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Sugarcane (Saccharum spp.) is an efficient crop mainly used for sugar and bioethanol

production. High yield and high sucrose of sugarcane are always the fundamental

demands in sugarcane growth worldwide. Leaf angle and size of sugarcane can be

attributed to planting density, which was associatedwith yield. In this study, we performed

genome-wide association studies (GWAS) with a panel of 216 sugarcane core parents

and their derived lines (natural population) to determine the genetic basis of leaf angle and

key candidate genes with +2, +3, and +4 leaf at the seedling, elongation, and mature

stages. A total of 288 significantly associated loci of sugarcane leaf angle at different

developmental stages (eight phenotypes) were identified by GWAS with 4,027,298 high-

quality SNP markers. Among them, one key locus and 11 loci were identified in all three

stages and two stages, respectively. An InDel marker (SNP Ss6A_102766953) linked to

narrow leaf angle was obtained. Overall, 4,089 genes were located in the confidence

interval of significant loci, among which 3,892 genes were functionally annotated. Finally,

13 core parents and their derivatives tagged with SNPs were selected for marker-

assisted selection (MAS). These candidate genes are mainly related to MYB transcription

factors, auxin response factors, serine/threonine protein kinases, etc. They are directly or

indirectly associated with leaf angle in sugarcane. This research provided a large number

of novel genetic resources for the improvement of leaf angles and simultaneously to high

yield and high bioethanol production.

Keywords: sugarcane, leaf angle, GWAS, InDel marker, candidate genes

INTRODUCTION

Sugarcane (Saccharum spp.) is the major raw material for the global sucrose supply and the
preeminent energy crop for bioethanol production (Dahlquist, 2013). High biomass yield and high
sucrose content are fundamental demands for sugarcane production. Plant architecture is one of the
most important characteristics determining the yield of plant. Donald first proposed the concept
of ideal plant architecture in 1968 (Donald, 1968). It is necessary to find the plant architecture that
confers the least competition among individuals in the field, which can maximize the utilization of
light energy and increase the plant yield. Leaf angle is an important component of sugarcane plant
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architecture as it can determine how light is acquired and the
spatial distribution of the leaves. When the leaf angle is narrow,
the blade is vertically oriented, and the plant type is compact,
while when the leaf angle is large, the blade is horizontally
oriented, and the plant type is spreading leaf. Thus, leaf angle
can be optimized to reasonably improve the planting density
and photosynthetic efficiency of sugarcane, which is an effective
method to increase the crop yield. This has been widely used in
rice, maize, wheat, and other crops (Isidro et al., 2012; Li et al.,
2015; Zhang et al., 2015).

The regulation mechanism of leaf angle is a complex
process. At present, many studies have shown that leaf angle
regulation is mostly related to plant hormone synthesis and signal
transduction (Tong et al., 2012; Sun et al., 2015;Miao et al., 2016).
The inhibition of brassinosteroid (BR) synthesis will lead to the
decrease in leaf angle in rice (Yamamuro et al., 2000), while the
overexpression of key synthetic genes will lead to the increase
in leaf angle (Tanabe, 2005). In terms of BR signal transduction,
leaf angle mutants d2-2 and d61-1 were inhibited by U-type
cyclin (CYCU4; 1), which enhanced the proliferation of a group
of special cells on the far axis of the occipital region, resulting
in the upright leaves (Sun et al., 2015). On the contrary, the
overexpression and activation of key genes DLT, GSK2, BU1,
and ILI1 of the signal pathway will lead to the enlargement of
leaf angle and oblique downward extension of leaves (Tanaka
et al., 2009; Tong et al., 2009; Wan et al., 2009; Zhang et al.,
2011). In addition to BR, auxin (IAA), gibberellins (GA), and
ethylene are also involved in the regulation mechanism of rice
leaf angle (Qiao et al., 2009; Hirano et al., 2010; Zhao et al., 2010;
Miao et al., 2016), and some are not related to hormones, for
example,OSDCLl3 regulates the enlargement of rice leaf angle by
producing a segment of 24-ntSiRNAs (Wei et al., 2014). Other
similar genes such as OsWRKY11, OsLG1, and OsARF19 can
participate in the regulationmechanism of leaf angle (Wang et al.,
2005; Lee et al., 2007; Zhang et al., 2015). Moreover, microRNA
has also mediated of leaf angle. Overexpression of miR393
alters an auxin signaling pathway by inhibiting the transcription
of target genes OsAFB and OsTIR1, due to the increase in
flag leaf angle in rice (Bian et al., 2012). Overexpression of
miR1848 and RNAi OsCYP51G3 led to the decrease in leaf angle
in rice (Xia et al., 2015).

Themechanism of leaf angle regulating leaf angle in sugarcane
has been rarely reported, mainly due to the complex genetic
background of sugarcane. However, with the rapid development
of sequencing technology and the high-density SNP markers,
genome-wide association study (GWAS) has become the most
powerful method to explore the quantitative characteristics
of sugarcane. Furthermore, GWAS has been instrumental in
important breakthroughs in sugarcane yield-related traits, sugar
content, and fiber fraction (Banerjee et al., 2015; Gouy et al.,
2015; Fickett et al., 2019; Yang et al., 2019). For the complicated
trait of leaf angle, GWAS should be suitable to identify loci that
contribute to this trait. The objective of this study was (i) to figure
out the distribution of leaf angle in this panel of 216 sugarcane
core parents and their derived lines (natural population) at the
seedling, elongation, and mature stages; (ii) to identify the loci
significantly associated with leave angle by GWAS; and (iii) to

identify possible candidate genes by annotating these loci, which
could provide genetic resources useful for the improvement in
leaf angle and MAS in sugarcane.

MATERIALS AND METHODS

Plant Materials and Growth
In this study, a panel of 216 core parents and their
derivatives were selected to construct a sugarcane natural
population (Supplementary Table 1). They were derived from
many sugarcane planting countries, namely, China (150), USA
(32), Australia (10), India (4), Cuba (7), Brazil (2), France (1),
Philippines (4), Mauritius (2), South Africa (2), Thailand (1), and
Indonesia (1). Among the 216 materials, 204 materials have been
used as parents in breeding and 12 are newly bred materials used
as parents. According to our previous research, 163 varieties were
bred from 21 parents, including CP49-50, F134, Co419, CP72-
1210, CZ2, NCo310, F108, HN56-12, YC71-374, YN73-204, and
CP28-11, accounting for 87.63% of all the varieties worldwide.
The varieties bred in recent 10 years are mainly bred by the
offspring of these 21 varieties. Among the 21 core parents, CP49-
50, Co419, and NCo310 are traditional and elite varieties used
commercially all over the world (Zhang et al., 2009), and most
of them were selected as breeding parents in China. This group
represents an important genetic background in China.

The natural population was planted in Wengyuan base of
the Institute of Nanfan & Seed Industry, Guangdong Academy
of Sciences (Guangzhou Sugarcane Research Institute), in 2019.
The base is located at 24◦ 17′ 00′′ N and 113◦ 56′ 25′′ E with
an altitude of 120m. The experimental design consisted of a
completely randomized group with two repeats. Practices were
used to ensure that seedling emergence was regular and the
spacing of each seedling was uniform. Before planting, seedlings
were disinfected, cut into single buds, and transplanted to the
field after the seedlings grew to 20 cm at a row spacing of 1.1m
and a plant spacing of 25 cm. There were three rows of repeat
planting and 16 plants in each row. Only 10 plants in the middle
of the plots were investigated. The field management was carried
out according to conventional field management, with normal
fertilization, irrigation, and control of diseases, pests, and weeds.

Phenotype and Statistical Analysis
Due to the leaves at the seedling stage being few in number
and the +1 leaf being too close to the heart leaf for facile
measurement, the leaf angle of the +2 leaf and +3 leaf of each
accession was measured at the seedling stage (roughly 2 months
old) of the natural population. The leaf angle of the +2 leaf,
+3 leaf, and +4 leaf of each accession was measured at the
elongation and mature stages, respectively. The phenotypic data
were analyzed by Excel 2010.

The Whole-Genome Resequencing and
Genotyping
The genomic DNA of this natural population was extracted
according to the method described by Aljanabi et al. (1999).
Resequencing was performed by the Beijing Nuohe Zhiyuan
Bioinformatics Technology Co., Ltd., with a sequencing depth
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FIGURE 1 | Blast results of amplification sequences of SNP SS6A_102766953-G-C from 10 sugarcane core parents and their derived lines.

of 5× using an Illumina Hiseq 2500. The raw reads filtered
out those corresponding to adapter sequences, those with more
than a 10% N content, and those <10 bases and selected
those with more than a 50% quality value. All sequencing data
were aligned to the Saccharum spontaneum reference genome
(Zhang et al., 2018) by BWA software (fast and accurate
short read alignment with the Burrows–Wheeler transform;
Giannoulatou et al., 2014), and PCR duplicates reads were further
removed by SAMtools (v1.3.167, the Sequence Alignment/Map
format and SAMtools; Zhao et al., 2020). SNPs were identified
among 216 samples by the HaplotypeCaller module of GATK
(v3.868) in GVCF mode (The Genome Analysis Toolkit: a
MapReduce framework for analyzing next-generation DNA
sequencing data; Bernhardsson et al., 2020). Then, a joint call was

performed using GATK GenotypeGVCFs for all 216 samples.
SNPs were filtered using the GATK VariantFiltration function
with the parameter “QD < 2.0| | FS > 60.0| | MQRankSum
< −12.5| | ReadPosRankSum < −8.0| | SOR > 3.0| | MQ <

40.0| | DP > 30| | DP < 3.” SNPs with a minimum allele
frequency (MAF) ≥5% and a missing rate ≤50% were kept for
downstream analysis.

Linkage Disequilibrium Analysis
Linkage disequilibrium (LD) r2 was calculated using SNPs
with MAF > 0.05 and a missing rate <0.5 by PLINK
(v.1.90b3.42, PLINK: a toolset for whole-genome association
and population-based linkage analyses) with the following
parameters: –ld-window-r2 0 –ld-window 99999 –ld-window-kb
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FIGURE 2 | Leaf angle and the frequency distribution in sugarcane different growth stages. (A,B) Indicate the +2 and +3 leaf angle in the seedling stage, respectively

(206 accessions); (C–E) indicate the +2, +3, and +4 leaf angle in the elongation stage, respectively (203 accessions); (F–H) indicate the +2, +3, and +4 leaf angle in

the mature stage, respectively (211 accessions).

500 (Sadowski et al., 2019). The genome-wide average r2 between
two SNPs within 500-kb windows was calculated, and the
distance of LD decay was represented as the physical distance
over which the r2 drops to 0.1.

Genome-Wide Association Study
SNPs were imputed by the Beagle software with default
parameters (a one-penny imputed genome from the next-
generation reference panel; Khvorykh and Khrunin, 2020).
Kinship was analyzed by an emmax-kin module in emmax
software with the parameters of -v -h -s -d 10 (variance
component model to account for sample structure in genome-
wide association studies; Li et al., 2019). We used the admixture
software (http://software.genetics.ucla.edu/admixture/, v1.3.0) to
perform population structure analysis. GWAS was carried out
using the Emmax software in a linear mixed model with kinship
matrix and population structure (variance component model to
account for sample structure in genome-wide association studies;
Pino Del Carpio et al., 2018). The number of independent SNPs
was calculated, which was used to determine the genome-wide
significance cutoff of GWAS. Finally, the significance cutoff of
GWAS was -log(P) ≥ 6.

Genomic DNA Extraction and PCR
Amplification
Genomic DNA was extracted using the Plant genomic DNA
kit (Tiangen, Beijing, China) according to the manufacturer’s
protocols. DNA sample was examined on 1.0% agarose gels and
quantified by spectrophotometer.

The sugarcane cv. R570, C89-51, C323-68, CO419, C529-50,
CO1001, TH10, CPF237, F134, and Chuan66-196 genomic
DNA were selected to run the PCR amplification. Primers
were designed 300 bp before and after the SNPs according
to the sequences. PCR products of each reaction were run
on 1% agarose gels, and a single fragment was recovered
from gels and purified using a DNA purification kit (Magen,
Beijing, China). The fragment was ligated into the plasmid,
transformed into Escherichia coli DH5α competent cells
(Weidi, Shanghai, China), and then sequenced (Sangon,
Shanghai, China). The primers used for PCR are listed
in Supplementary Table 2. The 12 SNP markers and
the sequences used for PCR amplification are listed in
Supplementary Material. The blast results of amplification
sequences of SNP SS6A_102766953-G-C from 10 sugarcane
varieties are shown in Figure 1.
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TABLE 1 | Variation of sugarcane leaf angle at different growth stages in the panel of 216 sugarcane core parents and their derived lines.

Stage Leaf Minimum (◦) Maximum (◦) Mean (◦) Standard deviation (◦) Coefficient of Variation (%) Skewness Kurtosis

Seedling +2 20.55 40.07 28.69a 3.98 13.87 0.49 2.82

+3 25.21 50.18 35.12a 4.84 13.78 0.63 3.15

+2 12.72 32.58 20.21c 3.27 16.18 0.53 3.67

Elongation +3 16.54 43.59 25.36b 4.22 16.64 0.78 4.58

+4 21.88 46.48 31.44a 4.65 14.79 0.77 3.86

+2 13.08 38.33 21.82b 4.85 22.23 0.82 3.44

Mature +3 14.49 50.51 25.86b 6.15 23.78 1.16 4.7

+4 15.86 58.2 30.44a 7.03 23.09 0.93 4.13

a,b,c indicate means are significantly different (P < 0.05).

Candidate Gene for Associated SNPs
We started by merging significant SNPs based on an r2 measure
of LD ≥ 0.3. We then defined the confidence intervals as the
250-kb flanking region around each LD block. Genes located
within the confidence interval were classified as candidate genes.
InterProScan software (v5.39-77.0) with default parameters was
applied to the annotated genes in S. spontaneum with the protein
sequences as input files.

RESULTS

Phenotypic Analysis of Leaf Angle in
Sugarcane Natural Population
The leaf angle varied greatly among different sugarcane
accessions in the panel of 216 sugarcane core parents and their
derived lines (Figure 2 and Supplementary Table 1). Leaf angle
varied from 12.72 to 58.20◦ in different stages. The average angle
of +2 leaves in the seedling stage, elongation stage, and mature
stage was 28.69, 20.21, and 21.82◦, respectively, while the average
angle of +3 leaves was 35.12, 25.36, and 25.86◦, respectively,
and the average angle of +4 leaves at the elongation stage
and mature stage was 31.44 and 30.44◦, respectively. Although
the average angle at the seedling stage was the widest, the
coefficient of variation was low, which indicated that there was
little difference in leaf angle among different accessions at the
seedling stage. With the growth of sugarcane, the difference
in leaf angle became wider, until it reached its widest in the
mature stage. The dispersion of leaf angle also increased as
the growth of sugarcane with a variation coefficient ranging
from 13.78 to 23.78. Skewness and kurtosis ranged from 0.49
to 1.16 and from 2.82 to 4.70, respectively (Table 1). As shown
in Figure 2, the frequency distribution was a continuous normal
distribution or skewed distribution, indicating that a sugarcane
leaf angle is a quantitative trait controlled by multiple genes.
Pearson’s correlation analysis showed that there was a significant
positive correlation between leaf angle in each growth stage with a
correlation coefficient of 0.44–0.63 and a high positive correlation
among leaves in the same stage with a correlation coefficient of
0.83–0.94 (Figure 3). The heritability of the leaf angle was 0.7966,
0.7923, 0.8070, 0.8471, 0.8195, 0.8721, 0.8954, and 0.8924 in +2
and+3 leaf angle in the seedling stage,+2,+3, and+4 leaf angle
in the elongation stage, and +2, +3, and +4 leaf angle in the
mature stage, respectively.

SNP Markers and Population Structure of
the Natural Population
A total of 4,584,312 SNPs were obtained following filtration
and screening with Plink. Among them, 269,523 SNPs (5.88%)
were located within a gene, 144,189 SNPs (3.14%) were
situated upstream of a gene, while 143,302 SNPs (3.12%)
were situated downstream of a gene, and the remaining
4,027,298 SNPs (87.86%) were located in intergenic regions.
Based on the 4,027,298 high-quality SNP markers, 216 core
parents and their derivatives were divided into 10 subgroups
according to the best K-value, and they were Africa (2
varieties), Australia (10 varieties), Brazil (4 varieties), China
(125 varieties), Cuba (9 varieties), India (4 varieties), Mauritius
(2 varieties), Other (19 varieties), Philippines (2 varieties),
Taiwan (12 varieties), and USA (33 varieties), respectively,
suggesting that our panel may originate from the admixture
of 10 populations (Figure 4). Whole-genome SNP markers
were initially used to analyze the LD level of sugarcane leaf
angle at different growth stages. The correlation coefficient
(r2) was >0.1, and when r2 was 0.10, the LD decay rate was
10 kb.

Genome-Wide Association Study of Leaf
Angle
A total of 288 SNP loci were found to be significantly associated
(P < 0.001) with eight leaf angle phenotypes for two repeats
(Figure 5 and Supplementary Table 3). There were 69, 113,
and 119 loci detected in the seedling, elongation, and mature
stages, respectively. One locus (Ss6A_102766953) was mapped
in chromosome 6A near the SNP marker of Chr21_102766953
by the phenotype of all these three stages synchronously
(Figure 6 and Table 2). Eleven loci were detected by two of
these three stages, they were Ss1A_ 68079563, Ss1A_ 70216053,
Ss1A_ 71163098, Ss4A_ 51223571, Ss5A_ 63761550, Ss5C_
86542573, Ss5D_ 30890024, Ss6A_ 53870145, Ss6C_ 46060170,
Ss7C_ 58432083, and Ss7D_ 67376640, accounting for 1.48–
4.90% of the phenotypic variation (Table 2), and they were
considered to be the elite alleles in this study. Furthermore, 14
loci were identified by the +2 and +3 leaves in the seedling
stage, while there were three loci detected in the +2, +3, and
+4 leaves in the elongation and mature stages, respectively
(Supplementary Table 3).
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FIGURE 3 | Pearson’s correlation matrix for leaf angle in sugarcane different growth stages. The shaded scale refers to the strength of correlation. In Pearson’s

correlation, abs r = 0.5–1 means a greater correlation, abs r = 0.3–0.5 means medium correlation, abs r = 0.1–0.3 means lesser correlation, and abs r = 0–0.1

means no correlation. SS2. and SS3. denote the +2 and +3 leaf of the sugarcane seedling stage, respectively; ES2., ES3., and ES3. denote the +2, +3, and +4 leaf

of the sugarcane elongation stage, respectively; MS2., MS3., and MS4. denote the +2, +3, and +4 leaf of the sugarcane mature stage, respectively.

InDel Markers Linked to SNP
An InDel site linked to SNP Ss6A_102766953-G-C was obtained
by sequencing 12 amplified products from 10 core parents and
their derivatives. The InDel marker was closely linked to SNP
Ss6A_102766953-G-C, which was 18 bp nucleotide sequences.
The nucleotide sequence was TCCAGTTGTATTTGTACC.
When the SNP site was C, the amplified sequences were 218
bp. When the SNP site was G, the amplified sequences were
200 bp. Ss6A_24693233-G-C was a significant SNP greater than
the threshold in genome-wide association analysis of +2 leaves
in the seedling stage, +2 leaves in the elongation stage, and +2
leaves in the mature stage.

Candidate Gene Analysis
Candidate genes were searched in the range of LD decay
distance (500 kb) of SNP upstream and downstream
of –log10 (P-value) within each locus. According to
the annotation of gene function and its expression
position/expression level in the reference genome, the
most likely candidate gene was selected as the candidate
gene of this site. A total of 5,571 candidate genes were
located in these 288 loci, of which 3,892 had GO functional
annotations (Supplementary Table 3). These candidate
genes are mainly related to brassinosteroid LRR receptor
kinase precursor, auxin response factor, gibberellin
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FIGURE 4 | Population structure of 216 sugarcane core parents and their derived lines. (A) Phylogenetic tree of 216 sugarcane core parents and their derived lines.

Each distinct group was marked with a specific color; (B) subpopulations inferred using structure.

receptor, chloroplastic, auxin synthesis/signal transduction,
serine/threonine protein kinase, and various transcription
factors. They are directly or indirectly associated with
leaf angle.

Core Parents and Their Derivatives With
Narrow Leaf Angle Tagged With SNPs
A total of 13 germplasm resources carrying a different
combination of elite loci and narrow leaf angle (<30◦) in all these
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FIGURE 5 | Chromosomal locations of the leaf angle loci mapped in sugarcane three growth stages. S2 and S3 denote the +2 and +3 leaf of the sugarcane seedling

stage, respectively; E2, E3, and E4 denote the +2, +3, and +4 leaf of the sugarcane elongation stage, respectively; M2, M3, and M4 denote the +2, +3, and +4 leaf

of the sugarcane mature stage, respectively.

stages were selected as given in Table 3. Marker heterozygosity
remained in all the core parents and their derivatives, except for
Xuan-15, such as #1626 at Snp8 (Ss6A_102766953) and Snp12
(Ss7D_67815942), CP57-614 at Snp7 (Ss5D_ 30890024) and Snp9
(Ss6A_ 53870145), and CP89-2143 at Snp5 (Ss5A_ 63761550) and
Snp9 (Ss6A_ 53870145). This suggested that these materials can
also be used for fine mapping of these loci. These 13 core parents
and their derivatives with their leaf angle and nearest marker
should be useful for improving sugarcane leaf angle viaMAS.

DISCUSSION

The leaf angle of sugarcane is an important factor in determining
plant architecture. Compact plant architecture can improve
photosynthetic efficiency through reasonable close planting to
enhance the yield of sugarcane per unit field area (Luo et al.,
2004, 2013). However, the research related to sugarcane plant
architecture and leaf angle is focused on epigenetics, which may
be due to the polymorphism, high chromosome numbers, and
large complex genome size of sugarcane. To study leaf angle

deeply, it is necessary to find out a gene/QTL that determines
leaf angle in sugarcane. In this study, 288 SNP loci were found
to be significantly associated with leaf angle at the seedling,
elongation, and mature stages by GWAS. A total of 69, 113, and
119 loci were detected at the seedling, elongation, and mature
stages, respectively. This might be related to the variation in
leaf angle at each stage. The average leaf angle at the seedling
stage was 31.91◦, but the coefficient of variation was low among
all the materials. The leaf angle at the elongation and mature
stages was 26.04 and 25.67◦ with a wider variation, respectively.
Moreover, Pearson’s correlation analysis showed that there was
a significant positive correlation between leaf angle at each
stage, especially for different leaves at the same stage, which
was consistent with the GWAS mapping results. Among them,
one QTL was identified at all three stages synchronously, while
the other 11 loci were detected at two stages, indicating that
these QTLs were consistent QTL across development stages.
This is consistent with the conclusions obtained in rice by
Hittalmani et al. (2003) and Xu et al. (2015). In addition, many
loci were not consistent across different leaves and stages, which
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FIGURE 6 | Manhattan plot for the locus of Ss6A_102766953 in sugarcane three growth stages. (A) Denotes the +2 leaf of the sugarcane seedling stage, (B)

denotes the +2 leaf of the sugarcane elongation stage, and (C) denotes the +2 leaf of the sugarcane mature stage.

might be due to the influence of different growth stages and
environmental factors.

In this study, 12 consistent loci that determine sugarcane leaf
angle were discovered. Ss6A_102766953 was stably identified
from all three stages, and the candidate genes within this

locus indicated that MYB transcription factors might play a
role in determining leaf angle. The MYB transcription factor
family is one of the largest transcription factor families in
plants and is involved in the developmental process of plant
cell differentiation, morphology, etc. Dubos et al. (2010)
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TABLE 2 | List of candidate genes associated with elite loci of sugarcane leaf angle.

SNP tag Candidate gene E-valuea PVE(%)b Functional annotation

Ss1A_ 68079563 Sspon.01G0018220-1A 2.35E-06 2.92 Sulfate transporter

Ss1A_ 70216053 Sspon.01G0018870-1A 3.00E-06 1.74 Ubiquitin-conjugating enzyme

Ss1A_ 71163098 Sspon.01G0019040-1A 2.49E-06 2.21 Auxin response factor

Ss4A_ 51223571 Sspon.05G0009970-2D 1.32E-06 1.84 amino acid transporter ANTL1-likeG

Ss5A_ 63761550 Sspon.05G0015920-1A 1.32E-06 1.48 Serine/threonine-protein kinase

Ss5C_ 86542573 Sspon.05G0036390-1C 4.54E-07 1.49 Transcription factor MYB82-like isoform X1

Ss5D_ 30890024 Sspon.05G0009970-2D 1.28E-06 4.78 amino acid transporter ANTL1-like

Ss6A_ 53870145 Sspon.06G0009970-1A 1.35E-06 4.90 Glucose-6-phosphate/phosphate-translocator precursor

Ss6A_102766953 Sspon.06G0018820-1A 1.43E-06 1.67 MYB transcription factor

Ss6C_ 46060170 Sspon.06G0010540-2C 2.24E-06 2.86 Serine-rich protein-related

Ss7C_ 58432083 Sspon.07G0033260-1C 7.95E-07 2.78 Thylakoid membrane protein TERC chloroplastic

Ss7D_ 67815942 Sspon.07G0034190-2D 1.55E-06 3.13 Probable serine/threonine-protein kinase

a Indicates the significantly associated SNP sequences blast with transcriptome library of sugarcane based on E-value < 10−5.
b Indicates the phenotypic variation explained by the mean value of the individual locus detected in different stages.

TABLE 3 | The elite core parents and their derivatives with narrow leaf angle and the nearest markers.

Name S2+ S3+ E2+ E3+ E4+ M2+ M3+ M4+ Snp1 Snp2 Snp3 Snp4 Snp5 Snp6 Snp7 Snp8 Snp9 Snp10 Snp11 Snp12a

1626 25.29 29.01 15.39 20.51 28.55 13.95 17.80 20.78 T A C G C C G C C/T A A C/T

CP57-614 22.01 29.55 14.41 17.09 22.59 15.65 16.92 20.00 T G C T C C G G/Cb C A/Gb A C

CP89-2143 24.62 28.29 18.75 22.29 28.84 18.17 20.59 24.57 T G C T C/Tb T A C C A/G G C

GT-03-411 24.22 29.88 18.24 22.27 25.23 18.47 21.25 25.35 T G C T/Gb C C G C C A G C/T

HOCP03-708 21.66 29.06 14.89 19.10 27.59 17.00 20.71 23.56 T A C T C C G C T A G C/T

Liucheng05-291 21.48 28.42 17.75 22.00 26.73 15.49 18.79 20.80 T G/Ab C T C C G C C A G C/T

Liucheng06-241 22.77 27.88 17.82 23.06 27.83 13.08 14.49 15.86 T G/A C T/G C C G C C A G C

Neijiang57-416 20.91 25.35 18.33 23.02 28.45 17.27 20.86 26.39 T G C T C C G C C A/G G C

Xuan-15 24.12 28.19 14.98 18.53 25.61 19.05 24.16 24.66 T G C T C C G C C G G C

YCE07-71 23.04 27.49 15.27 19.84 27.25 21.42 24.16 29.96 T A C T C C G C C A/G G T

YT-01-71 22.75 28.54 15.99 20.84 24.81 18.92 20.74 23.14 T G C T C C G G C A/G G C

Zhanzhe-40 25.11 28.88 12.72 16.54 21.88 15.13 16.55 19.09 T G C T C C G G/C C A/G G C

Zhanzhe-50 20.55 26.89 16.17 19.45 22.72 16.39 18.08 20.54 T G C T C C G C C A/G G/A C

aS2+ and S3+ denotes leaf angle of +2, +3 in seedling stage, E2+, E3+, E4+, M2+, M3+ and M4+denotes leaf angle of +2, +3, and +4 in elongation and mature stage,

respectively. Snp1 to Snp12 were the nearest markers of Ss1A_ 68079563, Ss1A_ 70216053, Ss1A_ 71163098, Ss4A_ 51223571, Ss5A_ 63761550, Ss5C_ 86542573, Ss5D_

30890024, Ss6A_102766953, Ss6A_ 53870145, Ss6C_ 46060170, Ss7C_ 58432083, Ss7D_ 67815942, respectively.
b Indicates heterozygous.

found that MYB transcription factors regulate Arabidopsis
growth and development, auxin response, primary and
secondary metabolism, cell fate determination, plant growth
and development, and responses to various biotic and abiotic
stresses. Zhang et al. (2007) and Shin et al. (2007) found that
MYBs are induced by ABA, IAA, CTK, GA, ethylene, and other
plant hormones, indicating that MYB transcription factor genes
in plants are widely involved in the responses to plant hormones.
Cao et al. (2015) found that OS JAMyb encoding the 2R-MYB
protein is expressed in root, stem, leaf, leaf sheath, panicle, and
other parts of rice. Therefore, it is suggested that this candidate
gene might be associated with leaf angle and can be further
studied in future.

Auxin is an important signaling molecule and regulates the
growth and development of plants, such as promoting cell

elongation, vascular differentiation, and regulating the size of
leaf angle. In this research, Ss1A_ 71163098 was detected in the
seedling and elongation stages, and the candidate genes showed
that this locus contains an auxin response factor. Previously,
Moon et al. (2013) found that auxin accumulated at the boundary
between the leaf and sheath through fluorescence imaging of
the auxin-directed transport protein ZmPIN1a, indicating that
auxin is involved in the positional initiation of the leaf sheath.
Zhang et al. (2014) identified a gene that controls leaf angle,
LAZY1, on maize chromosome 4 via map-based cloning, which
showed the change in leaf angle caused by auxin effects on cell
development. The auxin-related gene FIB identified in rice is
homologous to the auxin biosynthesis gene TAA in Arabidopsis,
encoding tryptophan aminotransferase. The functional deletion
mutants of FIB showed smaller leaves and larger leaf angles
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(Yoshikawa et al., 2014). Lr47 affects auxin signal transduction
by inhibiting the interaction between C-22-hydroxylation and
6-deoxybrassinolide and controls the curvature of the pulvinus,
resulting in larger leaf angles and oblique leaf elongation
(Miao et al., 2016). The elongation of leaf occipital cells in
LC1 mutant plants is affected by auxin and has an increased
leaf angle phenotype (Zhao et al., 2013). The F-box protein
TIR1 regulates the angle of rice leaves by binding IAA and
Aux/IAA, which leads to ubiquitination, degradation, and release
of ARF transcription activity. Overexpression of OsIAA1, which
encodes Aux/IAA protein, reduced the inhibition of auxin
treatment on root elongation but increased the sensitivity to 24-
epibrassinolide in rice. Overexpression of OsIAA1 resulted in
significant morphological changes such as decreased plant height
and increased leaf angle (Song et al., 2009). In addition, IAA
can also participate in the regulation of rice leaf angle through
interaction with BR. IAA is involved in the OsBRI1-mediated BR
signal transduction pathway. OsARF11 and OsARF19 bind and
stimulate the promoter of OsBRI1 to induce changes in leaf angle
in rice (Shen et al., 2010; Zhang et al., 2015).

Some functional kinases, such as serine/threonine protein
kinase, are also the main factors regulating leaf angle. Ss5A_
63761550 was identified in the elongation and mature stages,
and the candidate genes showed that this locus is associated
with serine/threonine protein kinase. ILA1 is a functional kinase
with serine/threonine protein kinase activity, which mainly exists
in the nucleus and expresses in the vascular bundles of the
leaf pillow. It affects the leaf angle by regulating the formation
of mechanical tissue and the abnormality of the cell wall
composition of the rice leaf pillow. The T-DNA insertion mutant
ila1 showed the character of increased leaf angle. Through the
anatomical analysis of ila1mutant, it was found that the number
of vascular bundles in the leaf pillow decreased and the number
of thick-walled cells decreased. Moreover, the mechanical tissue
abnormality of the mutant leaf pillow led to the lower content of
cellulose and other cell wall monosaccharides, which led to the
poor mechanical support of the mutant and the increased leaf
angle (Ning et al., 2011).

Many other elite loci mapped in this study are also
very important in regulating the leaf angle. The candidate
gene Ss1A_ 68079563 is predicted to be a sulfate transporter
(H+/SO4

2− cotransporter). Their transport function depends on
the membrane potential gradient maintained by an H+ pump,
and the sulfate transporter is higher in mature or older leaves
(Hopkins et al., 2004). The candidate gene Ss1A_ 70216053 binds
ubiquitin-conjugating enzymes that are mainly involved in the
ubiquitin–proteasome system (Gagne et al., 2002), regulating
ethylene, GA, IAA, and other hormone signal transduction (Qiao
et al., 2009; Hirano et al., 2010; Zhao et al., 2010; Miao et al.,
2016), thereby indirectly affecting the leaf angle. The candidate
genes Ss4A_ 51223571 and Ss5D_ 308900244 are associated
with amino acid transport that is necessary for the growth and
development of plants (Hammes et al., 2010). The candidate gene
Ss6A_ 53870145 is related to the glucose-6-phosphate/phosphate
translocator precursor that is preferentially expressed in non-
green tissues and mediates the transport of glucose-6-phosphate
(Glc-6-P), triose phosphate, and glycerol-3-phosphate (3-PGA).
Plastids of non-green tissues are the main storage sites of

carbohydrates as starch in heterotrophic tissues. Through GPTs,
non-green plastids can transfer sugar from the cytoplasm into
carbon sources in the form of Glc-6-P to drive the synthesis
of important substances such as fatty acids, amino acids, and
starch, thus providing precursors for the pentose phosphate
pathway (OPPP; Kunz et al., 2010). The candidate gene Ss7C_
58432083 associates with the thylakoid membrane protein
TERC in the chloroplast and plays an active role in protein
transport, photosystem assembly, and thylakoid membrane
stability (Dekkera and Boekema, 2005). The candidate genes of
these excellent SNPs are directly or indirectly related to leaf angle
and should be further investigated in future.

An InDel marker closely linked to SNP site was obtained in
this study. The InDel markers can be detected by amplifying the
target fragment, which can predict the sugarcane plant type in
a specific stage. The results can be used for molecular marker-
assisted breeding to accelerate the breeding progress of sugarcane
leaf angle and improve the selection efficiency.

CONCLUSION

In summary, a total of 288 SNP loci that contribute to leaf
angle were identified by GWAS at the seedling, elongation,
and mature stages of development in sugarcane. Twelve
of these SNPs were detected in at least two of three
developmental stages. An InDel marker (SNP Ss6A_102766953)
linked to narrow leaf angle was obtained. The candidates
of these elite loci were analyzed compared to the function
of their homologs in rice, corn, Arabidopsis, and other
plants in this study. These candidate genes are mainly
related to MYB transcription factors, auxin response factors,
serine/threonine protein kinases, sulfate transporters, ubiquitin-
conjugating enzymes, amino acid transporters, glucose-6-
phosphate/phosphate translocator precursors, and the thylakoid
membrane protein TERC. Thirteen core parents and their
derivatives tagged with SNPs (Table 3) can be used as narrow-
leaf-angle donors for MAS.
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