage of further temporal information to progress on
hard tasks. Supplementary Figure 2 presents the results of the
same experience but with categories formed on regions’ the
number of occurrences in the training set Nr , the total number
of occurrences entailed in region r during training. Unlike
Figures 10A,B, no tendency can be drawn. It reaffirms our idea
that it is region’s diversity that is driving results spatially and not
only the observation bias.

The map displayed in Figure 10C depicts the top-30 accuracy
per region achieved by the model M (i.e., the unaltered model
with original time-series). A clear difference in performances can

be observed between the southern and northern hemispheres.
Looking at regions’ diversity index 1Dr , written in green on
the map, allows a better understanding of this gap. Northern
regions (especially northern Europe) are presenting fewer species
and are well sampled whereas regions around and below
the equator (Australia excepted) are a lot more diverse and
still insufficiently observed. Models, average performances are
actually quite consistent on the Earth parallels. This map is the
direct illustration of the Figure 10A black curve.

Finally, map Figure 10D shows that where the loss of the
temporal information impacts the more the performances. It
corresponds to red curve of Figure 10B when the model trained
with only one randomly picked and duplicated data month
is compared to the reference model trained with full time
series. Relative performance decreases in very diverse regions
like southern China or Bolivia are really pronounced. On the
contrary, performances in countries with low orchid diversities
and well-observed like Norway of Finland are relatively spared
by the input reduction.

3.4. Statistical Tests
A t-test between M and M1 species micro-average accuracies
SA30,s(M) and SA30,s(M1) does confirm that results are notably
different (p-value of 5e−42). The same conclusion arises from
the comparison of the average top-30 accuracy per region:
MRA30(M) = 0.591 with ordered data against MRA30(M1) =
0.509 without, a p-value of 3.5e−9. This confirms that the order
of the images in the time series doesmatter and that providing the
data stacked in chronological order leads to significantly better
performances than when providing data in random order.
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FIGURE 10 | Region top-30 accuracy (A) and relative top-30 accuracy change (B) averaged per cat. of 1Dr . Map (C) presents region top-30 accuracy with 1Dr

indicated in green. Map (D) illustrates spatial decreases in performances when comparing M3 to M, i.e., without/with the temporal information.
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FIGURE 11 | Model performances on the test set divided by quartiles Qi on (A) occurrence observation year and (B) occurrence coordinates uncertainty. The test

accuracy is higher on more recent observations and on observations with reasonably low coordinates uncertainty.

3.5. Model Evaluation Regarding Time and
Spatial Data Mismatches
Figure 11A reveals a marked gradient of performance depending
on test occurrence observation year. This analysis discarded
15% of the 50,375 test occurrences presenting no observation
date information. Each quartile includes approximately 11,000
points. Both micro and macro top-30 accuracy seem to be
linearly correlated to the occurrence observation year quartile.
The linear behavior is confirmed when choosing a division with
a thinner percentile. Top-30 performances on the last quartile
2010-2019 are impressive: 0.834/0.484 of micro/macro average
accuracy. When cutting the test set data at the median 1997,
i.e., considering separately the oldest and the most recent half
of test observations, performances are of 0.703/0.281 (oldest
half) and 0.811/0.409 (most recent half). Moreover, it should
be noted that all macro-average performances calculated on
the test set’s subsets are comparatively higher than overall
performances because less distinct species are considered (as
shown in Figure 11 species number in bold, against 4, 261 in the
entire test set).

Figure 11B focuses on the influence of test occurrence
coordinates uncertainty on model performance. Test set is
divided by quartiles on the studied variable, likewise Figure 11A.
In total, 31% of test observations do not include any information
on coordinates uncertainty and are consequently put aside.
Each quartile contains approximately 9,000 observations. Micro-
average top-30 accuracy is identical on the first three quartiles
and only drops when uncertainty is higher or equal than 5,000 m.
Macro-average top-30 accuracy is similar when uncertainty
is kept under 707 m, i.e., for the first two quartiles only
(it is even slightly higher for the second one). Then, the

macro-average performance goes a step down starting from the
median of 707 m. Both micro and macro average performance
are severely diminished when coordinates uncertainty is superior
or equal to 5 km.

4. DISCUSSION

4.1. SDMs and Satellite Data
Remote sensing is an invaluable source of predictive features for
SDMs andmore widely for deep learning based earth observation
applications (He et al., 2015; Zhu et al., 2017; Borowiec et al.,
2021). Combined together, they offer a key opportunity in
monitoring biodiversity facing climate change (Randin et al.,
2020).

Species distribution models coupled with remote sensing
data are often exploiting the widespread vegetation indexes
Enhanced/Normalized Difference Vegetation Index (EVI or
NDVI, Bannari et al., 1995). These indices are computed
from satellite channels and are intended to reflect vegetation
properties. The NDVI is said to assess photosynthetic activity
and productivity (Pettorelli et al., 2011). Texture measures
derived from satellite EVI were proven adapted to map habitat
heterogeneity and bird species richness patterns (Farwell et al.,
2020).

The WorldClim variables (weather station data interpolated
with satellite-derived covariates, Hijmans et al., 2005; Fick
and Hijmans, 2017) certainly are the most widely used global
SDM predictors (Nogués-Bravo, 2009; Svenning et al., 2011).
This bio-climatic data approaches habitats, annual trends
(e.g., annual precipitation) and seasonalities (e.g., temperature
annual range and standard deviation). Contrary to our 1-year
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DeepOrchidSeries dataset, here, the variables are averaged across
several decades. Comparing the predictive power of these classic
predictors (possibly completed with a land-cover raster) to our
Sentinel-2 data will be the focus of future work.

Species distribution models and remote sensing data can
also help rare species detection by capturing the biophysical
conditions driving their distributions (Cerrejón et al., 2021).
Recent studies have successfully leveraged the spatial structure
of satellite images as input to CNN-based SDMs (Deneu et al.,
2021b). Trained on fine-scale tensors, these models were proven
able to learn and cluster species ecological preferences like annual
mean temperature (Deneu et al., 2021a).

Regarding the use of the temporal dimension of satellite data
in SDMs, few studies actually take advantage of it as underlined in
Randin et al. (2020). In this regard, we can cite (Cord and Rödder,
2011) who tried in 2011 to include EVI seasonality information in
their SDMs inputs. Their study was however on a totally different
range than us since they focused on eight Mexican anurans and
used one-dimensional predictors.

4.2. Benefits of Deep-SDMs Trained on
Remote Sensing Image Time-Series
The main outcome of our study is that using time-series of
satellite images significantly improve Deep-SDMperformance, in
particular for rare species and inmost diverse regions, supporting
the interest of the approach for conservation science. Rare
species are almost always threatened due to few occurrences
means, without conservation measures, and greater extinction
risk. Moreover, the world’s most diverse regions include nearly all
undiscovered species (Joppa et al., 2011). Better knowledge of the
ecological niche of rare or little-prospected species should foster
more appropriate and effective conservation measures to ensure
their survival.

We collected time series of remote-sensing images to grasp the
temporal variation in habitat properties. Our results confirm that
this information is of high value to capture species, ecological
niches and potential distributions. Our time series are also
providing SDMs with the spatial structure of species habitats,
a key information to enhance predictive performances (Deneu
et al., 2021b).

Recent satellite missions offer both high temporal revisit
frequency and high spatial resolution at the global scale,
supporting the use of such data for niche modeling. The use
of even more intensive remote sensing data, e.g., all products
without any selection by month or on a wider time window,
would probably allow even better estimation of ecological niche.
That said, the Sentinel-2 data curation we devised here represents
a good trade-off to acknowledge the phenology of orchid habitats
at a broad spatial scale. Trying to avoid as much as possible
clouds on selected images was also a sensitive point in our
dataset creation workflow. A thinner temporal resolution would
have resulted in richer time-series, but also a higher number of
cloud frames. The question of whether the presence of clouds
is in itself a piece of relevant information for characterizing
the environment was not addressed in our study and remains
nonetheless an open question.

4.3. Comparison With Other Open Remote
Sensing Datasets for Deep Learning
Remote sensing datasets for deep learning applications are
currently gaining much interest and are more and more
accessible. The very recent launch of TorchGeo (Stewart et al.,
2021), a Python library to easily handle geospatial datasets in
the PyTorch environment, illustrates the recent and still ongoing
progress. However, the available datasets remain currently few
and the temporal information provided by satellite revisits is
almost never used (Sumbul et al., 2019). The available datasets
are mostly used for land-cover classification (Helber et al., 2019)
or semantic segmentation (Schmitt et al., 2019), as described
in the benchmark datasets provided in TorchGeo (see Stewart
et al., 2021 of Table 1). Sen12MS is for instance a global dataset
including 180,662 patches of Sentinel-1/2 256 x 256m images and
MODIS-derived land cover maps (Schmitt et al., 2019). Another
dataset, similar to ours in terms of spatial coverage, is named
Seasonal Contrast (SeCo) (Mañas et al., 2021) and was released in
2021. It gathers 2.65 km × 2.65 km Sentinel-2 image time-series
around about 200 K locations worldwide. Time-series include
5 images separated by approximately 3 months. The objective
was to learn an encoder that can be used for a variety of tasks,
from land-cover classification to change detection. SeCo includes
images from all over the world to represent a wide variety of
landscapes. Among the currently available and open datasets, our
dataset is, to the best of our knowledge, the only one providing
monthly image data at so many points worldwide. In order
to allow its reuse and the reproducibility of our experiments,
the entire dataset is made publicly available with the Zenodo
DOI 10.5281/zenodo.4972593. We also share the scripts that
allowed us to create it at https://gitlab.inria.fr/jestopin/sen2patch.
In particular, these can be used to collect new image time series
at locations other than those covered by our dataset.

4.4. Interpretability: In Which Cases Is the
Modeling of the Temporal Dynamics the
Most Beneficial?
One of the major conclusions of our study is that the regions
benefiting the most from a performance gain due to the
modeling of the temporal dynamics of satellite images are those
with the highest species diversities. This conclusion may seem
counterintuitive at first. Indeed, the regions with the highest
diversities are often located toward the tropics and are not those
with the most pronounced seasonal patterns. Consequently, the
image time series in these regions are not expected to be the
ones with the strongest temporal signal. However, it is important
to understand that the model operates on a global scale with
thousands of habitats to discriminate from each other. Whatever
the temporal signature of a given habitat, it is a piece of useful
information for distinguishing it from other habitats. At the
extreme, the temporal signature of a constant habitat throughout
the year is a strong marker of that habitat. A study led in
Mediterranean natural habitats analyzed habitat discrimination
from a variety of multispectral sensors answers simulated from
fieldmeasurements, including Sentinel-2 (Féret et al., 2015). They
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showed that multi-temporal acquisitions outperform single data
acquisition to discriminate habitats.

The reason for the higher performance gains in high diversity
regions is actually more related to the higher model uncertainty
in that regions. Species from these regions are indeed those for
which there is the least amount of occurrence data available
and our study clearly demonstrates that the performance gain
is strongly correlated with this variable. In other words, our
study shows that the addition of the temporal information allows
reducing the model uncertainty related to the lack of occurrence
data in high diversity regions. This result appears particularly
interesting since habitats with the highest diversity and the rarest
species are also the most threatened ones and modeling them is
essential to put in place adapted conservation measures.

4.5. Key Considerations for Building New
Models With Our Method or Using Existing
Ones
Our method could be readily applied to other taxonomic groups
than the orchids family. The ease and cost of implementation
will mainly depend on the geographical distribution of the
occurrences of the target taxon. With a family as large and
widespread as the orchids, our method requires significant
computing resources. Downloading Sentinel-2 tiles to a very
large extent demands a lot of storage available (about 100Tb).
To keep model training time reasonable, GPUs have to be used
too. A computing cluster is more than welcome and the technical
requirements can be a limitation for some researchers. However,
once the dataset is built and the model is trained, predictions
can perfectly be run on standard local machines. To this end,
the model built for our study is shared publicly in the same
Zenodo repository as the dataset (doi: 10.5281/zenodo.4972593).
The new S2 image time-series as input can be used to predict
species orchids composition anywhere on earth or to build high-
resolution maps of specific orchid species at a global scale.
It may also be used for other ecological tasks via transfer
learning approaches (i.e., keeping unchanged all the weights of
the model except those of the last layer dedicated to species
classification, Torrey and Shavlik, 2010).

4.6. On Temporal and Spatial Biases
In the context of species and habitats distribution modeling in
general, a recurrent challenge is a possible mismatch, both in
time and space, between the occurrences and the environmental
variables (Phillips et al., 2006). As shown in Figure 2B, in
particular, a fraction of the occurrences in our dataset date
from several decades ago, while the satellite data is from March
2020 to February 2021. If the environment changed since the
observation, e.g., because of a housing project or deforestation,
the model may learn incorrect relationships. Figure 11A focuses
on this particular issue and acknowledges the influence of
occurrence observation date on model performances. The top-30
test accuracy is gradually higher onmore recent occurrences than
older ones. Interestingly, common and rare species predictions
seem to respond in the same manner to temporal shifts between
predictive habitat data and species observation dates.

Spatial mismatch can also happen because of the occurrences
position uncertainty (Shown in Supplementary Figure 1).

However, our model being based on convolutional filters, it is
highly robust to such spatial shifts until the true occurrence
position does not exceed the extent of the input image (here,
640 m × 640 m). Ideally, only occurrences with a position
uncertainty of less than 320 m (half of the patch size) should be
considered with our method. Figure 11B traduces the impact of
test occurrence coordinates uncertainty on model performance.
As expected, top-30 accuracy drops when uncertainty is
substantial and there is actually very little chance that the
predictive data is anywhere near the actual observation place
(see performances on Q4 quartile). Besides, performance on
both common and rare species remains almost constant when
uncertainty is inferior to the median equal to 707 meters.
Thereby, when the maximum uncertainty is of the order of
the patch size, the model performs as well as on very precise
occurrences. Finally, the Q3 marked difference of evolution
between micro/macro top-30 accuracy could be explained by the
following hypothesis: rare species predictions are more affected
by a growing coordinates uncertainty than common species
because of more locally specific habitat preferences.

In machine learning, such mismatch between labels and
predictive data is called label noise (Frénay and Verleysen, 2013)
and is actively studied (Ghosh et al., 2017; Lee et al., 2018). The
strength of our dataset in counteracting this noise is its very large
size, as demonstrated by Rolnick et al. (2017). Their work showed
that deep learning models can learn correct generalizations even
with massively noisy datasets.

At last, the strong spatial bias present in the DeepOrchidSeries
dataset influences SDMs predictions (Beck et al., 2014). Such
bias results from a very uneven sampling effort (Shown in
Figure 4C map) and not from orchids distribution. The use
of methods to mitigate spatial bias at the cost of occurrence
number is a promising direction to exploit DeepOrchidSeries (see
abovementioned publication). Nonetheless, true understanding
of orchids distribution and health will only be reached with
significant and uniform observation effort. Having access to
constructive and global predictive data is remarkably valuable but
not sufficient. Biodiversity hotspots (Myers et al., 2000) urgently
need to be sampled with high standards of care to limit human
disturbance. Citizen science initiatives are also contributing to
enhancing biodiversity monitoring worldwide (Kobori et al.,
2016; Affouard et al., 2017).

4.7. Perspective 1: Enriching the Input With
Other Predictors Informing Orchids
Habitats
An exciting future development is to add other relevant
predictors to our models. Other image time series like the
frequently used bio-climatic variables from WorldClim6 or
Ecosystem Functional Attributes (EFAs, Arenas-Castro et al.,
2018, although not independent since they also are computed
from satellite data) would bring Supplementary Materials on
species ecological niche. Complementary data like altitude7,

6http://www.worldclim.org
7https://lpdaac.usgs.gov/products/srtmgl1v003/
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available global human footprint rasters8, soil properties
variables9 (Batjes et al., 2020), or ecoregions (Olson et al., 2001)
would help to crystallize species preferences and vulnerabilities
as well.

4.8. Perspective 2: Using NN Architectures
Designed to Extract Long-Term Temporal
Dependencies
An active research avenue concerns adapting neural networks
architectures to best analyze satellite image time series with
broad temporal and spatial coverages. Recurrent CNNs (RCNNs,
Lai et al., 2015) achieve significant performance gain in land-
cover classification tasks (Rußwurm and Körner, 2018; Garnot
et al., 2019), and we anticipate it should also be relevant
for the analysis of species distributions and spatio-temporal
dynamics. In our case, we can suggest a hybrid architecture
relying on an Inception v3 model to first extract the spatial
features at each week or month and then an RNN to encode
the temporal dimension over a long period of time. 3D CNNs
are another promising candidate architecture but, as pointed out
by Garnot et al. (2019), convolutions in the temporal dimension
are not well adapted to grasp long-term dependencies and
assume a regular sampling of occurrences in time, which we
do not have. Lastly, spatio-temporal encoders with temporal
attention also merit to be tested when seeing their success on
other tasks like satellite time-series segmentation (Garnot and
Landrieu, 2021). For now, our CNN architecture is considering
the stacked time-series of size twelve as a global temporal
context. It was proven suited to grasp the local landscape
dynamics yearly and globally improve species relative probability
of presence prediction. But with larger time-series, attributing
more modeling weight to the temporal dimension will be a must.
This seems especially relevant given that predictions of rare
species and predictions in very diverse regions benefit the most
from the temporal information.

5. CONCLUSION

In this paper, we studied for the first time a worldwide SDM
based on high-resolution remote sensing image time series.
Therefore, we built and shared a substantial dataset (called
DeepOrchidSeries) aimed at modeling the distribution of orchids
on a global scale from Sentinel-2 data. The spatial structure and
phenology of species habitat are captured over a whole year for
999,258 occurrences. We then trained deep-SDMs resting on
an Inception v3 architecture whose input was modified to deal
with 12 months time-series of RGB+IR images. The analysis
of the resulting model reveals that the temporal information
contained in the time series enables a strong improvement
of the predictive performance compared to a purely spatial
model. Thanks to interpretability experiments, we did show that

8https://sedac.ciesin.columbia.edu/data/set/wildareas-v3-2009-human-footprint

and 1993 version.
9https://soilgrids.org/

seasonal patterns, in particular, are well captured, resulting in
better discrimination of habitats all over the world. We also
demonstrated that occurrence-poor species and diversity-rich
regions are the ones that benefit themost from this improvement,
revealing the importance of habitats, temporal dynamics to
characterize biodiversity. We hope that this work will pave the
way for even more elaborate spatio-temporal models allowing us
to predict future trajectories of ecosystems in the context of rapid
changes in habitats.
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