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Soil microorganisms are the key driver of the geochemical cycle in forest ecosystem. 
Changes in litter and roots can affect soil microbial activities and nutrient cycling; however, 
the impact of this change on soil microbial community composition and function remain 
unclear. Here, we explored the effects of litter and root manipulations [control (CK), doubled 
litter input (DL), litter removal (NL), root exclusion (NR), and a combination of litter removal 
and root exclusion (NI)] on soil bacterial and fungal communities and functional groups 
during a 2-year field experiment, using illumina HiSeq sequencing coupled with the function 
prediction platform of PICRUSt and FUNGuild. Our results showed that litter and root 
removal decreased the diversity of soil bacteria and fungi (AEC, Shannon, and Chao1). 
The bacterial communities under different treatments were dominated by the phyla 
Proteobacteria, Acidobacteria, and Actinomycetes, and NL and NR reduced the relative 
abundance of the first two phyla. For the fungal communities, Basidiomycetes, Ascomycota, 
and Mortierellomycota were the dominant phyla. DL increased the relative abundance of 
Basidiomycetes, while NL and NR decreased the relative abundance of Ascomycota. 
We also found that litter and root manipulations altered the functional groups related to 
the metabolism of cofactors and vitamins, lipid metabolism, biosynthesis of other secondary 
metabolites, environmental adaptation, cell growth, and death. The functional groups 
including ectomycorrhizal, ectomycorrhizal-orchid mycorrhizal root-associated biotrophs 
and soil saprotrophs in the fungal community were also different among the different 
treatments. Soil organic carbon (SOC), pH, and soil water content are important factors 
driving changes in bacterial and fungal communities, respectively. Our results demonstrate 
that the changes in plant detritus altered the soil microbial community structure and 
function by affecting soil physicochemical factors, which provides important data for 
understanding the material cycle of forest ecosystems under global change.
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INTRODUCTION

Soil microorganisms are the crucial drivers of the carbon (C) 
and nitrogen (N) cycles and nutrient dynamics at the plant–soil 
interface and play a vital role in mediating the biogeochemical 
cycle of forest ecosystems (Liu et  al., 2021). Soil microbes not 
only control the decomposition of soil C but also affect the 
transformation process of soil N (i.e., nitrification and 
denitrification; Crowther et  al., 2015; Scarlett et  al., 2021). It 
is well known that environmental changes and human activities 
can alter the quantity of litter and root inputs into the soil 
in forest ecosystems (Li et  al., 2020; Jing et  al., 2021). These 
alterations can affect the number and community structure of 
microorganisms by altering soil nutrient availability and 
hydrothermal factors (Liu et  al., 2017; Santiago et  al., 2021). 
Nutrient changes induced by soil microbial changes will in 
turn affect plant growth and stability in nutrient-deficient forest 
systems (Zhao et  al., 2017). Therefore, exploring the response 
of forest soil microorganisms to litter and roots is important 
for accurately evaluating the role of forest soil underground 
processes in coping with environmental variation.

Soil microorganisms are influenced by the input of exogenous 
organic matter such as litter and roots, but the magnitude of 
the effect is closely related to the quantity and quality of organic 
matter (Fanin and Bertrand, 2016). Previous studies have also 
shown that the soil microbial community structure has different 
responses to the input of exogenous organic matter (Habtewold 
et  al., 2020; Veen et  al., 2021). For example, litter addition 
facilitated soil fungal growth and significantly reduced the 
bacteria: fungi ratio in subtropical forests (Wang et  al., 2013). 
However, in temperate forests, the same treatment had no 
significant effect on the bacteria: fungi ratio (Brant et al., 2006). 
Conversely, litter removal (NL) is generally considered to reduce 
soil microbial biomass and change the ratio of fungi to bacteria 
(Xu et  al., 2013; Pisani et  al., 2016), but Yang et  al. (2020) 
showed different trends, indicating that NL has no significant 
impact on soil microbial community structure. These studies 
show that soil microbial community composition affected by 
litter is a complex process that is regulated by multiple factors 
(Xu et al., 2020). Furthermore, root-derived C input is another 
important driver of the soil microbial community (Barberan 
et  al., 2015). Several studies have indicated that root-derived 
C containing recalcitrant chemical components is conducive 
to the growth of soil fungi, while root exclusion (NR) had 
an inhibitory effect on the soil fungal community and modified 
the bacterial community structure (Brant et al., 2006; Sauvadet 
et  al., 2019). Moreover, roots play a more important role in 
changes in the microbial community and composition than 
litter (Cantarel et  al., 2015). These divergent results showed 
that changes in litter and roots resulted in a nonlinear relationship 
with soil microbial community composition, which may 
be  attributed to the differences in the quantity and chemical 
composition of exogenous substances among different forest 
ecosystems and the utilization strategies of soil microbial 
resources (Wang et al., 2019). Accordingly, it is of great priority 
to thoroughly study the changes and mechanisms of soil 
microbial community structure change in different forest types.

Soil microbial diversity is closely related to microbial 
stability, soil quality, and nutrient cycles and is susceptible 
to the input of exogenous organic matter (Schroeder et  al., 
2020; Xu et  al., 2021). Generally, the increase in resource 
availability under litter addition treatments contributes to the 
growth of individual microorganisms (Storch et  al., 2018), 
thus increasing soil microbial diversity (Dilly et  al., 2004). 
NL negatively affects soil microbial diversity by affecting soil 
microbial stoichiometry and soil moisture (Yang et  al., 2020). 
However, other studies found that litter treatment exerted 
no significant effect on soil microbial diversity (Zeng et  al., 
2017). These results may be  due to the differences in the 
proportion of different nutrient types of microorganisms in 
soil, soil nutrient availability, and hydrothermal factors (Che 
et  al., 2020; Yang et  al., 2020). Soil microbial diversity also 
differs depending on root turnover. Root biomass, decomposition 
processes, and root exudates can affect soil microbial diversity 
by changing soil factors such as soil water content, pH, and 
nutrient availability (Wang et  al., 2020a; Wan et  al., 2021). 
Previous studies indicated that roots can have a positive or 
neutral effect on soil microbial diversity (Wirthner et  al., 
2011), which may be  related to the different physiological 
tolerances of soil microorganisms in response to soil factor 
changes (Allison and Martiny, 2008). There have been numerous 
studies of the response of soil microbiota diversity to litter 
and root manipulations, but an understanding of the 
mechanisms underlying soil microbial diversity is still limited 
(Jing et  al., 2021). Therefore, more field experiments are 
needed to better characterize the response of soil microbial 
diversity to changes in plant detritus and how these changes 
interact with the regulation of soil nutrients by changing the 
output and transformation of C and N.

The changes in soil microbial metabolic functions are closely 
associated with soil fertility maintenance, material circulation, 
and the status of the soil system affected by environmental 
changes (Wang et  al., 2020b; Zhou et  al., 2020; Han et  al., 
2021). Previous studies focused primarily on exploring the 
changes in soil microbial community composition and diversity 
and its influencing factors but lacked a sufficient understanding 
of the changes in microbial metabolic functions (Yan et  al., 
2020). With the development of molecular biology technology, 
scholars have expanded the focus of attention from soil microbial 
community composition to functional prediction. Studies have 
indicated that soil microbial function are closely related to 
the quantity of plant detritus input into soil (Maillard et  al., 
2019; Wang et  al., 2020b; Feng et  al., 2022). For example, 
Wang et  al. (2019) suggested that litter addition can increase 
the functional groups associated with soil microbial C 
metabolism,  while NL has a negative effect on microbial 
functional groups. Moreover, root exclusion can alter the osmotic 
stress genes and functional groups that degrade macromolecule 
compounds (Shi et al., 2018). Changes in soil microbial function 
can alter the ability of microorganisms to decompose detritus 
with high C and N content, which in turn can affect the C 
and N cycles at the plant–soil interface (Bardgett and van der 
Putten, 2014). A deeper understanding of the response of soil 
microbial metabolic functions to plant detritus is crucial for 
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revealing the role of soil microorganisms in the terrestrial 
biogeochemical cycle.

The Tianshan Mountains harbor the largest montane forest 
ecosystem in Xinjiang, China, which is highly sensitive to 
environmental changes (Cowan, 2007). Schrenk’s spruce (Picea 
schrenkiana) account for 90% of the Tianshan forest area and 
plays a crucial role in conserving water sources, conserving 
biodiversity and maintaining ecosystem stability. This species exhibits 
low-quality litter (high C/N ratio) and shallow root systems (Chen 
et  al., 2018), and the influence of this litter and root type on 
the soil microbial community remains unclear. Thus, we conducted 
a field experiment to explore how detritus input and removal 
affect soil microbial (bacteria and fungi) community composition 
and functional groups in mountainous forest ecosystems in arid 
areas and to analyze their influencing factors. We  hypothesized 
that (1) litter and root manipulation can significantly change the 
structure and diversity of soil microbial community and (2) changes 
in soil nutrients under different treatments drive the shifts in soil 
microbial community structure and functional groups.

MATERIALS AND METHODS

Study Site
The study site is located in Schrenk’s spruce forest area of 
Tianshan Mountain, Xinjiang, Northwest China (87.18°E, 
43.47°N). Mean annual precipitation is 500 mm and mean 
annual temperature is 0–4°C (Gong and Zhao, 2019). The 
dominant species in the region is Schrenk’s spruce. The stand 
is mostly a pure forest, occurring from mid-mountain to 
subalpine zone. The understory companion herbs are Geranium 
rotundifolium, Alchemilla tianschanica, and Aegopodium 
podagraria. The soil belongs to gray–brown forest soil according 
to the soil classification of China (China soil systematic 
classification research cooperation group, 1995).

Experimental Design and Sample 
Collection
In September 2017, three plots (50 m × 50 m; same altitude, 
similar tree age and slope) were selected within 1–1.5 m from 
the trunk. Each plot was divided into five 1 m × 1 m subplots 
for five treatments: (1) the control (CK), (2) doubled litter 
inputs (DL), (3) litter removal (NL), (4) root exclusion (NR), 
and (5) no inputs (NI; Figure 1). For the CK treatment, normal 
litter inputs were allowed. For the DL treatment, the aboveground 
litter inputs were doubled by placing litter removed monthly 
from NL subplots. For the NL treatment, litter was removed 
with a 0.15-mm nylon mesh suspended 0.5 m above the ground. 
For the NR treatment, roots were excluded by inserting PVC 
boards into the trenches (0.1 m wide and 1 m deep). Both the 
above- and belowground inputs were excluded in the NI subplots.

In September 2019, soil samples from the 0–10 cm soil layer 
were collected with a soil drill in each subplot. Then, the 
roots of the companion herbs were removed according to the 
resilience and toughness of the roots. All soil samples were 
placed into sterile self-sealing bags and transported to the 
laboratory. The soil samples were divided into two portions. 

One portion of the sample was stored at −80°C for Illumina 
HiSeq sequencing, and the other was dried and then sieved 
for physicochemical analysis.

Soil Analysis
Soil Property, DNA Isolation, and Illumina HiSeq 
Sequencing
Soil physicochemical properties were described in our previous 
studies (Zhu et  al., 2021). The DNA from soil bacteria and 
fungi was extracted following the cetyltrimethylammonium 
bromide (CTAB) method, and the quality and concentration 
of DNA were then detected by agarose gel electrophoresis. 
The primers 515F and 806R were used to amplify the V4 
region of the 16S rRNA gene (Peiffer et  al., 2013). The ITS1 
regions of the fungi were amplified by PCR using the primers 
ITS5–11737 and ITS2–2043R (Lu et  al., 2013). PCR was 
performed as described below: 1 min of denaturation at 98°C, 
30 cycles at 98°C for 10 s, 50°C for 30 s, 72°C for 30 s, and a 
final extension at 72°C for 5 min. The products obtained after 
amplification were detected by 2% agarose gel electrophoresis 
and purified using a GeneJET Gel Extraction Kit (Thermo 
Scientific, Carlsbad, CA, United States). Following purification, 
sequencing libraries were generated using an NEB Next® Ultra™ 
DNA Library Prep Kit for Illumina (NEB, United  States) 
following the manufacturer’s recommendations, and index codes 
were added. The library was sequenced on an Illumina HiSeq 
platform at Novogene Biotechnology Co., Ltd., Beijing, China. 
Then, the raw sequencing data were trimmed and filtered to 
obtain valid data for subsequent analysis. The sequences were 
clustered into operational taxonomic units (OTUs) at 97% 
similarity using Uparse software (Uparse v7.0.1001).1 Taxonomic 
characterization of the representative sequences of bacterial 
and fungal OTUs were performed using the Silva and Unite 
databases, respectively. Based on the data after normalization, 
Chao1, Shannon, and ACE were calculated with QIIME software 
(version 1.9.1; Caporaso et  al., 2010). Additionally, Functional 
prediction of bacteria was obtained based on the 16S sequencing 
data using the PICRUSt software. The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database was used to annotate 
functional groups. For fungal communities, the functional 
groups were predicted using FUNGuild. The fungal OTUs table 
was uploaded to the FUNGuild platform, and the functional 
information were predicted by comparing the species OTU 
with the functional annotation information (Langille et  al., 
2013; Nguyen et  al., 2016). All the Hiseq sequencing data 
were submitted to the Sequence Read Archive (SRA) of National 
Center Biotechnology Information (NCBI) database with 
accession number PRJNA 814000.

Statistical Analysis
The data analysis was conducted using SPSS 17.0 software 
(SPSS, IBM, United  States). An analysis of variance (ANOVA) 
with the least significant difference (LSD) was applied to detect 
significant differences of each variable under different treatments. 

1 http://www.drive5.com/uparse/
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The differences in soil microbial community composition  
under different treatments was explored using nonmetric 
multidimensional scaling (NMDS) based on a Bray-Curtis 
distance matrix. Adonis analysis was used to compare the 
significant differences in the soil microbial community 
composition between different treatments. Redundancy analysis 
(RDA) and Pearson’s correlation analysis were used to identify 
the interrelationship between soil bacterial and fungal 
communities and physicochemical factors. The graphics 
were  created using Origin 2018 (Origin Lab, Massachusetts, 
United States).

RESULTS

Variations in Soil Bacterial and Fungal 
Community Composition
A total of 51 phyla, 58 classes, 121 orders, 206 families,  
and 423 genera of bacteria were detected in different treated 
soils (Supplementary Table S1). Proteobacteria (32.10% ± 
0.02), Acidobacteria (22.26% ± 0.02), and Actinobacteria 
(13.79% ± 0.04) were the predominant phyla in the bacterial 

community (Figure 2A). There were different effects of different 
treatments on the soil bacterial community (Figure  2A). 
Compared with the CK, both NL and NR decreased the 
relative abundance of Proteobacteria and Planctomycetes and 
increased that of Actinobacteria. The relative abundance of 
Firmicutes was significantly increased in the DL treatment 
(p < 0.001). At the genus level, NI treatment significantly 
decreased the relative abundance of unidentified Acidobacteria 
compared with the CK (p < 0.01; Figure  3A). The relative 
abundance of Haliangium in NL and NI treatments was 
significantly lower than that in CK (p < 0.01). Additionally, 
the relative abundance of Pedomicrobium was significantly 
higher in the DL treatment than in NL, NR, and NI treatments 
(p < 0.05; Figure  3A).

A total of 15 phyla, 45 classes, 119 orders, 228 families, 
and 427 genera of fungi were obtained from soil samples 
among different treatments (Supplementary Table S1). The 
most abundant phyla in the fungal community were 
Basidiomycota (22.80% ± 0.19), Ascomycota (35.05% ± 0.11), 
and Mortierellomycota (5.83% ± 0.04; Figure  2B). Compared 
with the CK, the relative abundance of Basidiomycetes 
increased by 39.62% in the DL treatment (p < 0.001). The 
relative abundance of Ascomycota in NR and NL was 

FIGURE 1 | Location of this study and experimental treatments. CK, DL, NL, NR and NI represent control, doubled litter input, litter removal, root exclusion, root 
and litter exclusion, respectively. Black bars represent PVC boards for excluding roots.
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significantly lower than that in CK, which was higher by 
14.06% and 15.84%, respectively (NR: p = 0.05, NL: p = 0.03). 
NI treatment significantly decreased the relative abundance 
of the phylum Ascomycota while increasing that of 
Mortierellomycota (Ascomycota: p = 0.04, Mortierellomycota: 
p < 0.001). Among the top  10 general, the relative abundance 
of Ramaria in the DL treatment was significantly higher 
than that in CK (p < 0.001; Figure  3B). Compared with the 
CK, NI treatment significantly increased the relative abundance 
of Morchella and Gymnostellatospora (p < 0.01). The relative 
abundance of Antennariella in the DL treatment was 
significantly higher than that in NL, NR and NI treatments 
(p < 0.05; Figure  3B).

Furthermore, NMDS indicated a clear separation between 
samples collected from CK and NI treatments (Figure  4). 
Results from Adonis analysis also showed that the bacterial 

and fungal community structure of NI-treated soil significantly 
differed from those in CK treatment (bacteria: p = 6.98, p < 0.001; 
fungi: p = 5.73, p < 0.001).

Variations of Alpha Diversity of Soil 
Bacteria and Fungi
The observe coverages of soil bacteria and fungi are between 
0.987 and 0.992, indicating that the sequencing results  
can reflect the majority of microbial information 
(Supplementary Figure S1). Compared to the CK treatment, 
soil bacterial and fungal diversity (AEC and Chao1 indices) 
was slightly but not statistically significant decreased in the 
NL and NR treatments (Figure  5). However, the bacterial 
Shannon index significantly decreased in the NI treatment 
(p < 0.05; Figure  5). In addition, the decrease in the AEC and 

A B

FIGURE 2 | Relative abundance of soil bacteria (A) and fungi (B) at phylum level under different treatments (n = 3). CK, DL, NL, NR, and NI represent control, 
doubled litter input, litter removal, root exclusion, root and litter exclusion, respectively.

A B

FIGURE 3 | Relative abundance of soil bacteria (A) and fungi (B) at the genus level under different treatments (n = 3). CK, DL, NL, NR, and NI represent control, 
doubled litter input, litter removal, root exclusion, root and litter exclusion, respectively.
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Chao1 index of soil bacteria and fungi in the NR treatment 
was greater than that in the NL treatment.

Functional Groups of Soil Bacterial and 
Fungal Communities
PICRUSt analysis was performed to predict the functional 
groups of the soil bacterial community. A total of 35 level-two 
functional groups were obtained in different treatments 
(Figure 6). The NI treatment significantly reduced the metabolism 
of cofactors and vitamins compared to the CK treatment 
(p = 0.04). The functional groups associated with the biosynthesis 
of other secondary metabolites decreased significantly in the 
DL treatment (p = 0.01). Moreover, NL significantly decreased 
environmental adaptation (p = 0.03), metabolism of cofactors 
and vitamins (p = 0.05), and cell growth and death (p = 0.03).

For fungal communities, a total of 25 predicted functional 
guilds were detected under different treatments (Figure  7). 
The NI and NL treatments significantly decreased the relative 
abundance of ectomycorrhizal-orchid mycorrhizal-root associated 
biotrophs (NI: p = 0.01, NL: p = 0.02). The relative abundance 
of ectomycorrhizal (p = 0.04) and soil saprotrophs (p = 0.05) in 
the NR treatment was significantly lower than that in the CK.

The Relationships Between Soil 
Physicochemical Factors and Soil 
Bacterial and Fungal Communities
The RDA indicated that different relationships were detected 
between the dominant phyla in the bacterial community and soil 
physical and chemical factors (Figure 8). Soil Gemmatimonadetes 
was negatively correlated with soil C, N, and other nutrient 
elements and positively correlated with soil pH (Figure  8A). Soil 
dissolved organic carbon (DOC) and microbial biomass N showed 
a positive correlation with Firmicutes (Figure  8A). There was a 
positive correlation between soil nitrate N and Rokubacteria 

A B

FIGURE 4 | Nonmetric multidimensional scaling (NMDS) of bacterial (A) and fungal (B) community composition based on Bray–Curtis distances of the OTU matrix. 
CK, DL, NL, NR, and NI represent control, doubled litter input, litter removal, root exclusion, root and litter exclusion, respectively.

A D

B E

C F

FIGURE 5 | Alpha diversity of soil bacteria (A–C) and fungi (D–F) under 
different treatments (n = 3). CK, DL, NL, NR, and NI represent control, doubled 
litter input, litter removal, root exclusion, root and litter exclusion, respectively. 
Asterisk indicate significance: *p < 0.05.
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(Figure  8A). The Monte Carlo permutation test showed that soil 
organic C (F = 2.5, p = 0.038) was the main factor that drove 
changes in dominant phyla in the bacterial community (Table 1). 
Furthermore, the metabolism of cofactors and vitamins was 
significantly positively correlated with soil microbial biomass C 
(p < 0.05) and had a highly significantly positively correlated with 
ammonium N (p < 0.01; Supplementary Figure S2A).

For fungal communities, Basidiomycota was positively correlated 
with microbial biomass C and total N (Figure 8B). Glomeromycota 
showed a positive relationship with soil microbial biomass N and 
ammonium N (Figure 8B). Soil water content exhibited a negative 
correlation with Monoblepharomycota. The effects of soil pH, 
water content, and microbial biomass C on the dominant phyla 
of soil fungi were greater than those of other factors (Table  1). 

For fungal function, soil ectomycorrhiza was significantly or highly 
significantly positively correlated with soil C, N and its fractions, 
but negatively correlated with soil pH (Supplementary Figure S2B).

DISCUSSION

Effects of Litter and Root Manipulations 
on the Community Structure and Diversity 
of Soil Bacteria and Fungi
The structure of the soil microbial community was closely linked 
with changes in soil physicochemical factors (Ding et  al., 2020). 
In this study, Proteobacteria, Acidobacteria, and Actinobacteria 

FIGURE 6 | Changes in functional groups of soil bacteria under different treatments. CK, DL, NL, NR, and NI represent control, doubled litter input, litter removal, 
root exclusion, root and litter exclusion, respectively.
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were the dominant soil bacteria in the different treatments 
(Figure 2A), which is consistent with the previous research results 
(Shang et  al., 2021). Soil Proteobacteria, Acidobacteria, and 
Actinobacteria play an important role in the soil C and N cycles 
and organic matter decomposition, so these three classes of bacteria 
occupy a core status in the bacterial community (Eichorst et  al., 
2018; Song et  al., 2021). Meanwhile, the soil bacterial community 
structure is also influenced by many factors, such as soil properties, 
litter, and roots (Yu et  al., 2021). Our results showed that the 
relative abundance of Proteobacteria, Acidobacteria, and 
Planctomycetes in the NL and NR treatments was lower than 
that in the CK (Figure  2A). Previous study has shown that 
Proteobacteria are the major functional bacteria for the decomposition 
and transformation of organic matter (Aleinikoviene et  al., 2017). 
NL and NR decreased the quantity of organic matter input  
into the soil and the availability of soil nutrients 
(Supplementary Table S2), thus leading to a decrease in the relative 
abundance of Proteobacteria (Liu et  al., 2019). Soil Acidobacteria 
is well suited for survival in highly acidic environments (Mannisto 
et  al., 2013). NL, NR, and NI blocked acidic substances such as 
phenolic acids and resins produced during the decomposition of 
roots and litter, resulting in an increase in soil pH (Dai et al., 2021).  

The loss of an acidic soil environment suppressed the colonization 
and growth of Acidobacteria and unidentified Acidobacteria. 
Generally, soil Actinobacteria can be  enriched under drought 
conditions (Wipf et  al., 2021). This study showed that NL and 
NR increased the relative abundance of Actinomycetes (Figure 2A). 
We  attribute this finding to two mechanisms. First, the reduction 
in soil water content in the NL treatment caused Actinobacteria 
to alleviate drought stress by producing spores and filaments, which 
ultimately resulted in an increase in drought-tolerant Actinobacteria 
(Xiong et  al., 2008). Second, soil Actinobacteria are associated 
with the degradation of refractory C, such as lignin, and thus 
Actinobacteria increased with the decrease of live roots (Griffiths 
et  al., 1999). We  also observed that the DL increased the relative 
abundance of soil Firmicutes (Figure  2A). This is because the 
addition of litter improved the soil nutrient status and hydrothermal 
environment and increased the availability of organic matter 
(Supplementary Table S2), which facilitates the involvement of 
Firmicutes in organic matter decomposition and carbohydrate 
metabolism (Zhao et  al., 2017).

In this work, the dominant phyla of the soil fungal community 
under different treatments were Basidiomycota, Ascomycota, and 
Mortierellomycota (Figure 2B), which is consistent with the results 

FIGURE 7 | Changes in functional groups of soil fungi under different treatments. CK, DL, NL, NR, and NI represent control, doubled litter input, litter removal, root 
exclusion, root and litter exclusion, respectively.
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of Tedersoo et  al. (2014) on soil fungi in terrestrial ecosystems. 
Previous studies have indicated that Basidiomycota, Ascomycota, 
and Mortierellomycota, as important decomposers in soil, play an 
important role in the material cycle of forest soil and litter 
decomposition and show potent adaptive capacity (Baldrian, 2017; 

Zhang et  al., 2018a). We  also found that the relative abundance 
of soil Basidiomycota and Ramaria increased in the DL treatment 
compared with the CK (Figures  2B, 3). Basidiomycetes have the 
ability to degrade refractory organic matter such as lignin and 
are the main decomposers in lignin-rich forests, and Ramaria spp. 
is known to be  an important taxa in Basidiomycota. The litter 
of Schrenk’s spruce forests contained a large amount of lignin, 
and the increase in lignin content under the DL treatment provided 
favorable conditions for the survival of Basidiomycetes and Ramaria 
(Klotzbucher et  al., 2012). In addition, the relative abundance of 
Ascomycota decreased in the NL and NR treatments (Figure 2B). 
Ascomycetes play a prominent role in the decomposition of 
recalcitrant organic matter such as lignin and cutin, and their 
growth rate is closely related to the soil N content (Paungfoo-
Lonhienne et  al., 2015). The NL and NR treatments decreased 
the amount of recalcitrant organic matter and soil N content 
(Supplementary Table S2), thereby suppressing the growth and 
reproduction of Ascomycota (Li et  al., 2021).

The change in soil microbial diversity is closely correlated with 
the stability of ecosystems and is influenced by multiple factors, 
such as litter, root exudates, and the soil environment (Sun et  al., 
2016). The bacterial Shannon index significantly decreased in the 
NI treatment (Figure  5), which is consistent with the previous 
findings (Zeng et  al., 2017; Yang et  al., 2020). Crow et  al. (2009) 
suggested that changes in the quantity of litter and roots can 
affect soil microbial diversity by changing soil physicochemical 
properties. The removal of litter and roots hindered C input 

A B

FIGURE 8 | Redundancy analysis of soil bacterial (A) and fungal (B) communities and soil physicochemical properties. pH: soil pH; NO3
−-N: soil nitrate nitrogen; 

moisture: soil moisture content; MBN: soil microbial biomass nitrogen; MBC: soil microbial biomass carbon; TN: total nitrogen; DOC: soil dissolved organic carbon; 
NH4

+-N: soil ammonium nitrogen; SOC: soil organic carbon; Proteobc: Proteobacteria; Acidobac: Acidobacteria; Actinobacteria: Actinobacteria; Chlorofl: Chloroflexi; 
Bacteroi: Bacteroidetes; Verrucom: Verrucomicrobia; Planctom: Planctomycetes; Gemmatim: Gemmatimonadetes; Rokubact: Rokubacteria; Firmicut: Firmicutes; 
Basidiom: Basidiomycota; Ascomycot: Ascomycota; Mortierll: Mortierellomycota; Chytridi: Chytridiomycota; Rozellom: Rollomycota; Monhelep: 
Monoblephelomycota; Mucoromc: Mucoromycota; Blastocl: Blastocladiomycota; Glomerom: Glomeromycota; Aphelidi: Aphelidiomycota.

TABLE 1 | Explanatory quantity of soil physicochemical factor.

Index
Interpretation of 
environmental 

factors/%
F p

Soil bacteria

SOC 16.0 2.5 0.04
NO3-N 15.3 2.3 0.04
MBN 13.8 2.1 0.06
DOC 13.7 2.1 0.05
pH 12.7 1.9 0.07

MBC 12.1 1.8 0.10
NH4

+-N 10.7 1.6 0.17
TN 9.9 1.4 0.20

Moisture 8.4 1.2 0.34

Soil fungi

pH 15.8 2.4 0.02
Moisture 15.7 2.4 0.03

MBC 15.5 2.4 0.02
TN 14.2 2.1 0.04

DOC 14 2.1 0.058
NH4

+-N 12.8 1.9 0.07
NO3

−-N 11.8 1.7 0.09
MBN 10.9 1.6 0.12
SOC 9.2 1.3 0.24
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belowground, decreased soil microbial biomass C and the diversity 
of the C source available to the microorganisms, and consequently 
decreased the soil microbial alpha diversity index (Jing et al., 2021). 
Additionally, the removal of litter and roots reduce understory 
plant diversity and carbon source input by changing soil nutrients, 
thus inhibiting soil microbial diversity (Zhao et al., 2013). Another 
potential explanation for this reduction is the apoptosis of soil 
microbes caused by variation in soil hydrothermal conditions 
(Hamer et  al., 2007). Soil is exposed to intense light and rain as 
litter and roots are removed (Kovacs et  al., 2020), and microbial 
taxa with less tolerance to drought and high temperature in the 
soil can disappear. Drastic changes in soil hydrothermal factors 
may also damage the mycelium structure (Brant et  al., 2006) and 
reduce the ability of soil microbes to utilize available, with a 
consequent reduction in microbial diversity (van der Heijden et al., 
2015). Furthermore, the decrease in soil bacterial and fungal 
diversity and numbers under the DL treatment in this study could 
be  attributed to the loss of specific microbial taxa caused by the 
decrease of soil pH (Figure  5). Previous studies shown that the 
reduction in soil pH under DL treatment increased the toxicity 
of aluminum and hydrogen ions in the soil and inhibited the 
ability of plants to release C into the soil (Chander and Brookes, 
1991; Juhos et al., 2021). These changes reduced the transformation 
of plant C to microbial C and the growth of microbial taxa with 
less tolerance for acid (Pietri and Brookes, 2008).

Effects of Litter and Root Manipulations 
on Functional Groups of Soil Bacteria and 
Fungi
Soil microbial functional groups can be indicative of environmental 
changes, providing a basis for a thorough understanding of 
microbe-mediated soil nutrient cycling (Chen et  al., 2020). 
Metabolism groups maintain the growth of bacteria by acquiring 
energy, vitamins, and carbohydrates from the soil (Srour et  al., 
2020). In the present study, NI treatment decreased the expression 
of groups related to metabolic function in soil bacteria (e.g., 
metabolism of cofactors and vitamins; Figure 6). The NI treatment 
reduced not only the decomposition degree of plant detritus but 
also the content of humus and nutrient elements in the soil. 
The change in soil nutrients suppressed the metabolism of vitamins, 
enzymes and other substances, resulting in a decline in the 
abundance of functional groups (Wen et  al., 2016). For lipid 
metabolism, the reduced abundance of lipid metabolism genes 
in NI treatment led to a decrease in fatty acid content (a marker 
of microbial membrane), which can weaken the ability of bacteria 
to cope with environmental stress (Srour et al., 2020). In addition, 
we  observed that NL significantly reduced the functional groups 
associated with environmental adaptation, cell growth, and death 
(Figure  6). We  speculate that removing litter reduced the input 
of aboveground organic matter and suppressed the growth of 
microorganisms related to the soil nutrient cycle (Sayer et  al., 
2020). Another potential explanation for our results is that litter 
removal leads to an increase in soil temperature and pH and a 
decrease in soil water content and nutrient content, eventually 
triggering changes in the environmental adaptability of bacteria 
(Gong et  al., 2020; Dai et  al., 2021).

In the fungal community, the relative abundance of 
ectomycorrhizae under DL treatment was significantly higher 
than that under CK (Figure  7). In general, ectomycorrhizae are 
symbiotic fungi, and their growth is susceptible to host plants. 
The increase in soil nutrients under DL treatment can promote 
growth of the belowground parts of plants, which in turn can 
provide a huge amount of organic matter for the metabolic 
activities of fungi (Liu et  al., 2021). Moreover, DL treatment 
promotes good retention of soil moisture, and the appropriate 
soil environment can satisfy the conditions required for the 
growth of ectomycorrhizae (Zhu et  al., 2021). Our present study 
also showed that NI and NL significantly reduced the relative 
abundance of ectomycorrhizal-orchid mycorrhizal root-associated 
biotrophs (Figure  7). This is mainly because the removal of 
litter and roots blocked the C source input into the soil and 
increased soil disturbance, and the survival conditions of fungi 
were stressed, which resulted in a decrease in the number of 
functional groups and the diversity of fungi of multiple trophic 
types (Lajtha et  al., 2014; Liu et  al., 2019). Furthermore, the 
relative abundances of ectomycorrhizal and soil saprotrophs under 
the NR treatment were lower than those under the CK treatment 
(Figure  7). The removal of litter and roots can decrease soil 
nutrient elements and accelerate soil water loss, and these changes 
can suppress the growth and metabolism of ectomycorrhizae 
(Wang et  al., 2019). Previous studies have indicated that soil 
saprotrophs mainly maintain their growth by utilizing soil organic 
matter (Francioli et  al., 2021). The removal of litter and roots 
reduced the amount of organic matter and the content of nutrients 
such as soil C and N, resulting in a decrease in soil saprotrophs.

Relationship Between Soil Bacterial and 
Fungal Communities and Soil 
Physicochemical Factors
The change in the soil microbial community is closely related to 
soil nutrients and the environmental factors that affect microbial 
growth. In this study, there was a very significant negative correlation 
between Gemmatimonadetes and soil C, N, and other  
nutrient elements (Figure  8A). As Gram-negative bacteria, soil 
Gemmatimonadetes can degrade and consume C sources in soil 
and reduce the content of nutrient elements such as soil organic 
matter (Toda and Uchida, 2017). The increase in the relative 
abundance of soil Gemmatimonadetes under NL and NR treatments 
may have led to considerable consumption of organic matter, 
resulting in a decrease in soil nutrient content. Soil pH showed 
strong significant correlations with the relative abundance of 
Gemmatimonadetes in this study, consistent with results published 
by other authors (Liu et al., 2014). The availability of soil nutrients 
is the highest when the soil pH is neutral, which is beneficial for 
microbial growth. Although the soil pH changed (6.50–7.56) under 
different treatments, it remained in the suitable growth range of 
Gemmatimonadetes. In line with our initial hypothesis, soil organic 
C was the major driver of the change in the bacterial community, 
congruent with the previous findings (Chen et  al., 2014). Litter 
and root manipulations altered the organic C content in the input 
soil and the energy source required for microbial activities, in 
turn affecting the bacterial community composition (Zhao et al., 2013).
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For fungi, soil Basidiomycota showed a positive relationship 
with soil C and N (Figure  8B). It was reported that a large 
proportion of Basidiomycota in soil can form mycorrhizas with 
plant roots (Kumar and Atri, 2018). The existence of mycorrhizae 
can transfer the C source in the host plant to the soil on the 
one hand and promote the accumulation of C in the soil by 
protecting the C in the aggregate from erosion on the other 
(Clemmensen et  al., 2013; Zhang et  al., 2016). Moreover, the 
mycorrhizae formed by Basidiomycota can affect the soil’s inorganic 
N content by changing other microbial communities, and their 
dead hyphae can also release N to the soil (Veresoglou et  al., 
2012). Thus, soil Basidiomycota are closely related to soil C 
and N. In this study, Glomeromycota had a positive correlation 
with soil microbial biomass N and ammonium N (Figure  8B). 
The phylum Glomeromycota is an important symbiotic fungus 
of plants that can transport nutrient elements in soil to plants 
and promote the soil N uptake of trees (Sturmer and Kemmelmeier, 
2021). This study also indicated that there was a negative 
correlation between soil water content and Monoblepharomycota 
(Figure  8B), which is related to the anaerobic characteristics of 
Monoblepharomycota. The removal of litter and roots increased 
the evaporation of soil moisture, and the decreased soil moisture 
improved the aeration conditions of the soil, thereby inhibiting 
the growth of the phylum Monoblepharomycota (Wu et  al., 
2019). Additionally, our results also indicated that soil pH and 
soil moisture had a greater effect on the soil fungal community 
than other factors. Soil pH affects the microbial utilization of 
nutrients and the soil environment by changing the form of 
compounds in the soil, thus acting on the fungal community 
structure (Ingwersen et  al., 2008). Soil moisture is thought to 
be  one of the vital substances influencing fungal growth. The 
changes in soil water affect the metabolism of fungal cells and 
their utilization of C and N resources by changing the flow of 
cell membranes and proteins (Zhang et  al., 2014). Moreover, 
soil moisture can affect plant growth, oxygen content and soil 
gas diffusion, which results in differences in the growth and 
reproduction of different fungal taxa (Freeman et  al., 2002).

Our study also showed that soil microbial biomass C and 
ammonium N were significantly positively correlated with 
metabolism of cofactors and vitamins (Supplementary Figure S2A). 
This follows because an increase in soil C, N, and other nutrients 
under DL treatment facilitated the metabolic process of cofactors 
and vitamins, terpenoids, and polyketides, and the enhancement 
of bacterial metabolic activity in turn had a positive effect on 
the accumulation of soil C (Ma et  al., 2021). Conversely, the 
metabolic activity of bacteria was inhibited due to the  
blocking of soil C input under the NL and NR treatments 
(Supplementary Table S2). In this study, we  observed that soil 
ectomycorrhiza was significantly or highly significantly positively 
correlated with soil C fractions (Supplementary Figure S2B). 
This was possibly because the following two aspects. Firstly, the 
turnover and biomass of ectomycorrhiza were important sources 
of soil C, and their mycorrhizal hyphae enhanced the physical 
protection of soil C by interacting with soil aggregates (Zhang 
et  al., 2018b). Secondly, the secretion of ectomycorrhizal fungi 
promoted microbial activities and the decomposition of organic 
C, thus affecting the turnover of soil C (Hodge and Fitter, 2010). 

Similarly, we found that soil total N, ammonium N and microbial 
biomass N were significantly or highly significantly positively 
correlated with ectomycorrhizal-orchid mycorrhizal-root associated 
biotroph (Supplementary Figure S2B). We  speculate that 
ectomycorrhizal fungi can degrade cellulose through a variety of 
enzyme genes and use their own oxidase to decompose organic 
matter in the soil, thereby releasing N into the soil (Shah et al., 2016).

CONCLUSION

In this study, we  analyzed the effects of 2 years of detritus input 
and removal treatment on the structure, diversity and function 
of the soil microbial community and explored the relationship 
between the microbial community and soil physicochemical 
properties. Our results indicate that the removal of litter and 
roots decreased the alpha diversity index of soil bacteria and 
fungi. The dominant phyla and functional groups in bacterial 
and fungal communities also exhibited some variances after different 
treatments. Our further analysis found that soil organic C, pH, 
and soil water content are important factors driving changes in 
bacterial and fungal communities in Schrenk’s spruce. Our study 
provides a basis for a deeper understanding of the role of soil 
microorganisms in the regulation of soil nutrient cycling in forest 
ecosystems. Future studies should focus on the relationship between 
microbial metabolic pathways and the soil nutrient cycle, which 
will help to improve the understanding of soil geochemical cycling 
mechanisms in forest ecosystems in the context of global change.
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