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Deep learning-based methods have recently provided a means to rapidly and effectively
extract various plant traits due to their powerful ability to depict a plant image across
a variety of species and growth conditions. In this study, we focus on dealing with two
fundamental tasks in plant phenotyping, i.e., plant segmentation and leaf counting, and
propose a two-steam deep learning framework for segmenting plants and counting
leaves with various size and shape from two-dimensional plant images. In the first
stream, a multi-scale segmentation model using spatial pyramid is developed to extract
leaves with different size and shape, where the fine-grained details of leaves are
captured using deep feature extractor. In the second stream, a regression counting
model is proposed to estimate the number of leaves without any pre-detection, where
an auxiliary binary mask from segmentation stream is introduced to enhance the
counting performance by effectively alleviating the influence of complex background.
Extensive pot experiments are conducted CVPPP 2017 Leaf Counting Challenge
dataset, which contains images of Arabidopsis and tobacco plants. The experimental
results demonstrate that the proposed framework achieves a promising performance
both in plant segmentation and leaf counting, providing a reference for the automatic
analysis of plant phenotypes.

Keywords: plant phenotyping, segmentation, deep CNN architecture, leaf counting, multiple traits

INTRODUCTION

Plant phenotype is a set of observable traits of a plant, which is heavily influenced by the
interaction between plant gene expression and environmental factor (Siebner et al., 2009). The
accurate and efficient monitoring of phenotypes is essential for plant cultivation, which is a
prerequisite for intelligent production and planting, and information/data management. The
traditional monitoring of plant phenotype mainly requires manual observation and measurement
to analyse the appearance of plants in terms of their shape, texture, colour, and other characteristic
morphological phenotypes (Montero et al., 2000; Minervini et al., 2015). Such an approach is labour
intensive, which is time-consuming and prone to error due to the reliance on subjective perception
(Yang et al., 2020). Image-based plant phenotyping allows non-invasive and distant observation,
reducing the effects of manual interference and vastly increasing the scale and throughput of plant
phenotyping activities. However, it still requires a robust algorithm to automatically process the
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input image to provide accurate and reliable phenotypic
estimation (Scharr et al., 2016). In addition, such an algorithm
should be able to estimate a wide diversity of phenotypes, which
allows for a range of different scientific applications. The current
trend of image-based plant phenotyping attempts to combine
image processing (e.g., noise removal and image enhancement),
feature extraction and machine learning to obtain effective
and efficient estimation (Tsaftaris et al., 2016). In recent years,
deep learning-based methods have made remarkable progress
in the field of computer vision such as semantic segmentation,
classification, and object detection (Lecun et al., 2015). They
integrate feature extraction and classification using a single
convolutional neural network (CNN) based framework, which is
trained in an end-to-end fashion. Due to their powerful ability
to capture meaningful feature representation, deep learning-
based methods are drawing more attention in the plant research
community (Dhaka et al., 2021; Kundu et al., 2021) and have also
been applied to deal with different tasks in plant phenotyping
(Choudhury et al., 2019).

Plant segmentation and leaf counting are two fundamental
tasks of plant phenotyping as they are relevant to the
developmental stage of a plant, and are considered essential
means of providing vital indicators for the evaluation of plant
growth (e.g., growth regulation and flowering time), yield
potential, and plant health. Moreover, they help farmers and
horticulturists to make better decision regarding cultivation
strategic and timely horticulture adjustments. Plant segmentation
aims to extract the plant area, shape, and size from a visual
perspective by segmenting an entire plant from the scene
background in an image. Such a task closely relates to the
semantic/instance segmentation problems, and some researchers
have addressed this task using instance/semantic segmentation
(Romera-Paredes and Torr, 2016; Ren and Zemel, 2017; Ward
et al., 2018; Zhu et al., 2018), achieving promising performance.
Leaf counting aims to estimate the precise number of leaves of
a plant. There are two mainstream ways to infer the leaf count
or leaf number: (1) estimating the leaf number as a sub-product
of leaf segmentation or detection (Girshick, 2015; Kong et al.,
2020; Kumar and Domnic, 2020; Lin and Guo, 2020; Lu and Cao,
2020; Tassis et al., 2021); and (2) directly regarding the task as
a holistic regression problem (Dobrescu et al., 2017; Giuffrida
et al., 2018; Itzhaky et al., 2018; Ubbens et al., 2018; Mishra
et al., 2021). The methods have successfully addressed the tasks
of leaf segmentation and counting using machine learning and
especially deep learning methods, which uncover the intrinsic
information from plant images, even when they contain complex
structure. However, they merely focus on a single task, i.e., learn
one plant trait at a time. Thus, they might ignore the facts that
plant phenotype traits tend to be associated with each other and
lack the insight to the potential relationship between different
traits (Gomes and Zheng, 2020). For instance, the leaf number
is associated with the leaf area, age, and genotype. We believe
that incorporating multiple traits in the deep CNN architecture
could be beneficial for learning more reliable and discriminative
information than using only one trait. Dobrescu et al. (2020)
presented a multi-task framework for leaf count, projected leaf
area, and genotyping, where they compute three plant traits at

the same time by using the share representation layers. However,
they did not address the tasks of plant segmentation that is more
challenging due to the requirement of classifying all the leaves
(foreground) pixel by pixel.

Convolutional neural network based methods have been
applied to plant and leaf segmentation in plant phenotyping. Aich
and Stavness (2017) used a CNN based deconvolutional network
for plant (foreground) and leaf segmentation. Kuznichov et al.
(2019) utilised data augmentation technology to maintain the
geometric structure and physical appearance of plant in images
to improve the leaf segmentation. Bell and Dee (2019) employed
a relatively shallow CNN model to classify image edges extracted
using Canny edge detector, which distinguished the occluding
pairs of leaves. Ren and Zemel (2017) adopted recurrent
neural network (RNN) to generate a single segmented template
for each leaf and combined convolutional long short-term
memory (LSTM) network using spatial inhibition modules. They
then used dynamical non-maximal suppression to leverage the
previously segmented instances to enhance the segmentation.
Although achieving promising results, these methods use the
shallow CNN model, which is inadequate to capture the
meaningful information of the diversity of plant images.
Moreover, all methods concentrate on addressing the single task,
i.e., leaf/plant segmentation in an independent pipeline.

Image segmentation using deep learning has gained a
significant advance, and a few benchmark methods have
been proposed. Fully convolutional networks (FCN) (Long
et al., 2015) and U-Net (Ronneberger et al., 2015) are two
representative models that are based on the encoder-decoder
network architecture. Both of them share a similar idea, i.e., using
skip connection, that shows the capability to capture the fine-
grained characteristics of the target images. FCN summed the
up-sampled feature maps with feature maps skipped from the
encoder, while U-Net modified the way of feature concatenation
by adding convolutions and non-linearities during each up-
sampling step. Another mainstream work is using spatial
pyramid pooling ideas. PSPNet employed a pyramid parsing
operation that captures global context information by region
feature aggregation (Zhao et al., 2017). DeepLab (Chen et al.,
2017) introduced the atrous convolution with up-sampling filter
for feature extraction, and extended it using spatial pyramid
pooling to encode the multi-scale contextual semantics. However,
the various scale pooling operations tend to lose local spatial
details and will fail to maintain leaf target with high density if
a small input size is adopted. The Mask Region Convolutional
Neural Network (Mask-RCNN), proposed by He et al. (2017),
extended the region proposal network by integrating a branch
to predict segmentation mask on each ROI. Mask RCNN can
segment the object with pixel-wise mask from a complicated
background, which is suitable for the leaf segmentation. Thus,
we developed our network model based on the backbone
architecture in Mask-RCNN and simply replaced the plain skip
connection with a nested dense skip pathway to enhance the
ability to extract more fine-grained features in leaf images.

Leaf counting is also an important task in plant phenotyping,
since leaf count is considered as an indicator for yield potential
and plant health (Rahnemoonfar and Sheppard, 2017). From the
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perspective of computer vision, leaf counting can be addressed
along two different lines: (1) Regarding leaf counting as the sub-
product of leaf segmentation or detection, leading to the leaf
number following the segmentation module; and (2) Directly
learning an image-to-count model to estimate the leaf number
using training samples.

Direct Count
Leaf counting is regarded as a holistic regression task, in which
a counting model estimates the leaf number for a given plant
image. In this way, the machine learning based regression
model solely needs the annotation of leaf number, which is an
easier way to obtain compared with the pixel-wise annotations
using segmentation. Dobrescu et al. (2017) presented a counting
framework employing the ResNet50 backbone (He et al., 2016),
in which the learning of leaf counting is performed by gathering
samples from multiple sources. Itzhaky et al. (2018) proposed to
estimate the leaf number using multi-scale representations and
fuse them to make the final predictions. Ubbens et al. (2018)
presented an open-source platform which aims to introduce a
more generalised system for plant breeders, which can be used
to count leaves across different datasets, as well as to assist other
tasks e.g., projected leaf area and genotype classification. da Silva
and Goncalves (2019) constructed a CNN based regression model
to learn from images, where the skip connections of Resent50
(He et al., 2016) are considered efficient for leaf counting. Direct
count could be a natural and easy selection as it is not necessary
to annotate the image when training.

Counting via Detection or Segmentation
This approach regards the leaf counting problem as a sub-
product of detection or segmentation, where the exact locations
and number of the leaves are also obtained after detection
or segmentation. Romera-Paredes and Torr (2016) proposed
to learn an end-to-end segmentation model using RNN, that
segments each leaf sequentially and then estimate the number
of segmented leaves. Aich and Stavness (2017) used a CNN
based deconvolutional network for leaf segmentation and a
convolutional network for leaf counting. Kumar and Domnic
(2019) developed a counting model with the combination of
CNN and traditional methods, where graph-based method is
used for U-Net segmentation and CNN-based is then used for
leaf counting via a fine-tuned AlexNet. Ren and Zemel (2017),
propose a neural network using which visual attention operation
to jointly learn the instance segmentation and counting model,
where sequential attention using LSTM cell is created by using
temporal chain to output one instance at a time. However, such
a segmentation or detection-based method has one limitation
for counting. That is, only successfully segmented leaves are
counted, and imperfect detection will result in reduced accuracy
in counting. Unlike the aforementioned methods, we employ the
segmented binary image to guide the learning of leaf counting,
i.e., not counting directly from the segmented image, thus
avoiding the effect of inaccurate detection or segmentation on
the counting task.

In this study, we present in this article a two-stream
framework, one stream for plant segmentation and the other

stream for leaf counting based on regression. The resultant mask
from segmentation stream is leveraged to guide the learning of
leaf counting, which help to alleviate the inference of complex
background. In order to obtain more semantic and meaningful
feature representation of plant images, we employ the deep CNN
as the model backbones of both two streams. By using the CNN
paradigm, the two-stream model is robust and generalizes well
regardless of the plant species and the quality of the acquired
image data. This is achieved by one stream task supervising the
training of the other stream task via sharing certain knowledge.
To this end, we employ the segmented binary mask from the
plant segmentation stream as an auxiliary cue to optimise the
training process of the leaf counting stream. Introducing the
binary mask to supervise the learning of leaf counting is based
on two issues that exclusively exist in plant leaf counting: (1)
some leaves might be partially occluded by other leaves, or
are incomplete and fragmentary on their own, making them
difficult to detect; and (2) the leaves sometimes contain complex
background, increasing the challenge in leaf counting. These two
issues led to incorrect or missing count where the meaningful
and useful information of leaf is hard to maintain during the
leaf counting. The binary mask effectively deals with these two
issues by precisely locating all individual leaves while alleviating
the effect of complex background. In addition, the binary mask
of image samples brings more diversity of the input images by
increasing the number of samples, which could be regarded as an
implicit data augmentation.

Specifically, in our proposed framework, a two-stream deep
neural network model segments the leaves and counts the
number of leaves, where the segmented binary mask is employed
as an auxiliary cue to supervise the learning of leaf counting. In
the stream for segmentation, a multi-scale-based segmentation
network is proposed to extract fine-grained characteristics of
leaves. In the stream for leaf counting, we propose to learn a
regression model based on the fine-tuned CNN model. During
the learning of leaf counting, the segmented mask is utilized
to highlight the target leaf region (foreground) of interest
(ROI) from the entire image by removing the disturbance of
complex background (i.e., non-leaf area, thus facilitating the
counting process.

The contributions of this study are summarized as follows:

1. We propose to explore fine-grained characteristics, i.e.,
high inter-class similarity and low intra-class variations,
widely existing in high throughput plant phenotyping that
cause the failure in localizing the leaves within a small area
during segmentation. To address this issue, we introduce a
multi-scale U-Net segmentation model which compensates
the upper-lower semantics difference by concatenating
features in various scales. This model is learned in an end-
to-end fashion, allowing for efficient segmentation of the
leaves with different areas.

2. We propose a two-stream network based on deep
CNN architecture to complete the leaf counting
together with plant segmentation, in which the model
outputs the segmentation results and directly estimates
the leaf number.

Frontiers in Plant Science | www.frontiersin.org 3 May 2022 | Volume 13 | Article 844522

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-844522 May 13, 2022 Time: 16:16 # 4

Fan et al. Segmentation-Guided Deep Leaning Framework

3. We enhance the leaf counting by introducing the auxiliary
binary information. The binary mask is utilised to
supervise the leaf counting, which increases the contrast
between the leaf target from background interference,
and significantly aids the convergence of the counting
regression model.

The remainder of the article is presented as follows: we review
related work in Section “Introduction,” present our method in
Section “Proposed Method,” provide the experimental results in
Section “Experiments” and discuss the conclusions and further
work in Section “Conclusion.”

PROPOSED METHOD

We present a parallel two-stream network for determining
leaf count and undertake segmentation simultaneously for the
rosette-shaped plants as shown in Figure 1. The stream for
segmentation adopts the nested U-Net (U-Net++) architecture
(Zhou et al., 2018) as backbone to extract the target leaf region
from the entire image using a binary mask. The stream for
leaf counting learns the CNN based regression model which
is customized by modifying its last layer to directly estimate
the number of leaves where the segmented mask and original
colour images with the leaf number label are mixed as input of
the regression model. The streams for plant segmentation and
count are designed separately first. The segmented binary mask
denoting the area of the leaf is used as a complementary cue to
supervise the learning of the count regression stream. This is
because the two key traits of the two streams, i.e., the area and
leaf number are often related to each other. Incorporating the
leaf area into the estimation of leaf number during the learning
of deep neural network aids not only to learn more meaningful
and essential information, but also alleviates the influence of
complex background.

Plant Segmentation Module
The segmentation module aims to extract the whole leaf area
from the background. In order to enhance the robustness
and accuracy of extraction, it is a necessity for the module
to be in capacity to depict the characteristics existing in a
plant image, i.e., fine-grained and variation in shape and size.
To this end, we consider the nested U-Net as our backbone
network for the segmentation. The nested U-Net model is
proposed based on the U-Net that was originally proposed
to meet the requirement on accurately segmenting medical
images. Compared with the original U-Net model proposed
by Ronneberger et al. (2015), the nested U-Net architecture
replaces the plain skip connection with nested and dense skip
connections, which can capture fine-grained information of the
object in an image. Moreover, due to the up-sampling scheme,
the U-Net model could locate leaves with different size and shape
by using feature maps with different scales. By dealing with
the characteristics in leaves, the nested U-Net is thus suitable
for plant segmentation. Another problem needs to be addressed
during training, namely the ROIs of plant segmentation comprise

a relatively small segment of the entire image. Thus, negative
samples (i.e., background pixels) are much larger than positive
samples (i.e., leaf pixels), which resulted in an unbalanced binary
classification problem. To address the problem, we integrate
the binary cross-entropy (BCE) loss with dice loss together,
and jointly guide the learning process of the segmentation.
Generally, the nested U-Net consists of three main modules:
encoding, decoding, and cross-layers dense concatenation. The
feature maps in the same size are defined to be of the same
layer, denoting the layers as L1–L5 from top to bottom. Each
node represents a feature extraction module consisting of two
3 × 3 convolutional layers, followed by a rectified linear unit
(ReLU) and a 2 × 2 max pooling that use stride 2 for down-
sampling.

The output features from encoder are fused with the next
encoder layer via up-sampling features across layers from top
to bottom. The fusion outputs are concatenated with the
corresponding up-sampled features of the next layer, and the
process is iterated until there is no corresponding module in the
next layer. The integrated feature maps are defined as

xi,j
=

H
(
xi−1,j) j= 0

H
([[

xi,k
]j−1

k=0
,U

(
xi+1,j−1)]) j > 0

(1)

where H(·) denotes a convolution operation followed by an
activation function, U (·) denotes an up-sampling layer, and []
denotes the concatenation layer. Nodes at level j = 0 only receive
input from the previous encoder layer; nodes at level j = 1 receive
the encoder and sub-network input from two consecutive levels;
and nodes j > 1 receive j + 1 inputs of which j inputs are the
outputs of the previous j nodes in the same skip pathway and the
last input is the up-sampled output from the lower skip pathway.

The dense skip connections between layers in the same
dimension pass the output of the current module to all
subsequent modules and fuse it with other input features. Thus,
the overall U-Net++ feature fusion structure is in the form
of an inverted pyramid, where the intermediate layer contains
more accurate localisation information, while the in-depth layer
captures pixel-level category information.

As a typical binary classification task, the core objective is
to segment the plant image into a binary image by labelling
the foreground and background pixels as 1 and 0, respectively.
To overcome the class imbalance problem, BCE loss and Dice
loss are combined to form the objective function to optimize
the imbalance between the foreground and background pixels
through back-propagation. Dice coefficient is a measure of the
pixel degree of an ensemble, and the original expression takes the
form of

d =
2|X ∩ Y|
|X| + |Y|

(2)

where X and Y are sets, and s ∈ [0, 1], and the size of s reflects the
similarity between the sets X and Y.
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FIGURE 1 | The proposed parallel two-stream network combines leaf counting and segmentation tasks. Top row: the modified Resnet50 regression model for leaf
counting with 16 residual blocks. Remaining rows: U-Net++ for segmentation via multi-use of the features from different semantic levels (layers). Each blue box
corresponds to a multi-channel feature map, and the green boxes represent copied feature maps. The arrows denote various operations.

The binary cross-entropy and dice coefficient are combined to
form the final loss function, which is defined as

L(Ygt, Ypred) = −
1
N

N∑
b = 1

(
1
2
· Yb

gt · logYb
pred +

2 · Yb
gt · Y

b
pred

Yb
gt + Yb

pred

)
(3)

where Yb
gt and Yb

pred denote the predict map and ground truth
map of b-th image, respectively, and N denotes the batch size.

The objective function takes the form of a logarithmic logic
function as a replacement for the complex softmax multi-class
prediction function. Forward propagation infers the prediction
results and compares them with the true value annotations
to generate cross-entropy loss. Backward propagation updates
the model weight parameters. In this way, the task of plant
segmentation is transformed into a binary classification problem
that is suitable for plant segmentation. The re-designed skip
pathways take effect on the output of the fused features and
simplify the optimisation on the shallow, middle, and profound
output results for varying degrees, via tuning the overall
parameter of the network.

Learning Count Model With
Segmentation
During leaf counting, the estimated number of leaves tends to
exceed its ground truth. This is because the lower part of a leaf
might be occluded by other leaves, or the leaves are incomplete
and fragmentary on their own, which would be ignored by the
counting model. To address this problem, we introduced the
auxiliary cue, i.e., the segmented mask to guide the learning of

the counting model. Also, it is widely acknowledged the counting
model could fail due to the lacking of available samples belonging
to certain class in the training dataset. The labelling for leaf
counting is also time-consuming. Such data scarcity is often
met in the data-driven methods such as deep learning. Thus,
we augmented the samples by combining the segmented mask
and the original images, which enhance the model to effectively
capture the occluded leaves and the hardly detected leaves in plant
image under the assistance of segmented binary mask.

Inspired by the work of He et al. (2016), we employed
Resnet50 network as our backbone architecture due to its superb
performance in image recognition. For our regression task, we
modified the Resnet50 network by replacing the last layer with
a fully connected layer with one-dimension output, which acts
as a regression model for leaf counting. The modified network
uses the combined samples from the segmentation mask and
the original images as input, and applies convolution with a
7× 7 filter followed by a series of convolutions, ending with fully
connected layers to determine the number of plant predictions.
Residual learning is also used to overcome the inefficient learning
and the possibility of over-fitting due to deep network, where
the skip connections resolve the degradation problem by taking
the output of the previous layers as the input of the latter. For
instance, when an input is x and the learned features are denoted
as H(x), then the residual learning features is F(x) = H(x) - x. The
stacked-layer learns new features on top of the input features, and
a residual unit is given by

yl = h (xl) + F (xl, Wl) , xl + 1 = f
(
yl
)

(4)

where xl and xl + 1, respectively, represent the input and output
of the l th residual unit, and each residual unit contains multiple
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layers of structure. F represents the learned residual block,
h(xl) = xl is the constant mapping, f is the ReLU activation
function. Thus, the learned features from shallow l to deep L are

xL = xl +

L−1∑
i = l

F (xi, Wi) (5)

A chain rule is used to aid the reverse process of gradients, i.e.,

∂ loss
∂xl

=
∂ loss
∂xL
·
∂xL

∂xl
=

∂ loss
∂xL
·

(
1 +

∂

xL

L−1∑
i = l

F (xi, Wi)

)
(6)

where ∂ loss
∂xL

denotes the gradient of the loss function reaching
L, the value 1 in the parentheses indicates that the shortcut
connection mechanism propagates the gradient without loss,
while other residual gradient passes through a layer with weights
indirectly. In this context, 1 is selected to make the residual
gradient easier to learn and thus avoid the gradient vanishing.

To better train the regression model, we employed mean
squared error (MSE) as the loss function. Given an image i
and the ground truth leaf count yi

gt,c, the loss function Lc is
determined by

Lc =
1
m

m∑
i = 1

(
yi

pred,c−yi
gt,c

)2
(7)

where m is the image number and yi
pred,c denotes the

predicted leaf count.
With respect to our regression task, the last fully-connected

layer with 1,000 neurons initially used for classification is
replaced by a layer with a single neuron, which allows for the
output estimation of leaf number. The neuron is to regress the
correct leaf numbers given the input images. To obtain the
rich prior knowledge, the regression network is pre-trained on
ImageNet for parameter initialization, and then fine-tuned on the
used datasets. Our regression model is shown in the top row of
Figure 1. Note that the combination of segmentation and RGB
images extends the input channel from 3 to 4. By extending
the channel, an additional binary channel is added to the leaf
count regression model to convey pure semantic information of
leaf and suppress bias from features in the background of the
training images, e.g., the soil, moss, pot, etc., that differ between
datasets. At the same time, the RGB channels enable the network
to retain the rich local texture and context information that the
binary mask fails to capture, thus enhancing the robustness of our
model. In addition, our regression model does not require any
bounding box or centre point annotation, which can be efficiently
applied to deal with more complex scenes.

U-Net remains the preferred choice for the maintenance of
fine edge binary segmentation. The design of skip connections
greatly enriches the information received by the decoder, and
via specially trained end-to-end, U-Net performs high-precision
segmentation for small training samples. When applied in leaf
segmentation, the architecture extracts the edge details, size,
and shape diversity in the low-level information and uncovers

the discriminative high-level information of the target leaf. This
advantage reduces the overall size of the dataset required for
training. Furthermore, due to the effective reuse of extracted
features and an ability to capture the targets, the architecture
achieves an implicit data argumentation and speeds up the
convergence for the binary tasks during training.

However, since the leaf dataset (with sub-datasets A1–A4)
varies in the degree of occlusion, leaf numbers and leaf size,
we only combined the same-scale information not previously
countered. Designing U-net with different depth for each layer
may be an idea but such an approach has not been widely
applied. To address this, we adopt U-Net++ (remaining rows of
Figure 1) as the feature extractor for segmentation, which extends
U-Net with denser cross-layer concatenation and shortens the
semantic gap between the encoder and decoder by fusing spatial
information from shallow to deep cross layers. The architecture
makes full use of contextual features and semantic information
from the same dimension, and it captures the detailed features
of the target. Moreover, using the pruning scheme basing on
the module which receives the best estimation during training,
the network is adjustable and customisable. For instance, it
is customised to the most suitable size and saves unnecessary
storage space. This is equivalent to the maintenance of any useful
feature we acquired and the distinctive design for each dataset in
one end-to-end network.

EXPERIMENTS

We thoroughly assess the effectiveness of our proposed
framework on the widely used plant phenotyping dataset
including its four sub-datasets (see Section “Dataset and Data
Pre-processing”). We conducted extensive experiments on both
plant segmentation and leaf counting, and compared the
performance of our method with the state-of-the-art methods for
validation. We explored three segmentation architectures using
three different backbone networks, i.e., MobileNet, ResNet, and
VGGNet on the four sub-datasets, and compared our method
with the state-of-the-art leaf segmentation methods. We also
performed the experiments to demonstrate the effectiveness of
the proposed leaf counting method, comparing it with the state-
of-the-art leaf counting methods.

Dataset and Data Pre-processing
The dataset used in our experiments belongs to the Leaf
Segmentation and Counting Challenge (LCC and LSC) held as
part of the Computer Vision Problems in Plant Phenotyping
(CVPPP 2017) workshop (Giuffrida et al., 2015). The dataset
is divided into training set and testing set, which consists of
810 and 275 top-down view RGB images of either Tobacco
or Arabidopsis plants, respectively. Both training and testing
images are grouped into four folders, i.e., four sub-datasets
which vary from the species and means of collection such as
imaging setups and labs. The training sets include 128, 31,
27, 624 images and the testing sets contain 33, 9, 65, 168
images for A1, A2, A3, and A4 respectively. The sub-datasets
A1 and A2 include Arabidopsis images collected from growth
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FIGURE 2 | Augmentation samples for training the segmentation network to avoid the risk of over-fitting.

chamber experiments with different field of views covering many
plants and then cropped to a single plant image with the size
of approximately 500 × 500 pixels. Sub-dataset A3 contains
tobacco images at 2,000 × 2,500 pixels with the field of view
chosen to encompass a single plant. Sub-dataset A4 is a subset
of another public Arabidopsis dataset. The dataset provides
the corresponding annotations in binary segmentation with 1
and 0, respectively, denoting plant and background pixels. All
the folders contain the ground truth binary mask used for
whole plant segmentation (i.e., semantic segmentation). For the
experiment of plant segmentation, we follow the training strategy
from Aich and Stavness (2017), and also use the combination
of all sub-datasets (referred as to All) for training to achieve
more robust model.

In our work, we addressed two problems caused by a dataset as
follows: (1) Deep learning based methods require a huge amount
of training samples while the availability of the dataset of plant
leaf with annotations is limited, causing data scarcity; and (2)
Small and overlapping leaf instances brought a challenge for
plant segmentation and leaf counting. Data augmentation is a
widely used technique in deep learning to increase the number of
samples and provide more diversity to the deep neural networks.
In this context, we also employed data augmentation to address
the above two problems.

Moreover, we first reshaped the size of training images to
480× 480 pixels and normalized. Following the resize operation,
we conducted the following scheme for data augmentation: (1)
Random-Rotate with an interval of 90 to increase the network
invariance to slight angular changes; (2) Flip: horizontal, vertical,
and horizontal+ vertical; (3) Resize the images to increase the
network invariance to different image resolutions; (4) Gamma
transform to extend the data by changing the image greyscale;
(5) Random-Brightness: the clarity of object depends on scene
lighting and camera sensitivity, thus random changing the image

brightness improves the illumination invariance of the network;
(6) Random change in the contrast range to increase the network
invariance to shadows and improve the network performance
in low light conditions; (7) Hue Saturation Brightness (HSV):
changes in colour channels, degree of lightness or darkness of a
colour; and (8) Normalise a characteristic linear transformation
which scales a specific range of data values retaining the original
data distribution. Selected augmentation processes are shown in
Figure 2.

Implementation Details and Evaluation
Protocol
All images from the training set are randomly split into two sets
for training and validation with the split ratio of 0.8 and 0.2,
respectively. Images from the testing set are used for evaluating
the segmentation performance. We used the validation set to
verify the hyper-parameters (see Table 1) during the training of
the initial experiments.

Network Parameter Setting
All our experiments are performed on the PyTorch platform
with NVIDIA 2080Ti GPU. We used the data augmentation
to increase the number of samples as in Section “Dataset and
Data Pre-processing.” This module contributes to preventing
over-fitting for the relatively small plant datasets and ensure the

TABLE 1 | Hyper-parameters used for training.

Epochs 100

Batch-size 4

Optimizer Adam

Learning-rate 1e-3

Weight-decay 1e-4

Factor 0.1
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model produces promising results when segmenting on new data
via learning multiple variations (Holmberg, 2020). The binary
mask is transformed the same way, to maintain the consistency
between images and annotations (except for the transformation
regarding colours).

We randomly sampled four samples to form a mini-batch with
batch size of four to guarantee the convergence of training. Adam
is adopted as the optimizer for its fast convergence rate to train
the model for a total of 100 epochs, where the results remain
stable with no further improvement. The weight decay factor is
set to 0.0001 and the learning rate is constantly set as 0.001.

Metrics for Segmentation
We employed the intersection of union (IoU) as the evaluation
metric, which is widely used in segmentation. IoU is used to
determine the spatial overlap between the segmented leaf region
and its ground truth, i.e.,

IoU(%) =

∣∣Pgt ∩ Ppred
∣∣∣∣Pgt

∣∣ + ∣∣Ppred
∣∣ (8)

where Pgt and Ppred, respectively, denote the ground truth
mask and the prediction mask. Due to the problem of class
imbalance between positive and negative samples, it is insufficient
to use accuracy as evaluation metric. For better evaluation, we
introduced two more metrics: Precision and Recall. Precision is
used to determine the portion of segmented leaf region pixels that
matches with the ground truth, i.e.,

Precision(%) =
TP

TP + FP
× 100 (9)

Recall is used to determine the portion of ground-truth pixels
present in the segmented leaf region, i.e.,

Recall(%) =
TP

TP + FN
× 100 (10)

where True Positive (TP), False Negative (FN), and False Positive
(FP) respectively denote the number of leaf region pixels correctly
identified, the number of leaf region pixels unidentified, and the
number of leaf region pixels falsely identified.

Metrics for Count
To evaluate how good a leaf count method is in estimating the
correct number of leaves, we employed the regression metrics:
Difference in Count (DiC), Absolute Difference in Count (ADiC),
and mean squared error (MSE) calculated as follows:

DiC =
1
m

m∑
i = 1

(
y(i)

gt,c−y(i)
pred,c

)
(11)

ADiC =
1
m

m∑
i = 1

∣∣∣(y(i)
gt,c−y(i)

pred,c

)∣∣∣ (12)

MSE =
1
m

m∑
i = 1

(
y(i)

gt,c−y(i)
pred,c

)2
(13)

Experimental Analysis
Segmentation Analysis
In the first experiment, we evaluated the effectiveness of
our segmentation model on plant images by using different
segmentation architectures and backbones for comparison.
FCN8, PSPNet, U-Net are selected as the basic encoder and
decoder architectures, where ResNet and VGG are used as
backbones due to its good ability of depicting 2D images. The

FIGURE 3 | Results of segmentation using Resnet50 and VGG16 as backbone in FCN, PSPnet, U-Net, and U-Net++ architectures.
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TABLE 2 | Segmentation results on each sub-dataset and their com- bination
using different basic architectures.

IoU (%) All A1 A2 A3 A4

FCN 93.95 93.45 89.17 88.51 92.23

PSPNet 90.17 94.34 90.55 91.19 93.83

U-Net 98.32 98.51 97.76 94.72 97.17

U-Net++ 99.11 98.29 97.98 95.90 97.23

comparative segmentation performance in terms of IoU on the
combination of all sub-datasets are provided in Figure 3. It is
evident from Figure 3 that the segmentation results generated
by our segmentation model outperforms the other architectures.
Among different models, using VGG as backbone performs
constantly better than using ResNet as backbone. To evaluate the
performance of dealing with a variety of scenes, we evaluated
our model on the four individual sub-datasets and the results
are shown in Table 2. The U-Net++ performs significantly
better than the state-of-the-art segmentation methods. For better
illustration, the segmentation results for images in sub- dataset
A1 using different models together with ground truth are shown
in Figure 4. Although all the three semantic segmentation
methods can obtain clear segmentation results on A1, the
U-Net++ retains the boundary and detail information. For the
relative scarce sub-dataset A3 which only contains 27 tobacco
images, the proposed method still shows a stable IoU. For each
sub-dataset, the network generates segmentation results that are
almost consistent with the corresponding binary template, from
both quantitative and qualitative standpoints.

FIGURE 5 | Segmentation result for each sub-dataset, with the
corresponding IoU provided at the right.

During the training for segmentation, the sigmoid function
produces outputs in the range [0 ... 1]. While calculating the loss,
greater weight is assigned for the boundary pixels. The weight

FIGURE 4 | Comparing segmentation results on the same RGB image.
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map is then calculated using

w(x) = wc(x) + w0 · exp

(
−

(
d1(x + )d2(x)

)2

2σ2

)
(14)

where wc(x) is the category weight based on the frequency
of occurrence of each category in the training dataset; d1(x)
represents the distance between the object pixel and the nearest
boundary. d2(x) represents the same distance for the second
nearest boundary. In our work, we set the threshold σ to
0.5 to obtain the segmentation weight map. The segmentation
results using our method on different sub-datasets are shown
in Figure 5. Our model generates the segmentation results that
are almost coincident visually with the ground-truth mask for
each sub-dataset. For A3 sub-dataset which only contains 27

tobacco images with small leaf area, our method still shows
a stable segmentation result. The results show our method
effectively addresses segmentation under various scenes, i.e., with
occlusions, small leaf area, and large leaf area, demonstrating
good robustness.

We also compared the convergence rate of different
segmentation models. The curves of the precision, recall,
training cross entropy (CE) loss, and IoU are shown in
Figure 6. The figure shows that all four networks selecting
VGG16 as the encoder for feature extraction achieve good IoU
scores consistently. In addition, Figure 7 visualises the feature
extraction process of our method using UNet++ with VGG
from the early to late epochs. The process of feature extraction is
smoother and faster to reach the convergence, which shows VGG
can capture the meaningful representations for leaf images.

FIGURE 6 | Convergence curves for accuracy, loss, and IoU score on the validation set during the training process for comparison in terms of accuracy and
convergence rate.

FIGURE 7 | Visualization for the feature extraction process of our method, arranged by time series from the early to late epochs. The first to third line images
respectively show the predicted images, ground truth images and transformed RGB images.
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TABLE 3 | Segmentation results on each sub-dataset and their combination using
different basic architectures.

SRGB Ours

All A1 A2 A3 A4 All A1 A2 A3 A4

Precision 0.92 0.98 0.94 0.80 0.96 0.99 0.99 0.99 0.99 0.99

Recall 0.97 0.99 0.99 0.94 0.98 0.99 0.98 0.99 0.99 0.99

IoU – – – – – 0.98 0.98 0.99 0.98 0.98

TABLE 4 | Counting results using different backbones with or without the auxiliary
binary mask on CVPPP 2017 dataset (Bold values denote the best performance).

Metric DiC ADiC MSE

Mobilenet

RGB –0.30 0.66 0.98

RGB+SBM 0.13 0.46 0.64

InceptionNet

Rgb 0.29 0.61 1.20

RGB+SBM 0.20 0.43 0.54

VGGNet

RGB 0.20 0.79 1.44

RGB+SBM –0.12 0.37 0.44

Resnet50

RGB –0.12 0.60 0.89

RGB+SBM 0.11 0.36 0.42

For DiC, ADiC, and MSE, a lower value is better.

We compared the proposed segmentation model with the
other state-of-the-art method that performed the experiment on
plant (foreground) segmentation, i.e., SRGB (Aich and Stavness,
2017) using three metrics, i.e., Precision, Recall, and IoU and the
results are shown in Table 3. Our method outperforms the SRGB
method on two metrics, achieving the high performance on IoU.
The results suggest that our approach is very effective for plant
segmentation task in plant phenotyping.

Leaf Count Evaluations
In the second experiment, we evaluated the effectiveness of the
proposed leaf counting method using segmented binary mask

TABLE 5 | Comparative evaluation of the proposed counting model with
state-of-the-art methods.

DiC ADiC MSE

IPK –1.9 (2.7) 2.4 (2.1) –

GLC –0.51 (2.02) 1.43 (1.51) 4.31

Nottingham –2.4 (2.8) 2.9 (2.3) –

MSU –2.3(1.8) 2.4 (1.7) –

Wageningen 1.5 (4.4) 2.5 (3.9) –

Proposed RGB+SBM 0.11 (0.98)– 0.36 (0.93) 0.42

(referred as RGB+SBM). During the experiment, the number
of input channels must be consistent with the input size of
the backbone models, i.e., 3 channels. In this way, when a
binary image with single channel is fed into the model, the
values of the single channel are extended to three channels by
duplication, forming an image with three channels. The resulting
three-channel images are mixed with the RGB image samples to
increase the number of training samples, facilitating the stability
of leaf counting. To validate the effectiveness of our counting
model for leaf counting, we adopted different backbones for our
leaf counting task, e.g., MobileNet, VGGNet, InceptionNet, and
ResNet, and report the results in Table 4. Moreover, to further
explore the potential benefit of the auxiliary binary mask, we
conducted an ablation experiment on with/without using the
binary channel, and the result is also shown in Table 4. In
Table 4, RGB denotes the method without using the binary mask,
while RGB+SBM denotes that our method using the auxiliary
binary mask. It is observed from the table that the count model
using the ResNet50 backbone performs the best among the
backbones. The binary mask increases the count performance in
all metrics, where the MSE drops from 0.89 to 0.04, DiC from
0.02 to 0.01, and ADiC from 0.60 to 0.36. These results validate
our assumption that binary mask improves the accuracy and
robustness for the leaf count model, due to its capability to deal
with background interferences.

We used the scatter diagram to visually illustrate the
correlation between the estimated leaf numbers and their ground
truth, and the results are shown in Figure 8, which is also

FIGURE 8 | Comparison between the coefficient of determination in the implementation of scatter graphics, where (A) denotes using only RGB image, (B) denotes
using the mixture of RGB and segmented binary mask, and (C) denotes using the double RGB images by simple copy.
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for the evaluation of our regression model. The higher overlap
between the scatter plots of estimation and the ground truth
indicates a better agreement. Figure 8 shows that the binary
mask significantly enhances the agreement between the ground
truth and the estimation, as the error distribution in leaf count
is constantly confined within smaller region. If directly doubling
the number of the input samples by simple copy, referred as RGB
∗2, we find that the performance is almost the same as with the
mixture of RGB and binary mask images. In the experiments,
the time cost using double RGB images is higher than using
the combination of RGB and binary mask images. Thus, we
conclude that using the auxiliary binary mask to guide the
leaf counting is a simple but effective way for improving the
performance of counting.

In addition, we reported the quantitative comparison of our
leaf counting method with state-of-the-art methods i.e., GLC
(Giuffrida et al., 2015), IPK (Pape and Klukas, 2015), Nottingham
(Scharr et al., 2016), MSU (Scharr et al., 2016), and Wageningen
(Scharr et al., 2016), as shown in Table 5. For fair comparison,
we used A1, A2, A3 from testing set for testing the counting
performance. Overall, the proposed leaf counting model using
segmented binary mask achieves the best performance with lower
values in the metrics of DiC, ADiC, and MSE. This shows the
proposed counting model estimates the number of leaves with
adequate accuracy and stability.

CONCLUSION

In this study, we focus on dealing with two fundamental tasks in
plant phenotyping, i.e., plant segmentation and leaf counting, and
propose a two-stream deep learning framework for automatic

segmenting and counting leaves with various size and shape
from two-dimensional plant images. In the first stream, a multi-
scale segmentation model using spatial pyramid is developed to
extract the whole plant in different size and shape, where the
fine-grained details of leaves are captured using deep feature
extractor. In the second stream, a regression counting model
is proposed to estimate the number of leaves without any pre-
detection, where the auxiliary binary mask is introduced to
enhance the counting performance by effectively alleviating the
influence of complex background. Extensive experiments on
a publicly available plant phenotyping dataset show that the
proposed framework achieves a promising performance both in
the task of plant segmentation and leaf counting, providing a
reference for the automatic analysis of plant. Future work will
focus in increasing the robustness of the tasks of segmentation
and the counting to deal with varying environments.
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