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Watermelon (Citrullus lanatus) is a widely consumed, nutritious fruit, rich in water and
sugars. In most crops, abiotic stresses caused by changes in temperature, moisture,
etc., are a significant challenge during production. Due to the temperature sensitivity of
watermelon plants, temperatures must be closely monitored and controlled when the
crop is cultivated in controlled environments. Studies have found direct responses to
these stresses include reductions in leaf size, number of leaves, and plant size. Stress
diagnosis based on plant morphological features (e.g., shape, color, and texture) is
important for phenomics studies. The purpose of this study is to classify watermelon
plants exposed to low-temperature stress conditions from the normal ones using
features extracted using image analysis. In addition, an attempt was made to develop a
model for estimating the number of leaves and plant age (in weeks) using the extracted
features. A model was developed that can classify normal and low-temperature stress
watermelon plants with 100% accuracy. The R2, RMSE, and mean absolute difference
(MAD) of the predictive model for the number of leaves were 0.94, 0.87, and 0.88,
respectively, and the R2 and RMSE of the model for estimating the plant age were 0.92
and 0.29 weeks, respectively. The models developed in this study can be utilized in
high-throughput phenotyping systems for growth monitoring and analysis of phenotypic
traits during watermelon cultivation.

Keywords: chilling stress, phenomics, image processing, morphological traits, leaf count, plant age

INTRODUCTION

Watermelon (Citrullus lanatus) is a highly nutritious fruit comprised of 93% water with small
quantities of protein, fat, minerals, and vitamins. It is widely considered a functional food, thus
contributing to its widespread consumption around the world (Assefa et al., 2020). Watermelon is
a member of the cucurbit family (Curcurbitaceae), which are chill-sensitive plants that are native to
subtropical and tropical regions around the world. There are four main cucurbit crops, namely
cucumber, watermelon, melon, and squash. Of these main crops, watermelon has the highest
worldwide consumption (Wehner et al., 2020).

Watermelon plants are characterized by big leaves, long, and thin hairy stems that can grow up
to 10 m long with branched coiled tendrils at the nodes and yellow flowers. Its leaves are green,
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with blades of about 20 × 20 cm, pinnately lobed, and usually
divided into three to five pairs of lobes. Its growth habit is a long
trailing vine, due to which the plants are usually grown at a wide
spacing (Aruna et al., 2016). Watermelons are mainly grown in
tropical and subtropical climates and require a warm growing
season of 75–95 days from planting to harvesting. While the
optimum growth temperature for watermelons ranges from 21
to 29◦C, they can tolerate a minimum of 18◦C and a maximum
of 32◦C (Noh et al., 2013; Shirani Bidabadi and Mehralian,
2020). Watermelons are highly temperature sensitive depending
on the growth stage. In the early stages of plant growth, 25◦C is
optimal and growth has been observed to stop at 10◦C. Below
temperatures of 13◦C, flowering does not occur and above 45◦C
only mature plants can survive (Noh et al., 2013).

Plants are vulnerable to a wide range of physical and chemical
variables, including low and high temperatures, insufficient or
excessive water, high salinity, heavy metals, and ultraviolet (UV)
exposure, among others. These stresses, known collectively as
abiotic stresses, pose a danger to agriculture and the ecosystem,
accounting for significant crop production loss. In watermelon
plants, abiotic stresses caused by temperature extremes (Rivero
et al., 2001; Shirani Bidabadi and Mehralian, 2020), water stress
(Yoosefzadeh Najafabadi et al., 2018), salinity stress (Yetişir
and Uygur, 2009; Li et al., 2017), etc., are the most prevalent.
In the watermelon plant life cycle, both reproductive and
vegetative stages are negatively affected by low temperature
stress (Nishiyama, 1970; Shirani Bidabadi and Mehralian, 2020).
During reproductive development, low temperature stress can
delay flowering and induce flower abscission, pollen sterility,
pollen tube shortening and distortion, and reduced fruit set,
which lowers yield (Waraich et al., 2012). The effects of cold stress
on the reproductive stage have important economic and social
effects since the products of this stage are the source of food
supply (Thakur et al., 2010; Zinn et al., 2010). At the vegetative
development stage, low temperatures can cause a reduction in
stomatal conductance and leaf water content, therefore resulting
in smaller leaves and shoots (Rodríguez et al., 2015). Collectively,
these stress responses reduce fruit yield and quality, which has
negative economic and nutritional impacts (Lu et al., 2003;
Taylor et al., 2003).

In climates with short warm seasons, seeds are sown in
growth chambers and transplanted into the field or protective
structures after 3–4 weeks (Wehner et al., 2020). The largest
protective structures for commercial watermelon production
in non-tropical climates are glasshouses (greenhouses). These
have systems that control lighting, shading, heating and cooling,
ventilation, humidity, and carbon dioxide concentration.
Due to the temperature sensitivity of the watermelon plants,
temperatures must be closely monitored in the controlled
environments. It is necessary to understand plant responses
to temperature stresses to improve management within the
controlled environments. Studies have found that immediate
plant morphological responses to these stresses include
reductions in leaf size, number of leaves, and plant size
(Bismillah Khan et al., 2015; Fahad et al., 2017).

Plant morphological studies involve a detailed study of
vegetative and reproductive plant structures that can be used

to make comparisons between species, identify different
varieties, or study plant responses to stimuli (Wyatt, 2016).
Some of the key morphological features relevant to plant
morphological studies are leaf shape, size, color, texture,
angle, and volume. In the shoot system, leaves experience
significant changes in morphology in response to the
environment that can be easily observed (Yang et al., 2015).
Leaf morphological features can be important determinants
of plant performance because leaf size and shape influence
key plant productivity processes such as photosynthesis,
stomatal conductance, and transpiration efficiency (An et al.,
2017). In studies involving morphological feature analysis
of plants, some key features measured include plant leaf
length, width, angle, diameter, perimeter area, and volume
(Harish et al., 2013). Leaf morphological features are useful
for plant recognition, identification, classification, and disease
identification and classification (Aptoula and Yanikoglu,
2013; Ramcharan et al., 2017, 2019; Kumar et al., 2019;
Tan et al., 2020).

Image analysis has found wide application in various domains
of science. The image analysis workflow consists of image
capture, preprocessing, feature extraction, and analysis. In plant
studies, imaging techniques and analysis have the advantage of
being non-destructive and able to extract intricate information
that can be used to analyze biological patterns of plant growth
(Nabwire et al., 2021). The application of image analysis
in morphological studies has been done to automate plant
recognition tasks (Aptoula and Yanikoglu, 2013; Kumar et al.,
2019), classification of plant leaves using leaf shape feature
extraction techniques (Manik et al., 2016), automation of plant
classification systems (Harish et al., 2013), and development
of leaf disease detection and diagnosis systems (Jagtap and
Hambarde, 2014). Specifically, image analysis has been applied
in cold stress response classification in maize plants (Enders
et al., 2019), drought and heat stress tolerance screening in wheat
(Schmidt et al., 2020), weed growth stage estimation (Teimouri
et al., 2018), and leaf counting in Arabidopsis using deep learning
(Aich and Stavness, 2017). These studies achieved acceptable
results, however there have been no studies that have applied
image analysis to identify cold stress plants, estimate leaf count,
and plant age in watermelon plants.

High throughput plant phenotyping (HTPP) systems are
useful for quantifying/estimating the effects of exposure to sub
optimal conditions (temperature, water, etc.) on individual plant
through estimating various plant characteristics. The data from
such systems is useful for making comparisons between plant
species, identifying varieties, or study plant responses to stimuli.
This information is useful for research and in decision making.
Therefore, the objective of this study was to extract and analyze
the morphological features (relating to form, structure, texture,
and color) of watermelon plants using image analysis. The
features were used to develop a model for prediction of cold stress
condition of the plants and determination of the number of leaves
and plant age. The models developed in this study can be utilized
in high-throughput phenotyping systems for growth monitoring
and analysis of phenotypic characteristics (such as number of
leaves, plant age) during watermelon cultivation.
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MATERIALS AND METHODS

Dataset
The watermelon seed samples were acquired from Partner seed
(Gimje, Jeollabuk-do, South Korea). Four test varieties, namely,
DAPCT, PI482261, DAP, and 45NC, as defined by the seed
company, were used for this study. A total of 128 seeds were
used, including 12 from the PI482261, 16 from the 45NC, 52
from the DAP, and 48 from the DAPCT variety. The seeds were
planted in a container in individual cells and placed in a growing
chamber maintained at 28◦C and 70% relative humidity to ensure
germination. After 2 weeks, the seedlings were transplanted
into individual cylindrical pots (12 cm diameter, 11 cm height)
with porous bases and transferred to the growing chamber that
was reserved for this experiment. A nutrient mixture called
“Mulfuresiriz” from Daeyu company limited (Seoul, Gyeonggi-
do, South Korea) used in hydroponics was applied equally
(concentration of 4 ml of nutrient mixture per liter of water) to
all the pots at the start of the experiment.

Experiment Design
The experiment design for this study was based on the growth
stages of watermelon plants. Data collection was done weekly
between the 2nd and 5th week (seedling to flowering stage of
watermelon plants) at total of 4 weeks (week 2, 3, 4 and 5). This
is because at less than 13◦C flowering will not occur; however,
after flowering and fruit set, temperatures greater than 14◦C have
no significant effect on plant growth (Noh et al., 2013). The
watermelon plants were separated in two groups, the normal
group (plants grown in optimum growth conditions), and the
stressed group (plants grown in cold stress conditions). A total of
10% of the plants from each variety were stressed each week. The
plants to be considered for the stress group were selected using
random numbers to eliminate bias. The growth temperature
considered for the control (normal) and the stressed group in
this study were as detailed in Table 1. The plants in each group
were grown in separate chambers that were both maintained
at a relative humidity of 70% for the entire growth period.
The lighting used for both growth chambers was 15,000 lux
intensity, 6,500K color temperature for the simulated day hours
and no lights for the simulated night hours. The concentration of
carbon dioxide gas was maintained at 700 ppm for both growth
chambers. Both the normal and stressed group plants followed
the same watering regime, which was done after every 2 days.
During watering, the plant pots were soaked in 2 cm deep pure
water for 4 h to allow time for water to percolate into the soil.

Data Collection
Image data collection was done using a multi-camera system
(Figure 1). The system specifications are detailed in Table 2. The
reason for the multiple camera setup was to capture more views
of the plant from which to choose when extracting consistent
and representative morphological features. The target field of
view (FOV) for the cameras was 32 × 27 cm (enough to cover
the entire watermelon plant), therefore the camera-to-sample
distance for the system was 60 cm to accommodate the FOV. The

cameras were set up with the same angle, distance, aperture, and
exposure time (10,000 µs). Color calibration was done during
data collection to compensate for variations in color channel
values, aperture opening, and manufacturing tolerances that
can result in varying camera color signatures. Color calibration
was done by taking images of the standard X-Rite color chart,
extracting the color values of the patches, and finding the best
transform matrix that maps the resultant color values with their
respective reference values. The resultant color correction matrix
was then used to transform the images taken from the cameras to
their true color (Sunoj et al., 2018).

One camera was set up at the top of the system to capture the
top view image of the plant, while the other six cameras were set
up to capture the side view of the plant at 60 degree intervals
from each other.

Reference data, which include number of leaves, plant age
(weeks), and stress condition (control or stressed), were recorded
for each plant every week after image data collection.

Thresholding/Background Removal
For the analysis, three images were selected from the top view
camera and cameras at 0 and 60 degrees. The image views were
labeled image 1, image 2, and image 3, corresponding to the 0-
degree, 60-degree, and top view image, respectively. A summary
of the data analysis workflow for this study is shown in Figure 2.

Background removal was carried out using two methods to
define the region of interest (the plant) for further processing.
Initially, it was carried out using conventional image processing.
This involved conversion of the image from RGB to the CIELAB
color space. An analysis of the histograms of each channel
resulted in a necessity to keep all pixels below the local minima
in the “a” channel and above the local minima in the “b” channel
(Figure 3). Since these local minima (for both channels) varied
for each image, a search algorithm that automatically determines
the position of the local minima in a predefined range was used.
The determined position values were used as thresholds to make
two binary images, which were then combined to create the
watermelon plant mask.

Deep learning was also applied for background removal using
U-Net, a network commonly used for image segmentation.
It can work with few images and give accurate segmentation
results. The network does not have fully connected layers
and uses the pixels in the segmentation map whose full
context is available in the input image. It uses successive
layers with pooling layers replaced by upsampling layers
therefore increasing the output resolution. The upsampling
section of the network has many feature channels that enable
the network to propagate context information into the higher
resolution layers. This makes the expansive path symmetric
with the contracting path and gives the architecture its
characteristic U-shape (Ronneberger et al., 2015). Although
U-Net was originally developed for application to biomedical
images, it has been applied in various domains of science,
including audio signal source separation and satellite imagery
(Stephan and Santra, 2019).

The network was trained on 830 images with a ratio of 7:2:1
for the training, validation, and test datasets, respectively. The
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TABLE 1 | Plant growth conditions and weekly stress plan.

Plant condition Number of plants Optimal temperature Growth temperature

Week 2 Week 3 Week 4 Week 5 Day (16 h) Night (8 h)

Control group 128 116 104 92 20–30◦C 28◦C 21◦C

Stress group 0 12 24 36 ≤15◦C 15◦C 10◦C

FIGURE 1 | System for data collection.

input image size for the network was 512 × 512 × 3 and the
output image size was 512 × 512. The network was trained for
100 epochs using Adam optimizer, mini-batch size of 8, learning
rate of 0.001, drop factor of 0.9, and drop period of 5.

Feature Extraction
Color Feature Extraction
The color features considered for this study were extracted
from four color spaces (RGB, HSV, CIELAB, and YCbCr).
The color space suitable for an application is selected based
on the acquisition setup. While HSV and CIELAB represent
colors in a format closer to human vision, CIELAB has the
advantage of being able to detect small differences in color
and is device independent. YCbCr is suitable for image/video
data compression. The color components are represented by
coefficients of the three colors depending on the selected
color space. They are extracted by conversion of the image
to the desired color space and averaging the color values in
each component (Kavitha and Suruliandi, 2016). Color feature
extraction was done by conversion of the images from RGB
to the major color spaces: HSV, LAB, and YCbCr. The average
value of the color channels in each of the color spaces was
computed to extract the color features – in total 12 feature
values for each image.

Shape-Based Feature Extraction
Shape-based feature extraction is carried out to extract features
that describe the shape and size of a region of interest in an
image. Shape and size parameters, sometimes referred to as
region properties, quantify the shape of the region depending
on the requirements of the image processing task (Mingqiang
et al., 2008). The region properties of the region of interest

(Table 3) were extracted from the resultant mask from the image
segmentation process. These amounted to a total of 30 feature
values for each image.

Texture Feature Extraction
Texture can be defined as the surface quality of a region of
interest. In image processing, texture is analyzed based on the
variations in the gray tone values extracted from an image
(Metre and Ghorpade, 2013). Texture features are commonly
extracted using Gray Level Co-occurrence Matrix (GLCM) to
find symmetry in the texture in an image (Hu and Ensor, 2019).
It is based on the occurrence of the gray level configuration and
measures the spatial relationships between pixels to infer texture
information (Ehsanirad and Sharath, 2010). Haralick texture
features are derived from the GLCM (Haralick et al., 1973). They
consist of 14 statistical features, which include autocorrelation,
contrast, cluster prominence, cluster shade, correlation, etc.
For this analysis, four properties were extracted using the
GLCM, namely contrast, correlation, energy, and homogeneity.

TABLE 2 | System specifications.

System dimensions Camera specifications Lights

Width: 160 cm
Length: 168 cm
Height: 107 cm

Name: HIKVISION
MV-CA050-20UC

Type: 5MP 1” CMOS
USB3.0

Resolution: 2592 × 2048
Lens: 25 mm lens

Variable aperture: f/1.4 to
f/16 (fixed to f/8)

Number: 7 cameras

Type: D65 White LED
Power: 15W

Quantity: 6 lights
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FIGURE 2 | Data analysis workflow.

FIGURE 3 | Summary of conventional image processing background removal algorithm.

Using a Haralick distance of 3, 28 texture feature values were
extracted for each image.

Additionally, other texture feature extraction methods,
including local binary patterns (LBP), discrete cosine transform
(DCT), Fourier descriptors, and Gabor features, were used. These
features were extracted using the BALU toolbox in MATLAB
(Mery, 2011).

Local binary patterns (LBP) are generated by the best
matching pattern in the image and are responsive to edges,
lines, spots, and flat areas, whose distribution is estimated
by the occurrence histogram. They are key texture properties
and provide most patterns in observed textures. LBP features
derive their name from the functionality of the LBP operator
LBPP,R, whereby the threshold of the local neighborhood is
determined at the gray value of the center pixel in a binary
pattern (Ojala et al., 2002). LBP features address the challenge
of non-uniformity of textures due to variations in orientation,
scale, or resolution of an image. For each image, a uniform LBP
operator was applied with eight neighborhood pixels and one

vertical and horizontal division. This resulted in 59 LBP feature
values for each image.

Discrete Cosine Transform (DCT) is a unitary image
transform that transforms the image from the spatial domain
to the frequency domain. Unitary transformations are useful in
image processing in that they preserve the length of the vector
and pack a large fraction of the mean energy of an image into
a few transform coefficients, allowing for the preservation of
feature information (Jain, 1989; Kumar and Bhatia, 2014). DCT
separates the image into parts of varying importance depending
on the image visual quality. It gives coefficients that are both
local and global features. DCT is a popular feature extraction
transform in terms of its compact feature representation and
computational complexity arising from its data independent
nature (Chadha et al., 2011). For this study, a vertical and
horizontal resize of 64 and frequency of 2 were applied to each
image to extract four DCT coefficients.

Fourier-based feature extraction involves the transformation
of the image from the spatial to the frequency domain and has the

Frontiers in Plant Science | www.frontiersin.org 5 February 2022 | Volume 13 | Article 847225

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-847225 February 14, 2022 Time: 15:55 # 6

Nabwire et al. Cold Stress Estimation in Watermelon

TABLE 3 | Region properties used for shape-based feature extraction.

Parameter Description

Area The number of pixels in the selected region of the
image.

Bounding box The rectangle that contains every point in the selected
region.

Major axis length The length of the line connecting the base point to the
tip of the leaf.

Minor axis length The length of the line perpendicular to the major axis.

Centroid The center of mass of the region being analyzed.

Solidity The ratio of the leaf area to the area of the convex hull.
This is useful for measuring the density of the region.

Perimeter The length of the external shape of the region being
analyzed.

Circularity A measure that describes the roundness of an object.

Convex hull This is the smallest convex polygon that contains the
selected region.

Equivalent diameter A measure of the diameter of a circle that has the same
area as the region of interest.

Eccentricity The ratio of the distance between the foci of an ellipse
that has the same second-moment as the region of

interest and the length of its major axis.

Maximum Feret diameter The maximum distance between two boundary points
on the antipodal vertices of the convex hull.

Minimum Feret diameter The smallest distance between two boundary points on
the antipodal vertices of the convex hull.

Extent The ratio of pixels in the region of interest to the pixels
in the bounding box.

advantage of eliminating noise that occurs at higher frequencies.
Using this technique, a spectrum of texture is obtained using a
Fourier transform. Local and global texture feature descriptors
are obtained from the spectrum. Fourier spectrum descriptors
describe the direction and formation of texture patterns (Hu and
Ensor, 2019). For this study, a frequency of 2 was applied to each
image to generate 8 spectral peaks and 16 texture descriptors.

Gabor feature extraction method extracts the Gabor features
of an image using a Gabor filter function. The Gabor filter
function is useful in texture analysis where texture is non-
uniform (Kumar and Pang, 2002). They extract local pieces
of information that are combined to recognize the object of
interest, making this method one of the superior methods
for complex tasks such as facial recognition (Kamarainen,
2012). Eight rotations and dilations were applied to each
image with a frequency ranging from 0.1 to 2 to generate 19
Gabor feature values.

Intensity-Based Feature Extraction
Other features extracted include intensity and contrast features.
Intensity-based feature extraction extracts the color intensity
values for each pixel (Sabrol and Kumar, 2016). Contrast
measures the differences in brightness levels between the light
and dark areas of an image (Chen et al., 2019). The parameters
extracted in this feature extraction method include, but are
not limited to, maximum intensity – the intensity value of the
pixel with the greatest intensity in the region of interest, mean
intensity – the average intensity of all the intensity values in the

TABLE 4 | Total number of features extracted for each watermelon plant.

Feature type Number of features Remarks

Region properties 30 Extracted from mask image

Color features 12 Average color values

Texture features 138 Sum of all the texture features

Other features 11 Including contrast and intensity
features

Total for each image 191 Number of features extracted
per image

Total for three images 573 Total number of features
extracted per plant

region of interest, minimum intensity – the intensity value of the
pixel with the lowest intensity in the region of interest, and the
weighted centroid – the center of the region of interest based on
intensity values. Intensity features were extracted from the green
channel – a total of six feature values from each image. Contrast
features were similarly extracted from the green channel image
resulting in five feature values. Both functions were inherited
from the MATLAB BALU toolbox (Mery, 2011).

The resultant features (Table 4) were concatenated
horizontally for each watermelon plant sample. The resulting
features from each plant were concatenated vertically, resulting
in a data matrix (rows = sample, columns = features), which was
used for modeling the phenotypic traits.

Data Analysis and Model Development
Feature Preprocessing
Feature extraction methods use different formulae and
conventions and therefore output feature values are of varying
magnitudes. Preprocessing of the features is necessary before
data analysis to enhance the features, remove noise that may
result from intensity variations in the image, and standardize the
ranges of feature values. For this reason, a normalization vector
was applied using min–max normalization (Patro and Sahu,
2015), which resulted in values ranging between 1 and 0.

Outlier Detection
Outliers are extreme data points that deviate from other
observations of the data and may indicate experimental errors,
data processing errors, or variability in measurements (Wang
et al., 2019). The outliers in the extracted dataset were likely
caused by misdetections during feature extraction. Outliers are
bound to exist and can influence the model development process
and overall model performance.

To remove outliers from the data, two steps were followed:
(1) Computation of principal component analysis (PCA) of

the data, followed by extraction scores of the first five PC
(representing more than 90% of variance in the data);

(2) Use of robust multivariate dispersion algorithm (Olive
and Hawkins, 2010) on the extracted scores to determine which
samples are outliers and which are inliers.

Feature Cleaning and Selection
Feature selection is usually done to select a group of features from
the original set that contain accurate distinguishing information
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of one object from another for accurate predictions in the model
(Kumar and Bhatia, 2014). It may consist of feature cleaning,
where features that are redundant and those that contain little or
no information are removed from the feature set. The decision to
remove some features is subjective depending on the parameters
being predicted by the model. The removal of some features
that contain noise may compromise prediction accuracy in cases
where they contain valuable information for the prediction of
some parameters (Tallón-Ballesteros and Riquelme, 2015).

Due to the many features extracted from the image data, it
is likely that the data contained irrelevant features possibly due
to noise or redundancy/collinearity in the data. To reduce the
effects of these irrelevant features, feature cleaning and a feature
selection algorithm called sequential feature selection (SFS) were
used to find relevant features. The feature cleaning algorithm
was used to eliminate constant and correlated features. The SFS
algorithm searches for the linear combinations of features that
best correlate with the responses (Pudil et al., 1994). Both the
feature cleaning and SFS algorithms used are available in the
MATLAB BALU toolbox (Mery, 2011). The resultant few features
were used to develop the final models.

Model Development
After the feature cleaning and selection process, a few important
features were retained. Depending on the phenotypic trait, a
classification or regression model was developed. In the model
development process, 70% of the data were used for model
calibration (implemented with fivefold, k-fold cross validation)
and 30% were used to test the resultant models.

Linear discriminant analysis (LDA), a commonly used
technique for classification and dimensionality reduction
(Varmuza and Filzmoser, 2009), was used to develop a model
for discriminating between normal (control) and cold-stressed
watermelon plants. Plants that belong to the control group were
labeled 1 while all stressed plants (1, 2, and 3-week stressed
plants) were labeled 2.

Multiple linear regression (MLR) is known for its simplicity in
finding correlations between multiple variables and responses (in
this case number of leaves and plant age). The MLR algorithm is
known to fail with high-dimensional data and highly correlated
data (Marill, 2004). However, due to the reduced number of
variables after SFS variable selection (reduction to less than 40
features), applying MLR was sufficient for this study to develop
models for prediction of number of leaves and plant age.

Model Evaluation
The performance of the LDA model(s) developed for
classifying normal from cold-stressed plants was evaluated
using classification accuracy and confusion matrix (which shows
the specificity and precision of the model) for both the calibration
and prediction sets (Visa et al., 2011; Raschka, 2018).

The performance of the MLR models developed for predicting
number of leaves and plant age was tested using the goodness
of fit criteria, including root-mean-square error (RMSE) and
coefficient of determination (R2) for the calibration and
prediction sets (Zhou and Bovik, 2009; Chai and Draxler, 2014).

The best models should have R2 values close to 1, and RMSE
values close to zero.

Finally, tests were carried out on the results to evaluate and
find optimum conditions. These tests include:

(1) Analysis of the composition of the selected features to
determine the most relevant and abundant features and image
view from whence most features are extracted;

(2) Testing the results using 1, 2, and 3 image views to
determine the most suitable number of images to be used for
predicting the phenotypic traits.

RESULTS

Image Data
Using the data collection system setup, the seven cameras each
captured one image for each watermelon plant sample placed
at the center of the system. The captured images (Figure 4)
were then saved in a specified directory in a portable network
graphics (PNG) format. The images were later fed into an
image analysis pipeline to estimate the phenotypic traits of the
watermelon plants.

Background Detection
The results of the two methods used for background removal
showed that U-Net performed better than the conventional
image processing algorithm (Figure 5). The less-than-pristine
performance of the conventional image processing-based
algorithm was due to of the poorly handled variances that existed
in the data caused by inter-image intensity differences due to
sample color/intensity variances. From these results, U-Net
background removal was used for segmenting the watermelon
plant from the background scene.

Discrimination of Stressed and
Non-stressed Plants
Results of the LDA classifier for classification between normal and
cold-stressed plants resulted in 100% classification accuracy both
on the calibration and test data set (Figure 6).

The reason for the clear discrimination is because of the clear
differences (in size, texture, and color) between the normal and
stressed plants (Figure 7). An analysis of the features selected
for classifying normal and cold-stressed plants revealed that
68.2, 18.2, 4.5, and 9.1% belonged to texture, region properties,
color, and other features, respectively (Table 5). Texture features
(describe plant texture) and region properties (describe plant
shape and size) constituted more than 86% of the selected features
and thus contributed more to the classification between normal
and stressed watermelon plants.

The predominant texture features in the analysis were the
DCT, LBP, Haralick, Gabor, and Fourier descriptor features.
Further analysis established that features from image 2 (60-degree
view image, 50% of the selected features) were more abundant,
followed by those from image 3 (top view image, 27.3% of the
selected features) and image 1 (0-degree view image, 22.7% of the
selected features).
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FIGURE 4 | Watermelon plant images captured using the data collection setup.

FIGURE 5 | Comparison of watermelon plant background segmentation using (A) U-Net and (B) a conventional image processing algorithm.

FIGURE 6 | Classification results for normal and stressed plants using three images.
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FIGURE 7 | (A) Textural difference between a normal (top) and stressed (bottom) plant at week 4. (B) Size difference between a normal (top) and stressed (bottom)
plant at week 5. (C) Color difference between a normal (top) and stressed (bottom) plant at week 3.

The classification model development was repeated using
features extracted from two images and one image, and a
comparison was made to find out which number of image views
is most suitable. The results show a slight reduction in model
precision and accuracy as the number of images is reduced
(Table 6), though not significantly different when using two
or three images. However, the smaller the number of images
used, the more complex the resultant classification, requiring
more features to make a reliable classification. These results
show that a minimum of two images are required for 100%
classification accuracy.

Leaf Counting
Of the 573 features from the feature extraction process, 21
features were selected using the SFS algorithm and were used to
estimate the leaf count of the watermelon plants. The number of
leaves detected using the morphological features was correlated
with the real number of leaves in the corresponding plants.
The R2, RMSE, and mean absolute difference (MAD) values

TABLE 5 | Selected features for classification of plant stress condition.

Features Number of features Percentage

Texture LBP features 5 68.2%

Haralick features 2

Fourier features 3

DCT coefficients 2

Gabor features 2

Region properties Feret properties 2 18.2%

Euler Number 1

Orientation 1

Color 1 4.5%

Others Contrast 2 9.1%

Total 21

achieved during prediction were 0.94, 0.97 leaves, and 0.88 leaves,
respectively (Figure 8).

Plant Age Estimation
For plant age estimation, number of weeks was used as the
reference information since image data was collected every week
for 4 weeks. Using the extracted features, 15 features were selected
using the SFS feature selection algorithm and a regression model
using MLR was developed to find a correlation between the
selected features and the normal/control plant age in weeks. The
performance of the model for predicting watermelon plant age
was found to have R2 and RMSE values of 0.92 and 0.29 weeks,
respectively (Figure 8). This model was developed for all four
watermelon varieties. However, using data from the individual
watermelon varieties resulted in higher model performance in
prediction (Table 7).

DISCUSSION

Discrimination Between Stressed and
Non-stressed Plants
Temperature stress is a significant challenge to agricultural
production. Extreme changes in temperature that deviate from
a plant’s optimal growth temperature range restrict plant
metabolism, growth, and development (Yadav, 2010; Ding
et al., 2019). In non-tropical climates, watermelon plants are
cultivated in controlled environments where the plants are closely
monitored to prevent the effects adverse temperature changes.
Plants that are exposed to cold stress show symptoms including
retarded growth, yellowing of leaves (chlorosis), wilting and
reduced leaf expansion after 48 h of exposure (Yadav, 2010).
Previous studies that used image analysis to assess cold stress
in plants focused on variety performance comparison (Enders
et al., 2019), and chilling stress injury classes (Dong et al., 2019).
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TABLE 6 | Comparison of classification results for normal and stressed watermelon plants using features from three-view, two-view, and one-view images.

Number of Images Calibration Test Selected features Outliers

TP FP TN FN Acc. (%) TP FP TN FN Acc. (%)

3 images 62 0 23 0 100 27 0 9 0 100 21 1

2 images 61 0 23 0 100 27 0 9 0 100 22 2

1 image 61 0 22 0 100 24 1 9 0 98 26 4

FIGURE 8 | Regression plot from model for estimating number of leaves of watermelon plant (A,B) watermelon plant age for all varieties estimated using 21 selected
features.

However, none of these studies attempt to classify cold stressed
plants from normal ones.

This study results demonstrated the possibility of classification
of cold-stressed watermelon plants from normal plants and
determination of some phenotypic traits based on image analysis.
The classification model was able to distinguish the stressed
plants after 1 week of exposure to stress conditions from the
normal plants. Analysis of the selected features showed that
texture was most important for the classification (Table 5). This is
because during cold stress, the leaf shape of the plants is shriveled
at the edges, causing a change from a smooth hairy texture to a
coarser rough texture (Figure 7).

Similarly, the stressed plants were smaller in size than normal
plants because plant growth is stunted during the cold stress spell

TABLE 7 | Multiple linear regression model performance based on all and
individual watermelon varieties.

Varieties Calibration Test Selected features Outliers

R2 RMSE R2 RMSE

All varieties 0.93 0.28 0.92 0.29 15 5

DAP 0.98 0.15 0.98 0.15 18 2

DAPCT 0.98 0.12 0.97 0.17 18 5

PI482261 1.00 0.02 0.99 0.04 14 1

45NC 1.00 0.03 1.00 0.05 18 1

(Figure 7). This was clearly seen in the plant image data resulting
in a high feature importance for the shape-based features (region
properties). This is because cold stress disrupts bio-energetic
processes, causes changes in metabolism, and contributes to
damage to cellular structures, hence the stunted growth and
shriveled leaves (Korkmaz and Dufault, 2001; Staniak et al., 2021).

These clear differences in the image data resulted in a
distinct classification between cold-stressed watermelon plants
from normal ones regardless of the age and variety. A further
analysis into the number of image views required for extraction
of morphological features resulted in a minimum requirement
of two image views (Table 6). Using one image-view to extract
morphological features required a larger feature set of 26 features
and achieved a lower classification accuracy. This is because of
occlusion of plant leaves using one image view that was alleviated
by using multiple views.

Leaf Counting
Over the duration of the data collection period, it was noted that
the watermelon plants exposed to stress were stunted and had a
lower leaf count compared to the normal plants. This signifies
the importance of counting the number of leaves as a phenotypic
trait in plant monitoring to determine plant health alongside
other traits. The leaf counting task is specialized and requires
a new model to be developed for each plant due to variations
among species. Similar to this study, Pape and Klukas (2015)
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used a few geometric features to carry out the leaf counting
task for Arabidopsis thaliana and tobacco plants. This study
achieved comparable results to theirs using geometric as well
as texture features to carry out leaf counting for watermelon
plants which, to the best of our knowledge, has not been done
in previous studies.

Similar results to ours have been obtained in previous studies
using DL algorithms for the leaf counting task (Aich and Stavness,
2017; Ubbens and Stavness, 2017). However, the use of deep
learning requires the annotation of each leaf in a plant image
to generate a training dataset from which the algorithm learns
and can then make accurate predictions of leaf counts from
new images. This requires precise delineations, the acquisition
of which is time-consuming and sensitive to the arrangement of
leaves (Giuffrida et al., 2018). The model in this study attempted
to overcome this challenge with the extraction and application of
morphological features from images, which resulted in superior
results for leaf counting that are comparable to previous studies
that have used DL algorithms.

Plant Age Estimation
The sensitivity of watermelon plants to temperature stress varies
depending on the age of the plant. The adverse effects of
temperatures below 13◦C can be seen before the flowering stage
and plants that are subject to temperatures greater than 14◦C
beyond the flowering stage do not experience significant cold
stress effects. This was the basis for the experimental design of
this study. Estimation of the plant age can be done based on the
number of leaves and tillers (Girma et al., 2007; Teimouri et al.,
2018). For this study, the plant age was determined based on the
number of weeks from the 2nd week (seedling stage) to the 5th
week (flowering stage) i.e., for week 2, 3, 4, and 5.

The regression results (Table 7) showed distinct predictions
of the age of the plants from all four varieties. A further
analysis of plant age prediction for individual varieties resulted
in better prediction performance. Because of the differences
between the watermelon varieties, data from a single variety
is more homogenous and subject to less variation compared
to data from all the watermelon varieties, resulting in better
model performance. This is consistent with the phenomenon
of intraspecific variation that accounts for the phenotypic and
genotypic variation within a species (des Roches et al., 2018). This
phenomenon influences models that are used for estimating the
watermelon plant age.

In summary, a simple plant-to-sensor system was developed
that can identify cold stressed watermelon plants and additionally
estimate plant characteristics including leaf count and plant age.
This study applies an image analysis pipeline (image processing,
feature detection, extraction, and selection) on the captured
watermelon plant images to identify cold stressed plants and
estimate leaf count and plant age.

The movement of plants to the data collection system disturbs
the growth conditions, may induce mechanical damage, and
is limited by the size of the plants. This method works well
for small plants and becomes increasingly troublesome, as the
plants grow. Similarly, since color information is employed in the
image analysis pipeline, stable lighting conditions during image

acquisition are required. Because of inconsistent lighting in fields
or growth chambers, in situ measurements are not possible.

For this study, approximately 120 watermelon samples from
four varieties were used. To develop more robust classification
and regression models, more varieties are needed.

CONCLUSION

This study established that it is possible to classify cold-stressed
watermelon plants from normal ones and predict phenotypic
traits such as the number of leaves and plant age using selected
morphological features from image analysis. The classification
model achieved a test accuracy of 100% while using features
from two and three different view images, indicating a minimum
requirement of two images for 100% classification. An analysis of
the few select features used for model development established
that texture features and region properties (related to shape and
size) were the most important features for classifying normal
from stressed watermelon plants.

The models developed for additional phenotypic traits, i.e.,
plant age and number of leaves, achieved good prediction
performance. Overall, this study was able to determine that
it is possible to use image analysis to extract morphological
features and accurately predict the stress condition and some
key phenotypic traits for watermelon plants. This study can
serve as a basis for the development of a real-time system
for monitoring watermelon plants in high-throughput plant
phenotyping facilities. Further studies can be carried out to
develop wide-range models for the prediction of multiple
phenotypic traits, which would be advantageous for high-
throughput phenotyping systems.
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