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Despite its high economical and ornamental values, Torreya grandis, a dioecious non-
timber coniferous species, has long been an underrepresented species. However,
the advent and application of advanced genotyping technologies have stimulated its
genetic research, making it possible to gain new insight into the genetic architecture
of complex traits that may not be detected for model species. We apply an open-
pollination (OP) mapping strategy to conduct a QTL mapping experiment of T. grandis, in
which nearly 100 unrelated trees randomly chosen from the species’ natural distribution
and their half-sib progeny are simultaneously genotyped. This strategy allows us to
simultaneously estimate the recombination fractions and linkage disequilibrium (LD)
coefficients between each pair of markers. We reconstruct a high-density linkage map
of 4,203 SNPs covering a total distance of 8,393.95 cM and plot pairwise normalized
LD values against genetic distances to build up a linkage-LD map. We identify 13
QTLs for stem basal diameter growth and 4 QTLs for stem height growth in juvenile
seedlings. From the linkage-LD map, we infer the evolutionary history of T. grandis and
each of its QTLs. The slow decay of QTL-related LDs indicates that these QTLs and
their harboring genomic regions are evolutionarily relatively young, suggesting that they
can better utilized by clonal propagation rather than through seed propagation. Genetic
results from the OP sampling strategy could provide useful guidance for genetic studies
of other dioecious species.

Keywords: linkage map, QTL, linkage disequilibrium, linkage disequilibrium map, Torreya grandis

INTRODUCTION

Most plant traits including those of agronomic importance are complex quantitative traits in nature,
which are jointly controlled by an interacting network of genes, each with a small effect, and
environmental factors (Lynch and Walsh, 1998). There is no exception with tree species. These
genes underlying a complex trait are called quantitative trait loci (QTLs) or quantitative trait
nucleotides (QTNs; Lynch and Walsh, 1998; Wu and Lin, 2006). Quantitative models have been
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established to separate the genetic and environmental effects for
complex traits at the QTL level (Lander and Botstein, 1989; Yang
et al., 2006; Wu et al., 2007; Li and Sillanpää, 2013, 2015; Yin et al.,
2015; Zeng et al., 2019).

Linkage analysis based on a family-based design is a very
popular approach for identifying and mapping QTLs (Wu et al.,
2007; Sajjad et al., 2014). This approach makes use of allelic
segregation and transmission at different loci to construct a
genetic linkage map from a large number of molecular markers.
A number of mapping examples using linkage analysis have
been reported in backcross, double haploid, recombinant inbred
lines, near isogenic line, and F2 populations, initiated with two
inbred lines (Collard et al., 2005; Shar et al., 2020; Wang et al.,
2020; Zhou et al., 2020). For forest trees, in which no inbred
lines are available due to their long-life cycle, large genomes,
and high heterozygosity (White et al., 2007), linkage analysis is
conducted on the basis of a full-sib family derived from two
heterozygous parents (Maliepaard et al., 1997; Wu et al., 2002b;
Lu et al., 2004). The limitation of linkage analysis lies in its
incapacity to high-resolution map QTLs, unless an extremely
large number of samples sizes that is hardly met in forest genetics
are used.

Apart from linkage mapping, there is an alternative mapping
approach based on linkage disequilibria (LD). This LD-based
approach can capitalize on recombinant events accumulated
over evolutionary history and, therefore, provide high-resolution
mapping of QTLs (Flint-Garcia et al., 2005; de Oliveira et al.,
2010; Sajjad et al., 2014). Also, by sampling unrelated individuals
from domesticated or natural populations, this approach can
map a wide spectrum of allelic variants, including multiple
alleles (Ersoz et al., 2007). There have been many examples
of using LD analysis to map QTLs in forest trees; for
example, QTLs detected for wood density in teak (Tectona
grandis) (Vaishnav and Shamim, 2019) and the LACCASE
gene (an important regulatory gene for lignin biosynthesis)
characterized for Japanese larch (Larix kaempferi) (Liu et al.,
2017). However, its application may be impaired by spurious
LD detection and the occurrence of rare alleles increasingly
recognized as important contributors of genetic variation
(Cardon and Palmer, 2003).

To overcome the limitations of linkage and LD mapping,
a joint linkage-LD analysis has been developed (Wu and
Zeng, 2001; Wu et al., 2002a; Myles et al., 2009; Bennett,
2010; Lu et al., 2010; Pagny et al., 2012), which has been
shown to increase the precision of QTL mapping and decrease
its false positive rate. Unlike autogamous plants, forest trees
mostly perform allogamous pollination, i.e., the pistils of a
tree receive the sperms in the pollens randomly from different
trees to fertilize their eggs. Taking advantages of this open
pollination (OP) mating behavior, Wu and Zeng (2001) and
Wu et al. (2002a) proposed an OP mapping strategy that
combines the advantages of linkage mapping and LD mapping.
The merit of the OP mapping strategy is augmented by
its additional value to infer the genetic diversity of natural
populations and the evolutionary history of QTLs (Sun et al.,
2015; Zhu et al., 2015a,b). More recently, Zeng et al. (2019)
have equipped this strategy with a capacity to estimate and

test QTLs through non-DNA sequence-based (non-genetic)
maternal inheritance.

Because of these unique advantages, also stimulated by the
development of sequencing techniques that make it possible
to genotype a massive amount of SNP markers even for
un-sequenced forest trees (Wang et al., 2011; Huang et al.,
2015), the OP strategy shows its increasing usefulness in QTL
mapping. In this study, we use this strategy to map growth
QTLs for Torreya grandis Fort. ex Lindl, an underrepresented
dioecious gymnosperm species distributed in the southeastern
China (Kang and Tang, 1994). As an economically important
species producing edible nuts, T. grandis has been cultivated
for more than 1000 years, but its systematic population and
quantitative genetic study has not begun until very recently.
Using the OP seeds from a single tree of T. grandis “Merrillii,” a
commercial variety of T. grandis, Zeng et al. (2014) constructed
a first low-density genetic map to which QTLs affecting
juvenile growth traits were located. A second low-density
linkage map of T. grandis was constructed using the OP
design in which both parents and offspring were genotyped
for the same set of markers (Zhu et al., 2015a). Using this
linkage map, Zeng et al. (2019) further map QTLs that display
transgenerational inheritance or epigenetic expression. Although
these previous studies demonstrate the power of OP design
to dissect complex traits in recalcitrant coniferous species,
use of less expensive dominant markers, i.e., sequence-related
amplified polymorphism (SRAP) and amplified fragment length
polymorphism (AFLP), limits the coverage of the linkage
maps reconstructed.

In this article, we report a large-scale OP-based mapping
study by genotyping about 100 maternal T. grandis trees and 10
offspring of each maternal by genotyping-by-sequencing (GBS).
After quality control, 70,580 SNP markers are detected to be
segregating simultaneously in parental and offspring populations.
By germinating OP seeds of each sampled maternal tree into
seedlings, we implement the mapping algorithm of OP design
(Wu and Zeng, 2001; Zhu et al., 2015a,b) to reconstruct a linkage
map and identify QTLs on the map that govern stem growth of
juvenile T. grandis trees. We further infer the evolutionary history
of growth QTLs detected in T. grandis, providing new insight into
the genome structure and organization of this less studied but
important species.

MATERIALS AND METHODS

Experimental Design and Sampling
Based on the Wu and Zeng’s (2001) OP mapping strategy, we
collected seeds and leaves from 96 unrelated trees randomly
distributed in a natural population of T. grandis in Xiaorong
Village, Chenkan Town, Huizhou District, Huangshan City,
Anhui Province of China (29◦57′ N and 118◦14′ E) in 2017.
The leaves were used to isolate DNAs used to genotype sampled
parental trees. The seeds were stratified in a greenhouse on
campus of Zhejiang A&F University (30◦15′ N and 119◦43′
E). In the following spring (2018), germinated seeds were
transplanted into a 22 cm × 21 cm (diameter × height)
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plastic pot to grow seedlings. Young leaves from seedling were
collected for DNA isolation used to genotype the progeny.
Seedling height and basal diameter growth was measured
for each progeny from each parental tree at the end of
each year for 2018–2021. These growth traits were used
for QTL mapping.

Leaf samples from both 96 maternal trees and their
878 progeny (4–10 seedlings from each maternal tree)
were sent to LC-Bio Technologies (Hangzhou) Co., Ltd.,
Hangzhou, China. These trees were genotyped for genome-
wide SNPs by a GBS-based genotyping technique combining
EcoRV and ScaI and SNP calling. An insert size of 430–
460 bp was selected by gel electrophoresis for further
sequencing library construction. Barcoded adaptors and
common adaptors were then ligated to digested fragments,
followed by every 96 random samples pooling and PCR
amplification, in which only those short samples featuring
a barcode + common adaptor combination were amplified.
Finally, the fragments were enriched by PCR amplification
and purified by magnetic beads. The use of a pair of SNPs
for joint linkage and linkage disequilibrium analysis requires
the information of the markers that are co-segregating in
both parental and offspring populations. Excluding rare allele
markers in the parental population, markers deviating from
Mendelian segregation pattern in the offspring population,
and missing markers (missing at >5%) in the parental
population, there are 70,580 such quality SNP markers used for
consequent analysis.

Linkage Map Construction and Linkage
Disequilibrium Estimation
A statistical algorithm for simultaneously estimating the
recombination fractions and linkage disequilibria between each
pair of markers using the OP design was described in detail
by Wu and Zeng (2001), Wu et al. (2002a), and Zhu et al.
(2015a,b). To help the readers understand this algorithm, we
outlined its basic principle. Consider a pair of biallelic SNP
markers that are co-segregating in parental population. Let Sp
denote parental genotypes at these two markers. The pattern
of marker co-segregation is determined by population genetic
parameters (P); i.e., four haplotype frequencies, or equivalently,
by allele frequencies at each marker and the LD between the
two markers. The co-segregating marker pair is co-transmitted
from parents to their half-sib progeny, forming offspring
genotypes (denoted by So). The pattern of co-transmission
is determined by the recombination fraction, denoted by
r. The likelihood of population genetic parameters and the
recombination fraction given observed marker data is formulated
as:

L(P, r|Sp, So) = Lp(P|Sp) + Lq(r|Sp, So, P) (1)

which includes two components, the likelihood of population
genetic parameters [Lp(P| Sp)] given parental marker genotypes
and the likelihood of the recombination fraction [Lq(r| Sp, So,
P)] given parental and offspring genotypes and the estimates of
population genetic parameters. Maximizing the likelihood in Eq.

(1) is equivalent to maximizing Lp(P| Sp) and Lq(r| Sp, So, P),
individually. Wu and Zeng (2001) proposed the EM algorithm to
jointly solve these two likelihoods. Specifically, Lp(P| Sp) allows us
to estimate haplotype frequencies, from which allele frequencies
and LD are estimated. The estimated LD was normalized as
marker-marker correlation (r2), whereas Lq(r| Sp, So, P) allows us
to estimate the recombination fraction. Thus, for the same pair of
markers, we can estimate both their recombination fraction and
LD, which allows the linkage-LD map to be built.

We implemented Matlab R2019a to solve the likelihood of
Eq. (1). The estimates of pairwise recombination fractions are
used to reconstruct linkage maps. Optimal linkage groups were
determined by changing the threshold of the recombination
fraction and LOD. Markers of each group were ordered by
using sum of adjacent recombination frequencies (SARF; Buetow
and Chakravarti, 1987). The genetic distance between markers
expressed as centiMorgan (cM) was calculated by transforming
the recombination rate through the Kosambi mapping function.
The R 4.0.3 package LinkageMapView (Ouellette et al., 2018)
was adopted to draw the genetic linkage map and the
marker density map.

Quantitative Trait Loci Identification
Wu et al. (2002a) extended Wu and Zeng’s (2001) OP design
to map QTLs for phenotypic traits. Consider a SNP with three
genotypes AA, Aa, and aa which are segregating in the parental
(maternal) population. Through OP, each maternal genotype
combines with three possible paternal genotypes AA, Aa, and
aa from the pollen pool, producing different proportions of
offspring genotypes AA, Aa, and aa. The total number of each
of these three offspring genotypes is the sum of the number
of the offspring genotype produced by each maternal genotype,
weighted by the frequencies of maternal genotypes. Let n1, n2,
and n3 denote the total number of offspring genotypes AA, Aa,
and aa, respectively, and let yi denote the phenotypic value of a
trait measured for an offspring individual. The likelihood of trait
value at this SNP from the offspring population is formulated as:

L(y) = 5i=1
n1 f 1(yi)5i=1

n2 f 2(yi)5i=1
n3 f 3(yi) (2)

where fj(yi) is the normal distribution density function with mean
µj (j = 1 for AA, 2 for Aa, and 3 for aa) and variance σ 2.

After the model parameters are estimated, a hypothesis test is
performed to test whether there are significant QTLs affecting the
growth trait. The null hypothesis that assumes no existence of a
QTL, whereas the alternative hypothesis assumes its existence, is
expressed as:

H0 : µ1 = µ2 = µ3 (3)

H1: at least one of the equations H0 above does not hold.
Under each hypothesis, we calculate its likelihood value, L0 for

H0 and L1 for H1. The likelihood ratio (LR) is calculated by:

LR = − 2(L0 − L1) (4)

Permutation tests were conducted to calculate the critical
threshold for testing significant QTLs (Doerge and Churchill,
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1996). We estimated the proportion of phenotypic variance
explained by each QTL.

RESULTS

Genetic Linkage Map
The offspring (seed) genotype of a maternal parent derives
from the combination of its maternal gametes and the paternal
gametes from the pollen pool. Thus, based on the segregation
and recombination of two SNPs from a maternal genotype to its
offspring, we can estimate the recombination fraction for such
a SNP pair. By estimating pairwise recombination fractions, we
reconstruct a high-density linkage map that contains 11 linkage
groups (LG) based on the criterion of LOD (logarithm of the
odd) >5. This map, composed of 4,203 SNPs and covering an
overall map length of 8,393.95 cM with an average map distance
of 2.00 cM, represents one of the highest marker density and
genome coverage for T. grandis (Figure 1). The LG constructed
ranges in length from 84.28 cM for LG11 with only 13 SNP
markers to 2,117.02 cM for LG4 with 835 markers. LG1 has the
largest number of markers, which is 903, LG2 has the smallest
average distance of 1.09 cM, and LG7 has the largest gap of
172.93 cM (Table 1). The map has large gaps at several regions,
such as those at the end of LG1 and both ends of LG7 (Figure 1).

Linkage-Linkage Disequilibrium Map
The information about how a pair of markers is co-segregating
in natural populations is contained in maternal and paternal
gametes, which can be extracted from the OP design. We
estimate pairwise LD and plot their normalized values against
map distances separately for each linkage group (Figure 2). As
expected, LD decays with genetic distance, but with the degree
of decay depending on linkage group. In general, linkage groups
LG1–LG4 and LG6 have LD values that decay dramatically at a
genetic distance of 10–20 cM; i.e., the decay of LD from 0.50 to
0.25 occurs at the genetic distance of 17.62 cM for LG1, 23.06 cM
for LG2, 9.56 cM for LG3, 28.17 cM for LG4, and 15.89 cM for
LG6. Yet, a dramatic LD decay in LG5 and LG7–LG11 occurs
at a much shorter interval, i.e., 0.5–3.0 cM; i.e., the decay of
LD from 0.50 to 0.25 occurs at a genetic distance of 2.11 cM
for LG5, 0.52 cM for LG7, 0.51 cM for LG8, 0.54 cM for LG9,
0.66 cM for LG10, and 1.06 cM for LG11. Within the same linkage
group, some marker pairs have large LD, but are separated by long
genetic distances, suggesting that these markers may be subject
to some recent evolutionary forces. Some markers have tight
linkage and strong non-random association, implying that they
have experienced a long evolutionary past.

Linkage disequilibrium between unlinked markers will
disappear rapidly after several generations of random mating.
Thus, the occurrence of such LD implies that relevant markers
are experiencing evolutionary actions. We find that significant
LD between markers from different linkage groups occurs, but
they are not evenly distributed among linkage groups (Table 2).
Markers on LG1 tend to be associated with those from LG2
to LG7. This finding, plus the facts that a good proportion of
markers (8%) on LG1 has significant LD and that the frequencies

of LD between all other linkage groups are very low, suggests that
LG1 are more likely to be subject to recent evolutionary forces
than other linkage groups.

Quantitative Trait Loci Identification
The OP design can map QTLs to particular genomic regions of 11
linkage groups through a joint linkage-LD analysis. We consider
two growth traits, stem height and basal diameter, measured
for T. grandis seedlings from OP progeny in years 2018, 2019,
2020, and 2021. These two traits are found to vary considerably
among progeny (Table 3 and Figure 3), implying the existence
of their underlying QTLs. We identify 4 QTLs for stem height in
2018 and 2020 located on LG1, LG5, and LG7, and 13 QTLs for
basal diameter in 2020 and 2021 on LG1, LG3, LG4, LG5, LG6,
LG9, and LG10, respectively. Table 4 provides the information
on the marker names of QTLs and their cross types and allele
types. These QTLs mostly affect growth traits in an additive
manner, but four of them display no dominant inheritance. Each
QTL is found to account for a small portion of phenotypic
variance, i.e., QTL heritability, suggesting that growth traits in
T. grandis are polygenic.

By locating each of these QTLs on the linkage-LD map,
we can infer their evolutionary history (Figure 2). The LD
between two loci decays with generation at a rate proportional
to their genetic distance. In general, if there is no linkage,
disequilibrium will disappear at 5–6 generations of random
mating. Yet, if there is strong linkage, LD will need a large
number of generations to disappear. Thus, by comparing the
size of both the linkage and LD, we can infer the number
of generations that have passed since the production of
disequilibrium. All QTLs, except for Q93443_149, Q169393_182
and Q32220_12, are located in the left bottom corner of the
map, i.e., the markers associated with these QTLs have low
linkage and disequilibrium values. Q93443_149, Q169393_182,
and Q32220_12 reside in the region where there is little
recombination but a remarkable disequilibrium.

DISCUSSION

The genetic mapping of complex traits is one of the most
important topics in quantitative genetic research and plant
breeding. Complex traits can be mapped by two approaches,
linkage mapping and linkage disequilibrium (LD) mapping. Each
of the two approaches has its own advantages and disadvantages
in the accuracy, precision and power of QTL mapping and,
thus, a simultaneous application of the two approaches has
been considered in many genetic studies (Myles et al., 2009;
Bennett, 2010; Lu et al., 2010; Pagny et al., 2012). Many of these
studies simultaneously used linkage mapping and LD mapping
for the same complex traits, but this simultaneous use was
based on different mapping populations, i.e., controlled crosses
for linkage mapping and founder-unknown populations for LD
mapping. Although this can mutually validate mapping results
from different approaches, such a simultaneous use does not
resolve the accuracy and power issues characteristic of each
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FIGURE 1 | The marker density map (left) and linkage map (right) of T. grandis composed of 11 linkage groups (LG).

approach. For example, the spurious detection of disequilibria
may still occur for LD mapping.

To strengthen the advantages of each mapping approach
and overcome disadvantages of them, they should be integrated
into a unified framework for the same mapping population.
Wu and Zeng (2001) and Wu et al. (2002a) are the first who
have developed a joint model of linkage-LD mapping, validated
the statistical properties of the model, and justified its practical

application (Hou et al., 2009; Yin et al., 2015). In particular,
based on the allogamous behavior of forest trees, they proposed
an open-pollination (OP) sampling strategy for joint linkage-LD
mapping, followed by elegant statistical algorithms for parameter
estimation and testing. This OP mapping strategy not only
preserves the merits of linkage mapping and LD mapping,
but also generates a new value, i.e., it allows the cohesive
integration of population genetics, evolutionary genetics, and
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TABLE 1 | Statistical information of genetic linkage groups in T. grandis.

LG Total number of markers Total distance/cM Average distance/cM Max gap/cM

LG1 903 1,320.00 1.46 83.75

LG2 504 548.16 1.09 53.11

LG3 457 813.39 1.78 55.83

LG4 835 2,117.02 2.54 17.76

LG5 664 911.44 1.37 44.08

LG6 230 591.34 2.57 44.62

LG7 287 944.61 3.29 172.93

LG8 159 458.73 2.89 42.52

LG9 83 267.84 3.23 29.36

LG10 68 337.13 4.96 45.22

LG11 13 84.28 6.48 24.92

Total 4,203 8,393.95

FIGURE 2 | Linkage-linkage disequilibrium map expressed as a plot of normalized LD values against map distance for marker pairs from the same linkage groups.
Red line denotes the decay curve of LD with increasing genetic distance. QTLs that are detected to affect seedling growth traits are indicated.

quantitative genetics to understand the genetic diversity of
populations and the evolution of QTLs. This strategy has found
its biologically meaningful application for studying the genetics
of Euphrates poplar (Zhu et al., 2015b) and T. grandis (Zhu
et al., 2015a) and has been regarded as a generic tool for genetic
mapping in forest trees and other outcrossing species (Sun et al.,
2015). In this study, we employ Wu and Zeng’s (2001) OP
design to map growth traits in T. grandis, an important but
underrepresented tree species.

We simultaneously estimate the recombination fractions and
LD coefficients between each pair of SNP markers genotyped for
paternal trees and their half-sib offspring. By plotting normalized

LD values against the recombination fractions, we chart a linkage-
LD map, from which evolutionary events acting on the genome
of T. grandis can be inferred. The slope of LD decay curve over
genetic distances implies the evolutionary history of the species
(Bennett and Binet, 1956; Sun et al., 2015). Previous studies
suggest that LD values decays rapidly with genetic distance in
coniferous trees (González-Martínez et al., 2007). Although this
phenomenon is confirmed in this study, we gain additional
insight into the genome structure of T. grandis. Our result
shows that LD values in some narrow genomic regions decay
dramatically, suggesting that these segments of the T. grandis
genome may have experienced a long evolutionary history. We
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TABLE 2 | The number (upper diagonal) and proportion (lower diagonal) of marker pairs with significant LD within and between linkage groups (LG).

LG1 LG2 LG3 LG4 LG5 LG6 LG7 LG8 LG9 LG10 LG11

LG1 31028 (0.08) 25251 21312 45807 39371 11046 16520 2857 2608 2448 273

LG2 0.08 4010 (0.03) 4334 7340 8189 4490 3412 574 931 849 7

LG3 0.07 0.01 1331 (0.01) 4455 9181 3807 4109 1043 1150 1087 82

LG4 0.15 0.02 0.01 6350 (0.02) 20549 9115 8693 1245 1745 1344 63

LG5 0.13 0.03 0.03 0.07 17232 (0.08) 8824 16101 3795 2642 2383 510

LG6 0.04 0.01 0.01 0.03 0.03 1072 (0.04) 3878 612 447 540 46

LG7 0.05 0.01 0.01 0.03 0.05 0.01 3784 (0.09) 1557 1143 1208 165

LG8 0.01 0.00 0.00 0.00 0.01 0.00 0.01 482 (0.04) 580 460 101

LG9 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 151 (0.04) 279 90

LG10 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 138 (0.06) 35

LG11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 (0.03)

On diagonal are the number and proportion (in parentheses) of significant marker pairs on individual linkage groups.

TABLE 3 | Variation analysis of phenotypic data in T. grandis.

Growth trait Year Max/mm Min/mm Mean/mm Median/mm SD* CV/%

Seedling height 2018 408.0 11.0 125.6 125.0 4.76 37.90

2019 436.0 36.0 167.9 163.0 5.71 34.01

2020 504.0 58.0 238.5 231.0 7.32 30.69

2021 735.0 112.0 350.5 348.0 9.40 26.82

Basal diameter 2018 4.67 0.54 2.24 2.22 0.63 28.13

2019 7.35 1.08 3.02 2.95 0.85 28.15

2020 9.79 1.21 3.86 3.82 1.13 29.27

2021 12.96 1.82 6.26 5.90 2.11 33.71

*Standard deviation.

FIGURE 3 | Phenotypic data analysis of seedling height and diameter in T. grandis. The triangle in the upper part of the figure is the correlation and significance and
that in the lower part of the figure is scatterplot and its fitting curve. The diagonal part is normal distribution of seedling height and diameter data. 1, 2, 3, and 4 in the
diagonal part means the year 2018, 2019, 2020, and 2021. *p < 0.05, **p < 0.01, ***p < 0.001.
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TABLE 4 | Seedling growth-associated QTLs identified and their genetic effects on growth of different years in T. grandis.

Trait Year SNP position QTL Linkage group Locus type Allele LR Heritability µ a d

Height 2018 869 Q30999_76* LG5 Intercross C/T 24.37 0.02 14.57 −1.94 −2.08

Height 2018 1519 Q43475_161 LG7 Intercross G/A 23.94 0.02 13.21 −0.32 −1.86

Height 2018 3033 Q203628_131 LG1 Intercross A/T 24.16 0.01 11.13 −0.75 1.47

Height 2020 2117 Q74653_78 LG5 Intercross G/A 26.32 0.03 26.23 −1.34 −2.89

Diameter 2020 2312 Q93443_149 LG1 Testcross C/T 20.67 0.02 3.86 0.41 NA

Diameter 2021 2854 Q169393_182 LG6 Testcross G/A 19.85 0.02 5.92 0.60 NA

Diameter 2021 3224 Q238139_6 LG6 Testcross T/C 19.90 0.02 6.36 −1.10 NA

Diameter 2020 1278 Q38577_59 LG5 Intercross T/C 29.72 0.00 4.15 −0.15 −0.27

Diameter 2020 1925 Q60566_178 LG9 Intercross G/A 38.92 0.03 4.12 −0.31 −0.10

Diameter 2020 2371 Q99544_193 LG5 Intercross C/T 29.00 0.02 3.46 0.47 0.65

Diameter 2021 959 Q32220_12 LG10 Intercross T/C 32.91 0.03 6.53 −0.50 −0.35

Diameter 2021 1217 Q37769_23 LG3 Intercross G/C 37.22 0.04 6.49 −0.58 −0.26

Diameter 2021 1219 Q37769_154 LG3 Intercross C/T 33.30 0.03 6.49 −0.54 −0.28

Diameter 2021 1882 Q58055_172 LG5 Intercross A/G 35.48 0.05 6.85 −0.65 −0.77

Diameter 2021 1889 Q58576_78 LG4 Intercross A/C 33.37 0.05 6.59 0.57 −0.46

Diameter 2021 2196 Q79639_127 LG10 Intercross C/T 33.11 0.05 6.64 0.60 −0.45

Diameter 2021 4130 Q401289_77 LG1 Intercross C/G 34.68 0.04 6.04 0.94 NA

*30999 is a marker tag and 76 is the location in this tag. LR, likelihood ratios; µ, phenotypic mean; a, additive effect; d, dominant effect; and NA, not detected.

also find that some regions of the genome have been subjected
to certain recent evolutionary forces, because large LD values
are detected between genetically distant markers. A further
investigation into the detailed distribution of genes located in
evolutionarily old and young genomic regions is needed. Such
information can help tree breeders choose an optimal breeding
scheme for this coniferous tree species.

Ye et al. (2020) detected considerable differences in growth
performance among T. grandis families, which is confirmed by
this study. We implement Wu and Zeng’s (2001) algorithm to
map QTLs for juvenile growth traits measured at different years
in seedlings of half-sib offspring derived from paternal trees. We
identified several stem height and basal diameter growth QTLs at
different years, but did not find nay QTLs that are shared between
different years. This finding, consistent with that detected from
a linkage mapping experiment by Zeng et al. (2014), suggests
that T. grandis activates diverse genetic systems in response to
environmental change during its early establishment. This may
also imply that this species preserves a rich warehouse of genetic
variants to buffer against environmental perturbations in its
growth and development.

Beyond traditional linkage mapping or LD mapping alone,
the OP strategy allows us to infer the evolution of QTLs. We
find that all QTLs, except for Q93443_149, Q169393_182, and
Q32220_12, have weak associations with the markers that are
highly linked with them, whereas Q93443_149, Q169393_182,
and Q32220_12 are highly linked with the markers that are also
strongly associated with them. Taken together, it is suggested
that Q93443_149, Q169393_182, and Q32220_12 may still be
relatively young in evolution, i.e., no adequate generations that
have passed to lead LD to disappear, but the other QTLs may
have experienced a long evolutionary history, because only an
extremely large number of generations can make the LD of highly
linked loci drop to a low level.

Our study can be methodologically improved at least in
two aspects. First, growth is a dynamic process, but our
mapping was based on growth traits measured at single time
points. A dynamic functional mapping (FunMap) approach that
integrates the mathematical principle of growth into a mapping
context has been developed (Ma et al., 2002; Wu and Lin, 2006).
Because of its biological relevance and statistical robustness,
FunMap has been applied to many plant mapping projects (Yang
et al., 2006; Wu et al., 2011; Li and Sillanpää, 2013; Camargo
et al., 2018; Lyra et al., 2020), widely recognized as a powerful
tool for QTL mapping (Li and Sillanpää, 2015). Second, our
mapping study finds that each QTL explains a relatively small
portion of genetic variance (<10%) in growth traits. Similar
phenomena were also detected in other studies (González-
Martínez et al., 2011). However, it is possible that a small-
effect QTL may not be necessarily small, rather its independent
effect is masked by the inhibition of negative regulators (Sun
et al., 2021; Wang et al., 2021; Wu and Jiang, 2021). The exact
effect of each QTL or gene can better be characterized through
modeling gene-gene interactions (Wang et al., 2022). A new
mapping approach, called functional graph theory (FunGraph)
derived from FunMap, has been proposed to chart the genetic
interactome network of complex traits from genetic association
data (Dong et al., 2021; Feng et al., 2021). A detailed analysis of
our T. grandis data from the OP mapping strategy deserves by
FunMap and FunGraph.
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