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Capturing forest disturbances over time is increasingly important to determine the

ecosystem’s capacity to recover as well as aiding a timely response of foresters. With

changes due to climate change increasing the frequencies, a better understanding of

forest disturbances and their role in historical development is needed to, on the one

hand, develop forest management approaches promoting ecosystem resilience and, on

the other hand, provide quick and spatially explicit information to foresters. A large,

publicly available satellite imagery spanning more than two decades for large areas

of the Earth’s surface at varying spatial and temporal resolutions represents a vast,

free data source for this. The challenge is 2-fold: (1) obtaining reliable information on

forest condition and development from satellite data requires not only quantification

of forest loss but rather a differentiated assessment of the extent and severity of

forest degradation; (2) standardized and efficient processing routines both are needed

to bridge the gap between remote-sensing signals and conventional forest condition

parameters to enable forest managers for the operational use of the data. Here,

we investigated abiotic and biotic disturbances based on a set of ground validated

occurrences in various forest areas across Germany to build disturbance response

chronologies and examine event-specific patterns. The proposed workflow is based on

the R-package “npphen” for non-parametric vegetation phenology reconstruction and

anomaly detection using MODIS EVI time series data. Results show the potential to

detect distinct disturbance responses in forest ecosystems and reveal event-specific

characteristics. Difficulties still exist for the determination of, e.g., scattered wind throw,

due to its subpixel resolution, especially in highly fragmented landscapes and small

forest patches. However, the demonstrated method shows potential for operational use

as a semi-automatic system to augment terrestrial monitoring in the forestry sector.

Combining the more robust EVI and the assessment of the phenological series at

a pixel-by-pixel level allows for a changing species cover without false classification

as forest loss.
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INTRODUCTION

Disturbances play a substantial role in forest ecosystems,
influencing the structure of stands, their regeneration, and the
character of the whole forest ecosystem (Dale et al., 2001). As
such, forest disturbances are an integral part of these ecosystems
including storm impact, droughts, flooding, fires, and insect
or disease outbreaks in plants and animals. Here, we used the
term disturbance to describe any negative deviation from the
long-term enhanced vegetation index (EVI) phenology linked to
abiotic or biotic causes. Changes in the severity and frequency of
these disturbances, due to an increase in extreme climate events
(Seneviratne et al., 2012), raise concerns regarding forest function
and provision, thus sparking great interest in large-scale forest
assessments (for a list of current remote-sensing-based forest
monitoring in Germany refer to Supplementary Material 1).
A current increase in disturbance events leads to multiple
assessments (Senf and Seidl, 2020). The analysis relies on either
remote-sensing products, covering large and continuous scales,
as done for mortality (Senf et al., 2018) and land-cover change
(Hansen and Loveland, 2012), or on ground assessments such as
the ICP Forests Crown Condition Survey (George et al., 2021).
In recent years, remote-sensing products have begun to increase
the value of ground assessments by being less personnel and
resource-demanding, hence producing lower cost and allowing
a higher temporal resolution of monitoring cycles (Lausch et al.,
2018). Large benefits are the possibility to redo the analysis
and repeat it retrospectively, as well as cover continuous areas
rather than individual sampling plots in the analysis. Despite the
advantages, remote-sensing products and applications alone do
not provide all the answers needed (Chávez et al., 2019) in the
current forest monitoring and practice seemingly leading to a
limited acceptance of foresters. Thus, a workflow for retrieving
up-to-date, reliable and precise information on the forest vitality
status from satellite data is of great interest for early stage
warning and diagnosis, as well as to support in preventative- and
countermeasures in today’s forest practice (Torresan et al., 2021).
However, disturbances in forests lead to a variety of symptoms,
from the loss or discoloration of leaves and needles (e.g., insects,
fungi, drought) and the disruption of forest structures to the loss
of standing wood volume (e.g., storm, fire) (Buma, 2015), which
are so far assessed individually (Gao et al., 2020). Providing this
information in a single, easy-to-use workflow would improve
the usability of forest practice. This is specifically relevant in
fast-changing conditions due to regeneration or in forest areas
repeatedly affected by biotic or abiotic disturbances (Iglhaut
et al., 2019). Therefore, foresters and decision-makers need a
spatially explicit and timely assessment of the disturbance, with
information on the disturbance history to assess the vulnerability
of existing stands and the cause of the disturbance.

During the last decade, several extreme weather events
contributed to considerable loss and degradation of forest
ecosystems throughout central Europe and Germany (Oeser
et al., 2017). With various extreme events likely to increase in the
future (Seneviratne et al., 2012), the risk of single and multiple
disturbance events increases further. However, the different
causes, roughly classified as biotic and abiotic, lead to different

disturbance patterns and require distinct silvicultural measures.
While water stress and drought are associated as the triggering
factors for early defoliation, vitality loss, and forest pathogens
(Ghelardini et al., 2017; Bußkamp et al., 2020), water stress
is linked to increased vulnerability due to fungal infestation
(Blodgett et al., 1997; Fabre et al., 2011). While water-related
disturbances vary between site conditions and species strategies,
other abiotic disturbances such as fire and storm act at a larger
level, which is less tightly linked to these disturbances. However,
even here, the detection of the disturbance is increased by the
knowledge of forest cover. Windstorms are widely referred to
as abiotic and temporally discrete events and are due to their
often spatially explicit occurrence that is operationally detectable
(Giannetti et al., 2021). The destructive potential of a storm
event depends on the (peak) wind speeds, the duration, and the
frequency with which forest stands are affected. The severity
of storm-related impact on a given forest stand depends on
the stocked species, species admixture, and age (Valinger and
Fridman, 2011). In combination with the precipitation, the
severity and extent of storm-induced destruction as well as
mortality rates increase in the forest stand level (Usbeck et al.,
2010). Forest fires are commonly classified as temporally discrete,
abiotic disturbance events that result in abrupt changes in the
form of burned vegetation and soil (Gnilke and Sanders, 2021).
In Germany, forest fires usually occur in the summer period
from April to August. The spread of forest fire is influenced by
meteorological conditions and topography as well as forest and
site characteristics (White et al., 1996). Forest areas affected by
fire usually consist of a single contiguous burn area or a few
compactly shaped burned areas that are locally concentrated.
Within the burned areas, a zonal gradation of fire severity can
be observed, which typically decreases toward the outer edges.
Insects and fungi on the other hand are less pronounced during
events that can occur from single trees to larger stands (Kautz
et al., 2018). Here, this differentiation between abrupt and gradual
changes allows the first differentiation between abiotic and biotic
changes, which remained difficult as described in the study
of Senf and Seidl (2021) and Francini et al. (2022). So far, a
combination of remote-sensing data and models is used to map
abiotic disturbances by fire and storm. The examples presented in
this study showed that the non-parametric method of the analysis
of Moderate Resolution Imaging Spectroradiometer (MODIS)-
derived phenological series and the self-calibrating change
detection allows the classification of multiple disturbances
without relying on pre-assumptions or the need of user-
defined thresholds for curve fitting or trend modeling. Abrupt
changes can be further analyzed regarding their size, distribution,
amplitude of change, and recovery. This allows a determination
of disturbances caused by fire or storm limited only by the
resolution of the used remote-sensing product.

Over the years, a variety of remote-sensing platforms are
developed with specific or overlapping sensors, with the most
commonly used ones being optical imaging systems (for more
information, refer to Lechner et al., 2020). To obtain information
on forest structure, vitality, or loss, to name just a few, Landsat,
MODIS, and sentinel data are used (McDowell et al., 2015).
While Landsat provides the longest time series and a high spatial

Frontiers in Plant Science | www.frontiersin.org 2 May 2022 | Volume 13 | Article 863116

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Gnilke and Sanders MODIS Based Forest Disturbance Detection

resolution offering information on a small scale or on gradually
occurring disturbances (DeVries et al., 2015); however, it still
relies on potent computing power and algorithms, e.g., machine-
learning classifiers, and lacks in prepossessing and validation
(Banskota et al., 2014), as well as has low temporal resolution.
MODIS detection accuracy lies in agreement with Landsat
(Jin and Sader, 2005) and provides 20 years of prepossessed
data in high temporal resolution, and only two scenes cover
the entire part of Germany. Sentinel data provide higher
spatial-spectral and radiometric resolution, which are ready-
to-use products; however, the time series is still short but
will provide ample information in the future. Nevertheless,
several studies use Sentinel data to detect current changes
(Puletti et al., 2019; Senf and Seidl, 2021). All three provide
passive optical/NIR and mid-infrared information on the surface
reflectance, which allows the application of conventional and
innovative vegetation indices and land cover applications. From
all these, the mission’s spectral vegetation indices (VI), such
as the Normalized Difference Vegetation Index (NDVI) and
the Enhanced Vegetation Index (EVI), can be deducted and
are widely used to assess vegetation conditions and monitor
ecological phenomena and their dynamics across various spatial
and temporal scales (Bannari et al., 1995; Myneni et al., 1995;
Hunt et al., 2011; Decuyper et al., 2020; Schuldt et al., 2020). From
these indices, phenological series can be derived, providing the
start of the vegetation period by greening and the end by the loss
of greenness. While the start and the end of the vegetation period
vary slightly between the years, the general curvematches and can
therefore be used to detect changes.With a good agreement of the
phenological series between MODIS and Sentinel 2 (Thapa et al.,
2021), the use of both is possible, and also, the longer time series
of MODIS provides a reliable reference curve, whereas Landsat
and Sentinel 2 lack the temporal resolution and face occlusions
due to cloud coverages in more humid latitudes. Currently,
however, even the combination of multiple sources of remote
sensing is possible and could increase the information content
further (Lu et al., 2016; Wan et al., 2021). Limits, however, do
occur in the processing capacity, the data handling, and the
interpretation (Arvor et al., 2019).

This need for methodological fine-tuning is met by a huge
variety of disturbances. Disturbance events can cause abrupt or
gradual changes, showing distinct or non-distinct patterns in
space and time (Sturtevant and Fortin, 2021). These patterns are
further modified by an overlay of different disturbances (Cannon
et al., 2017) resulting in additive effects, influencing the expected
patterns, and making the recognition and differentiation more
difficult. Small scale and patchy disturbances can retain younger
and remnant live trees aiding recovery (Seidl et al., 2014) but
also mask the signal received limiting interpretation. The scale
of the disturbance will not only influence the recovery potential
but also influence the ability to detect it. Storms generally leave
younger and remnant trees, whereas fires, especially with high
temperatures and in monocultures, can leave nothing behind,
making them easy to detect. Another important information
is that the severity of the disturbance is linked to the spatial
and temporal extent, the severity, and the frequency (Hart and
Kleinman, 2018). All these processes will influence the likeliness

of detection and therefore need to be considered. The analysis
of time series adds the temporal dimension and is therefore an
important source of information for the extraction of semantic
content from satellite scenes (Zhang et al., 2006; Atzberger et al.,
2014; Recuero et al., 2019). Hence, time series analysis methods
are useful to efficiently spot forest vitality decline at an early
stage, which is often essential to effectively perform damage
control and mitigate long-term effects in forests by adaptive
forest management (Bolte et al., 2009).

Despite the successful application at local to regional scales,
results often show huge variances between the ground estimates
and the remote-sensing assessments, leading to a lack of
acceptance in foresters and politicians. To overcome these issues,
a substantiated validation of the remote-sensing results with
reliable ground data is the key factor (Frolking et al., 2009).While
we are convinced that remote sensing is an important addition
to ground-based monitoring systems, we believe that methods
need to be robust to bridge data gaps that occur, e.g., cloud
cover, independent of artificial thresholds for trend modeling or
curve fitting and to be ready to use across various forest cover
types and growth conditions. In addition, they need to be useable
by a non-specialist and without high computer performance
while still providing reliable information. Here, we used a self-
calibrating non-parametric approach for time series analysis of
MODIS EVI data for detecting and assessing various disturbed
areas in Germany observed over the last 20 years to improve
the understanding of disturbance regimes in forest ecosystem to
(a) detect patterns of disturbance, (b) capture distinct features
determining abrupt and gradual change, and (c) assess their
magnitudes of severity, as well as (d) disturbance interactions.

MATERIALS AND METHODS

Disturbance-specific features seen as phenological metrics, such
as duration, slope, and amplitude, were used to deduce the timing
and quantify the abruptness and the severity of the deviation
relative to the long-term normal (estimated EVI phenology vs.
expected EVI) (Jönsson and Eklundh, 2004). These prototypes
are used to create a multistage, rule-based decision tree for
disturbance-specific pixel classification (Figures 1, 2). While
the duration describes the temporal factor over which the
disturbance response evolves, starting from the point in time
when the deviation of observed EVI values from the long-term
EVI phenology first occurs, where the amplitude defines the drop
of the EVI anomaly, and the slope is a combination of these two
factors. The utilization of additional remote sensing products,
e.g. multi-temporal differenced normalized burn ratio (dNBR)
(Veraverbeke et al., 2011) could further improve the distinction
between different disturbance types and their potential causes.
However, there is still a limitation regarding how to quantify
the magnitude of severity, which currently is not comparable
between different sites easily but does rather provide a grading
within each investigated site of this study. In the next step, these
disturbance patterns could be exploited as disturbancemarkers to
detect similar patterns within the EVI chronologies of the last 20
years potentially across multiple pixels. However, the problem of
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interpreting spectral time series signatures of irreversible damage
changing forest cover type, e.g., from coniferous forest to mixed
or deciduous broad-leaf forest remains. However, the kernel
density estimation (KDE)-based phenological reconstruction
algorithm is based on data inherent thresholds (non-parametric),
and thus, it follows a robust statistical approach not relying
on any artificial or given thresholds. It can be applied at any
multispectral pixel and across various vegetation cover types or
biomes allowing high flexibility in application. The pixel-by-pixel
approach is further robust to missing data, e.g., data gaps at any
given pixel position within the analyzed sequence. Therefore, no
gap filling in the sense of spatial or temporal interpolation is
needed to reduce uncertainty in not masking highly dynamic or
small-scale phenomena (Figure 2).

Reference Data
Regular reporting based on ground assessments from the federal
states provided data on known disturbances caused by fire, storm,
insects, fungi, or a combination of the latter two (Figure 3).
From these events, nine sites were selected across Germany with
disturbances differing in timing, extent (Figure 3, examples 1 and
2), and type of the disturbance. Over the last 20 years, while some
sites were reported as only being affected one time (examples
1, 2, 3, 4, and 6), others show a combination of two different
disturbances (5) or one disturbance agent occurred multiple
times (8, 9). The forest fire sites (7) are in close spatial proximity
and should therefore be treated as one.

The reference data for the windthrow areas caused by
the storm Kyrill (study sites 1 and 2) in North Rhine-
Westphalia consist of polygon shapefiles (https://www.
opengeodata.nrw.de/produkte/umwelt_klima/wald_forst/
wald/windwurfschadflaechen-kyrill_EPSG25832_Shape.zip)
mapped within the post-storm forest damage assessment, which
was commissioned by the State Forestry and Timber Agency
immediately after the storm event. The windthrow delineation
was compiled of data from on-site inspections on the ground
and aerial color-infrared image interpretation. The reference
data for the windthrow areas in North Rhine-Westphalia and
Lower Saxony caused by the storm Friederike (study sites 3 and
4) consist of Delineation Products created by the Copernicus
Emergency Management Service (EMS) (https://emergency.
copernicus.eu/mapping/list-of-components/EMSR266) through
visual interpretation of satellite images.

The disturbance reference data for the burned areas caused
by two major forest fires near Treuenbrietzen and Luckenwalde
in South Brandenburg (study sites 7a and 7b) consist of
Grading Products created by the Copernicus Emergency EMS
(https://emergency.copernicus.eu/mapping/list-of-components/
EMSR307) through supervised automatic classification of
multi-temporal satellite imagery (Joubert-Boitat et al., 2020).
The grading maps show the extent of the burned area and the
magnitude of damage referring to the Copernicus EMS severity
classes, ranging from “possibly damaged” and “damaged”
to “destroyed.”

The data sources used as references for gradual disturbances
are based on various forest monitoring reports published by
federal institutions and forestry authorities. The study on the

local effects of climate change on forestry in selected regions
of Saxony-Anhalt conducted by the North-West German
Forest Research Institute (NW-FVA) served as a preliminary
source of defoliation caused by pine sawfly (Diprion pini) and
canopy browning due to fungal infestation (Diplodia pinea) in
the Colbitz-Letzlinger Heide (study site 5). Forest condition
reports (https://mluk.brandenburg.de/cms/media.php/lbm1.a.
3310.de/Waldzustandsbericht_BB_2018.pdf) and silvicultural
monitoring data for nun moth (Lymantria monacha) defoliation
published by the Brandenburg State Forestry Office (LFE)
served as references for the insect-induced disturbances in the
Schorfheide (study site 8) and the Lieberoser Heide (study site
9). The grading product indicating the extent and severity in the
Fläming region (study site 6) has been created from the Forest
Condition Index based on multi-temporal satellite imagery.

The designated study areas, each with an extent of 20 km by
20 km, were created based on the “GermanGeographic Reference
Grid” (Geographical grid for Germany in Lambert projection -
Data Europa EU, 2022; BKG; http://data.europa.eu/88u/dataset/
02a7e63d-caaa-4ded-b6ff-1f1e73faf883) using the 10 by 10 km
grid based on the Lambert Azimuthal Equal Area (ETRS98
LAEA, EPSG: 3035) projection (Figure 4). The systematic grid
is INSPIRE compliant so that statistical facts and semantic
information can be evaluated in a temporally and spatially
consistent and reproducible manner. Through compatibility
with national grid systems and the European Environmental
Agency (http://www.eea.europa.eu/data-and-maps/data/ds_
resolveuid/D63BFD62-6597-4D5F-BD35-9E06265102E0)
reference grid, this approach enables both reproducibility for
geostatistical evaluations at the national level and transferability
of the proposed methodology to areas of interest outside
Germany as well as comparisons across Europe. All disturbance
reference data are publicly available and free of charge, a detailed
list of the reference data is used, and the associated metadata
and maps can be found in Supplementary Material 2. The study
sites show some of the most common forest types and structures
in Northern Germany.

In some cases (referring to the study sites 5, 6, 8, and 9), the
reports only provide geo-addresses from the forestry cadastre
assigned to the forestry administrative management units, but
there was a lack of accurate geolocation or delineation for
the actual disturbance areas. To compensate for this, we used
the Global Forest Change data (Hansen et al., 2013) at the
respective “Forest loss year” when the disturbances occurred for
cross-checking the location information given in the disturbance
reporting and to narrow down the extent of the actual damaged
area affected by insect defoliation or fungal infestation. However,
our aim was to detect the gradual changes requiring more than a
binary map of forest loss. Therefore, this method aims to capture
forest degradation with explicit magnitudes and their severity
over time and space.

MODIS Data
The satellite time-series data used in this study was composed
of MODIS Terra Vegetation Indices 16-day composites at
250m pixel size (MOD13Q1 VI v006) provided by NASA’s
Land Processes Distributed Active Archive Centre (LP DAAC).
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FIGURE 1 | Schematic presentation of the differentiation between the different disturbance types using the parameters slope, duration, and amplitude to first

distinguish between abrupt and gradual change, defined by the duration of the decline and then to distinguish between the cause for the change event.

FIGURE 2 | Proposed workflow to automatically extract disturbances.

The initial MOD13Q1 data are delivered in HDF-EOS file
format, where each acquisition consists of two primary
vegetation index layers (NDVI/EVI), two quality assessment
layers (indicating VI quality and pixel reliability), and the four
surface reflectance layers (corresponding to the red, NIR, blue,
and mid-infrared bands). The MOD13Q1 VI are compiled of
bi-monthly maximum value composites (MVC) representing the
best available pixel value from all acquisitions acquired over
the respective 16-day time interval according to the criteria
“low clouds,” “low view angle,” and “highest NDVI/EVI value”

(Huete et al., 2010; Solano, 2015). All study areas considered
are within one MODIS tile referring to the sinusoidal grid
tile-ID h18v03. Continuous MOD13Q1 time series data of the
past 20 years ranging from the first complete annual cycle
available in 2001 to 2020 were considered. The total of 460
MODIS EVI records (23 records for each annual cycle) served
as time-series input data for estimating the long-term EVI
phenology, on which the reference years of known disturbance
events at the individual study site are based and scanned for
anomalies. The use of sensor-inherent data for time series
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FIGURE 3 | Timeline from 2001 to 2020 indicating the known disturbances used for detection validation of the investigated sites with the site name and the event and

on the left the study site numbers for further reference.

FIGURE 4 | Location of the test-investigated sites across North-West and North-East Germany (right) and percentage tree cover with the sample point position and

the disturbance reference for each study site (left) (for a higher resolution please refer to Supplementary Material 2).

preparation and filtering enables a spatial–temporal consistent
and reproducible evaluation of statistical facts. To identify forest
areas, MODIS auxiliary data were used to incorporate semantic
information of the forest type and cover. The MODIS Terra
Vegetation Continuous Fields (MOD44B v006) percent tree
cover layer (DiMiceli et al., 2021) represents the percent of each

pixel covered by tree canopy at 250m by 250m pixel size. The
data layer of the day of the year (DOY) 65 (=5 March) for
the respective target year was used to identify forest areas at
each study site. The combined MODIS Terra and Aqua Land
Cover Type (MCD12Q1 v006) product (Sulla-Menashe et al.,
2019) was used as an auxiliary data layer within the time-series
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preparation procedure. The Land Cover Type 1 data layer was
used to assign the extracted pixels to the forest type classes
according to the International Geosphere-Biosphere Program
(IGBP) legend and class descriptions to address the seasonality
effects of “evergreen coniferous forest,” “deciduous broadleaf
forest,” and “mixed forest” (e.g., leaf-on/leaf-off) in the time series
pattern analysis.

Pre-processing
The MODIS time series preparation comprises two consecutive
subroutines. The MODIStsp package version 1.3.9 developed by
Busetto and Ranghetti (2016) was used to automatically compute
the spectral indices and quality indicators. Additionally, the
Geospatial Data Abstraction Library (GDAL) was used for the
translation and filtering of the multi-temporal geospatial raster
data (Figure 12).

In detail, the MODIStsp widgets were used to query available
MODIS products according to predefined parameter settings
(refer to Supplementary Material 2) and bulk-download the
corresponding MOD13Q1v006 HDF-EOS files from the NASA
LP DAAC server. The implemented GDAL functionality was
used to extract required layers from the initial HDF files
and subsequently re-project, clip, and resample the MODIS
vegetation index (VI) products and the related per-pixel MODIS
VI Quality Assessment (QA) science datasets.

The preprocessed MOD13Q1v006 data required quality
filtering to facilitate time series analysis (Witt et al., 2011).
The pixel-wise quality filtering scheme was implemented as
proposed by Estay and Chávez (2018). The MODIS VI detailed
quality assessment (QA) bands are used to parse the QA-bit
information to individual layers, which are used for transcription
to customize binary data quality masks. Deviating from the
widespread procedure to only keep data above the “lowest
quality” criterion (Chave et al., 2019), all VI data are kept as
valid to limit data loss. Only pixels assigned to “high” aerosol
quantity bits were deleted from the remaining data since EVI is
less sensible to atmospheric disturbances. All land pixels without
“adjacent clouds” or “mixed clouds” and “snow/ice” or “shadow”
are considered to be of acceptable quality for this study (refer to
Supplementary Material 2). All pixels that do not match the QA
criteria are treated as being unreliable and are discarded from
further analysis.

Post-processing
The non-parametric approach for the phenology estimation
and the change detection used in this study was developed
by Chávez et al. (2019) and is implemented in the R-package
npphen (Estay and Chávez, 2018). The algorithm includes two
subroutines: the kernel density-based algorithm provides the
estimated EVI phenology (EVIphen) of the Modis EVI 16-
day composite products for the reference period 2001–2020
(Figure 5, phenology estimation).

In the subsequent step, the integrated self-calibrating pixel-by-
pixel change detection algorithm is used to identify significant
deviations (Figure 5, EVI anomaly) within the EVI signatures
observed during the year of disturbance (EVIobs) and in relation
to the EVIphen curve. The EVI anomaly is calculated using

the formula:

EVI anomaly = EVIobs[doy] − EVIphen[doy]

where EVIobs [doy] is the observed EVI at the day of the year
within the year of the disturbance,

EVIphen [doy] is the estimated EVI phenology at the day of the
year of the reference period.

From each MODIS anomaly stack, the individual pixels,
which passed the QA check, were extracted to provide the
basis for the pattern analysis of the phenological time series
(Figure 5, pixel extraction). The multi-temporal pixel stacks of
known forest disturbances are used to derive prototypes of
different disturbance patterns (Figure 5, pattern exploration).
The disturbance is defined here by at least three consecutive
values of negative deviation from the long-term phenological
series, derived in step one, within the area covered by any
individual pixel. We, therefore, gain one EVI phenology kernel
density series for each individual pixel, which provides us with
the expected EVI for this pixel over a year (Figure 6, top).
The phenology is estimated based on kernel density estimation
(KDE). A bivariate Gaussian kernel is centered around each
individual observation, and the height of all kernels is averaged
till the final density curve is established (Estay and Chávez,
2018). The KDEs define each anomaly value within the frequency
distribution of the observed values at a given DOY. An anomaly
is any value outside the 90% probability distribution of the
referenced frequency distribution (RDF) (Decuyper et al., 2022).
The curve is therefore specific to any pixel and provides a kind of
fingerprint made up mainly of the specific species combination
and the forest density, acting as a baseline. In the event of a
known disturbance, the EVI curve differs from the expected
EVI (Figure 6, middle). The difference between the observed
EVI within a disturbance year and the expected EVI estimated
from the long-term time series can be seen as the EVI anomaly
(Figure 6, bottom).

Anomaly patterns were derived by scanning each multi-
temporal pixel stack for their individual deviation from the
long-term EVI phenology. The pixel-by-pixel analysis requires
the screening of the individual pixel time series. The aim was
to compare the observed EVI in the year of the potential
disturbance event with the expected EVI, which is the long-term
phenology estimated from the entire 20-year EVI time series at
the individual pixel level. Due to this method, the variance in
vegetation cover is lower than it would be expected if pixels were
analyzed without being spatially explicit. It is important that all
years are included to form the EVIphen series, and therefore, no
pre-selection is applied. A disturbance is detected when three
consecutive events of the time series are identified by an anomaly.
Using the metrics duration, amplitude, and slope, the different
disturbance types can be identified. Using the pattern types, the
causes can be further identified (Figure 1).

The phenology includes the green-up at the start of the
vegetation period, reaching full foliation in summer, and the
decline at the end of the season (Figure 6, right). This curve
is specific to any pixel and is defined by the forest type, the
species, and their mixture, as well as the understory modified
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FIGURE 5 | Schematic workflow of the non-parametric time series analysis comprising the subroutines from the kernel density estimation (KDE)-based phenology

estimation and anomaly detection to the pixel extraction and pattern exploration.

FIGURE 6 | Theoretical framework of the EVI phenology (top) combining the phenological series of all investigated years for each individual pixel, thus being

considered the specific baseline for each pixel. The observed EVI can be within the normal distribution or they can distinctly differ (middle). The difference between the

EVI phenology curve and the observed curve is the anomaly (bottom). On the right is an example of the spatial distribution of the EVI from the start of the season to

the end.

by further abiotic factors. The EVI anomaly can be described
by the duration (t1 to t3), the amplitude (a), and the slope (s).
These parameters can be automatically extracted and describe the
pattern of the anomaly. This was done by detecting a minimum
of three consecutive and negative sequences (RDF ≥ 0.9) and
calculating from these values the distance between the smallest
value and the EVI phenology at this DOY.

RESULTS

The method provides an easy-to-use workflow for the distinction
between abrupt and gradual disturbance types from the
phenological series at a pixel level. Using the automatically
extracted parameters of duration, amplitude, and slope,
the derived patterns allow a further separation into some
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main causes: fire, storm, insect, and fungi (Figure 1) by
pattern analysis.

Distinct Change Types
Enhanced Vegetation Index phenology provides an easy-to-track
development of photosynthetic activity of the most upper forest
canopy layer during the course of the year derived from the
long-term reference series (20 years) and thus provides clear
evidence of anomalous years. The simplest differentiation is
between abrupt (e.g., fire, storm) and gradual (e.g., insects,
fungi) disturbances (Figure 7), which are, in brief, identified by
a sudden, negative deviation between the first and the third
observation, or slow, when the decline last for more observations
(slope) of the EVIobs sequences compared to the EVIphen. In
addition, the identification of fire damage is shown in a very
abrupt decline of the EVIobs, and no recovery within the year of
occurrence can be observed (Figure 7, first column).Windthrow,
however, seems to be described by a sudden change which can be
shown as an increase (location Braunlage) or decrease (location
Menschede) (Figure 7, second column) of the EVI depending
on the extent of the disturbed area and the prevalent forest type
(deciduous vs. broadleaf). The identified patterns of disturbances
are scattered and spatially unrelated (Figure 3; examples 3 and
4) which distinguished them from the linked and large-scale
patterns of burned areas or large-scale clear cuts. Furthermore,
the recovery in windthrow areas shows an increased EVI in the
spring after the disturbance by the regeneration of the remaining
understory or ground vegetation, which increases the EVI values.
Gradual change by insect or fungal infestation is distinguished
by a less pronounced decline (slope) and a smaller amplitude, at
least at the beginning of the calamity and gradation period.While
insects lead to slow defoliation of the canopy with a re-foliation
possible in autumn (Figure 7, third column), fungi cause a
canopy browning without recovery (Figure 7, fourth column).
Gradual change therefore can be identified by a slow onset of the
decline in the EVI and a remaining below the long-termmean for
the entire vegetation period. The amplitude is generally smaller
than with abrupt change. Between the two investigated cases of
gradual change, canopy defoliation by insects occurred after DOY
145, whereas fungal infestations showed a continuous gradual
decline from the beginning of the vegetation period onward over
the entire year.

Selective tree harvest in line with the established forest
management practice in Germany does not reach a detectable
level provided by the MODIS (250m by 250m pixel size) due to
the rapid closing of the canopy by the remaining trees. However,
large-scale felling operations that exceed the individual pixel size,
such as the TELSA Gigafactory construction site in Brandenburg,
or sanitary felling in forest areas with extensive bark beetle
infestation, can be detected and later verified using MODIS VI
time series data (slope+ amplitude).

Magnitudes of Severity
In both, pixels with abrupt and those with gradual change,
the assessment of the magnitude provides an indication of
the severity of the disturbance and a differentiation between
individual pixels. Here, the classification from the ground

assessments relies on the consistent definition of thresholds, e.g.,
custom severity classification schemes. This, however, is easier for
a finite event with spatial–temporally distinct impact, showing
an abrupt decline in the EVIobs, compared to gradually evolving
events without distinct temporal or spatial change markers.

Using the Copernicus emergency service grading map
products as a reference in the spatial comparison, MODIS pixels
across different burnt severity classes were selected from the
MODIS EVI series. The overlay of the annual series of individual
pixel compared to the long-term mean of those exact pixel
provides a location-specific phenological series. The different
extent of deviation in the event year, here 2018 (Figure 8), allows
identification of an affected pixel and the spatial magnitude of the
impact. The classification provides a quantitative interpretation
of the meaning of the differenced normalized burn ratio (dNBR)
results, and the term “severity” (Keeley, 2009) is therefore a
qualitative term that could be quantified in different ways and
is relative in regard to the most severe damage of the area or
multiple areas.

The example of the forest fire in Treuenbrietzen (Figure 8)
shows the potential of the method as individual pixels are
assessed regarding their individual disturbance and its severity.
This allows the detection of multiple disturbance causes in
neighboring pixels.

A similar approach was applied for pixels with insect
defoliation but using the MODIS-based Forest Condition Index
(FCI; https://un-spider.org/advisory-support/recommended-
practices/recommended-practice-drought-monitoring/in-
detail; 2021) for severity classification. The results show that,
while the extracted patterns (Figure 9) are less pronounced than
the patterns of the abrupt change in Figure 8, a determination
of the magnitude of severity is possible. Extraction of time series
for individual pixel and disturbance cause is expressed in a
specific pattern of the EVI anomaly, which is defined by the slope
and amplitude allowing the differentiation of moderately and
severely disturbed stands.

The comparison of the time series at the individual pixel level
shows the clear differentiation at one site affected by the same
insect-induced calamity during the same observation period.
Therefore, this method allows the spatially explicit grading of
the severity (Figure 10). The EVI series of the year 2018 shows
a maximum greenness at the beginning of June, followed by clear
signals of an EVI decline appears, marking the regional hotspots
of insect defoliation. By mid of August, the picture changes again
and some areas show signs of positive EVI anomalies; however,
the major spatial hotspots of infestation remain a negative EVI
anomaly in total till the end of the vegetation period.

Using the 20 years of the phenological series, we were able
to detect consecutive disturbance events coherent to the original
set of ground assessed disturbances of insect calamities showing
patterns of recovery at the beginning of the second greening
season post-event (Figure 11, top); in addition to the reported
2-year disturbance episode, we spotted a second episode of
likely repeated infestation (Figure 11, middle) as well as bi-
annual disturbances caused by multiple events or different agents
(Figure 11, bottom). This shows the potential of the method to
include all years to get the phenological series for comparison,
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FIGURE 7 | Visualization of abrupt and gradual change.

including the years with disturbances, and still detect those years
as the patterns are distinctively different.

The analysis of phenological series compared to the
assessment of individual time steps is less likely to cause false
assessments. Due to the lack of precise tree species information
and differences between regions in phenological series in timing
as well as the different amounts of needle years supported by
coniferous, single assessments can capture the time of needle
shedding in 1 year and full needles in the second and therefore
cause misinterpretation. Similar assessments can occur for
broadleaves due to the various timing of leaf unfolding depending
on the species.

DISCUSSION

Satellite change detection algorithms enable automated
processing of large amounts of data, based on batch scripts,
and thus can be used to establish monitoring routines that can
serve as an early warning system. Change detection algorithms
use deviations observed in VI signals of a certain observation
period in relation to the “normal” long-term VI to detect the
so-called phenological anomalies indicating a change in forest
condition (Pasquarella et al., 2017). The schematic development
of greenness during the vegetation period increases, without
disturbance, to a maximum after which it is decreasing toward
the end of the vegetation period. This development is interrupted
by a disturbance event, causing a (significant) decrease in
greenness prior to the phenological maximum indicating early
defoliation (De Beurs and Townsend, 2008) or a more sudden
decline after the maximum was reached. The accuracy of

satellite-based forest change detection considerably depends
on (a) the spectral, spatial, and temporal resolution of the time
series data (Stenberg et al., 2008; Ghamisi et al., 2019), (b) the
precise co-registration, standardization, and normalization of
the multi-temporal images (Nguyen et al., 2020), and (c) the
phenological estimation and change detection methods used
(Atkinson and Urwin, 2012; Kandasamy et al., 2012; Petitjean
et al., 2012). The common goal for disturbance detection is
to use one method for any evaluation at a, at least, national
scale. However, this leads to the multiple previously reported
limitations which can roughly be classed in the lack of detection
or overassessment, partly linked to the missing knowledge on
individual species distribution, tempering the meaning within
the analysis.

Thus, filling this gap regarding the current lack of operable
methods mentioned by Atzberger et al., the method presented
here can be used for all multispectral remote-sensing products
providing a high intra-annual resolution and is expected to
provide improved results as soon as possible, e.g., COPERNICUS
mission provides sufficient years. Using the higher resolution
of Sentinel or Landsat will benefit the spatial explicitly.
Nevertheless, there are shortfalls. Atmospheric distortion
variations in the background signal of observed pixels and clouds
heavily affect obtained VI signatures (Pragnère et al., 1999), and
thus, cloud masking is a crucial component in the pre-processing
of optical satellite data for time series analysis.

While NDVI saturates over large water bodies and is prone
to canopy background interactions in the presence of bare soil,
red litter, or understory, EVI is expected to show a better
performance where NDVI tends to mask the vegetation signal
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FIGURE 8 | Annual EVI signatures for three different pixel locations grading from possibly damaged to destroyed (left to right): The EVI phenology (top) provides the

baseline derived from the 20 investigated years, plus the year of the disturbance (red dots). The observed (black line, middle) is the center of the Gaussian kernel

density, and the red line is the observed EVI in the year of the disturbance. The detected negative anomalies (bottom). The time and slope of the negative anomalies

detected are coherent to the 2018 fire occurrence in Treuenbrietzen; the more the anomalous values approach the probability threshold (RDF ≥ 0.9), the greater the

likeliness of a detected anomaly being severe.

of the canopy due to the implemented background adjustment
term (Huete et al., 1997). Regarding seasonality, the EVI values
exhibited a smoother, more symmetrical seasonal profile with a
narrower, well-defined peak greenness period. Furthermore, the
EVI is very sensitive to needleleaf/broadleaf canopy structures
with EVI values over needleleaf forests approximately one half
of those over broadleaf forests resulting in sharper contrasts
between the two forest types and a more pronounced broadleaf
dry-down phase. Within the dynamic range, the EVI showed a
smaller variation than that of the NDVI and a strong contrast in
EVI values between broadleaf and needleleaf forests.

Using Sentinel 2A/B for establishing the phenological time
series will, in 2022, still be less reliable due to the few available
years. Due to the very high number and severity of disturbances
linked to droughts, insects, fungi, fires, and storms, which

occurred in the years 2017–2019, this will likely lead to a poorer
detection rate of disturbances in consecutive years. Landsat does
provide the longest time series at all, but it comes with the need
for a high computing power and a lower temporal resolution,
which might hamper the phenological series due to insufficient
intra-annual scenes. Still, using MODIS data, the disturbed site
needs to be above the pixel size, depending on the resolution of
the remote-sensing product used, to be detectable. Ambiguous
or indifferent phenomena occurring at the subpixel level caused
by the individual decline of individual trees provide a mixed
signal of the pixel. This problem is well known and linked to
pixel resolution and the issue of mixed pixels (Schwalbe et al.,
2006). The proposed pixel-by-pixel approach, therefore, remains
at the level of the pixel resolution but does not consider their
neighborhood relationships yet. This could, however, provide
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FIGURE 9 | Annual EVI signatures for three different pixel locations grading from low, over moderate, to severe defoliation (left to right). The EVI phenology (top)

provides the baseline derived from the 20 investigated years, plus the year of the disturbance (red dots). The observed (black line, middle) is the center of the Gaussian

kernel density, the red line is the observed EVI in the year of the disturbance. The detected negative anomalies (bottom) correlate with the greening season and degree

of defoliation due to the 2018 insect mass population in the Fläming region; the more the anomalous values approach the probability threshold (RDF ≥ 0.9), the

greater the likeliness of a detected anomaly being severe disturbance interactions.

an important next step to describe the spatial extent and
distribution of detected changes in the canopy of forests in terms
of their uniformity and diversity, e.g., by means of the Shannon
index (Spellerberg and Fedor, 2003), and thus further determine
possible causes of disturbance in the respective study area.

Due to the lack of continuous long-term information on
annual variation in the onset of the vegetation period (referring
to the tree species-specific phenological phases as described in the
ICP Forests documentation), additional expert knowledge and
contextual information on the growth and weather conditions
need to be implemented for adequate evaluation of the actual
forest condition (Glenn et al., 2008). As concerned by Hansen
et al. (2014), a miscomprehension of remote-sensing product
validation is related to forest cover change in central Europe.

Hence, detected forest loss can result from forest management
in support of forest transition (forestry operation), due to
insect infestation or water shortage defoliation (disturbance)
or extensive removal due to bark beetle infestation (clearing
operations).Whereas at the same time, potential loss of greenness
in the most upper canopy layer might be masked by understory
or shifts in the tree species composition after a storm, resulting
in above-average greenness values due to seasonality effects
introduced by mixed forests superimposing the long-term
phenology signatures, which had been defined by needleleaf
dominance in the pre-storm period.

An alternative approximation of the annual phenological
baseline we have built on in this study is to use the observed
frequency values and define the expected distribution directly
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FIGURE 10 | Detected EVI anomalies in the Fläming region (investigation site 6) during the vegetation period from the end of April to mid-October 2018. Red colors

indicate a loss in EVI, blue colors a gain.

from observed data without reference to a theoretical model
(Chávez et al., 2019). The advantage of this approach is its
flexibility to adapt to the particular conditions of every site
and also to account for natural variability in annual phenology
over time, which is smoothed over by the parametric functions.
This approach is based on probabilistic estimations (Morio
et al., 2015) of the annual phenology, from which disturbances
measured as anomalies from the expected phenology can be
assessed in terms of the frequency distribution of historical
records, providing both a map showing the likelihood of the
change detection and the change detection result itself. Current
methods based on the parametric functions lack such a likelihood
measure (Berger and Wolpert, 1984).

Other inaccuracies such as the spatial uncertainties of remote-
sensing products remain relatively low in both daily and
composited products (Huete et al., 2002) when using MODIS VI
products for this study the geolocation accuracy (co-registration)
allowing a pixel-to-pixel comparison through time was especially
important which is given by MODIS data to subpixel accuracy,
approaching the operational MODIS geolocation goal of 50m
(1r) at nadir (Wolfe et al., 2002).

Therefore, the advantages are that (a) 2-dimensional KDE
(bi-variate Gaussian kernel) can capture any functional form,
(b) the same number of points per cycle is not mandatory,

and (c) the magnitude of the anomaly can be leveled at a
probabilistic base.

Atmospheric distortions and variations in the background
signal of observed pixels heavily affect obtained VI signatures
(Pragnère et al., 1999), and thus, cloud masking is a crucial
component in the pre-processing of optical satellite data for time
series analysis. The pixel-by-pixel time series approach provides a
flexible method, which is transferable to various vegetation cover
types and conditions and is reliable across phenology regimes
and disturbances. The non-parametric phenology estimation and
kernel density-based change detection algorithms are robust
to missing data and noise, which are especially related to
the distinction of anomalies from noise (e.g., due to clouds,
geometric errors) and time series reconstruction is independent
of curve-fitting models for smoothing and generalization and
change detection does not rely on artificially set thresholds.
Therefore, the change detection result does not rely on user
defined threshold (=artificially introduced thresholds are a
source of uncertainty) (a) 2-dimensional KDE (Gaussian kernel)
can capture any functional form, (b) the same number of points
per cycle is not mandatory, and (c) the magnitude of the anomaly
can be judged at a probabilistic base.

Forest ecosystems move through different phases, from
seedlings to mature trees to the death of individuals or
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FIGURE 11 | Comparison of gradual change patterns in 20-year time series signatures (left) detected at different time periods (indicated by colored boxes) and

sampling sites with a diverse disturbance history and miscellaneous combinations of primary and secondary causing agents and the corresponding EVI sequences of

the 2 consecutive years (right).

FIGURE 12 | Workflow scheme of the MODIS pre-processing steps to obtain analysis-ready time-series image stacks.

stands. Therefore, there was always a previous disturbance
(Jentsch and White, 2019), and there will always be one
following (Holling, 1973). Disturbances alter the structure and
composition, and they influence their neighbors and shape
large-scale patterns (Hart and Kleinman, 2018). However, in
recent times, with large-scale forest disturbances and decline,
the need for a fast and reliable assessment arises to extract
disturbance patterns and causes (Vaglio Laurin et al., 2021),
thus enabling aid recovery processes. Therefore, remote sensing
provides a valuable addition to understanding forest disturbances
but still needs ground-truthing, reliable monitoring data, and

expert knowledge. To do so, the use of the EVI phenological
series proved valuable. Specifically, the pixel-by-pixel approach
is independent of a prior species determination, which is
still problematic to do reliably with remote sensing, thus
reducing the risk of false alarms due to the timing of the
assessment within the phenological series, as well as the
assuming the wrong species. A step-wise approach classifying
first abrupt vs. gradual change to later gain more details
but adding further information, whether by ground-truthing
or using different bands, further reduces the overestimation
of disturbances.
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CONCLUSION

In this study, we used a combination of ground assessments
and spatially explicit EVI phenological time series to develop
an identification scheme for four different forest disturbances.
The patterns identified and validated by the ground assessments
reliably showed enough further disturbance events. This method
can distinguish abrupt and gradual changes in forests using
robust remote-sensing products while a combination of ground
assessments and remote-sensing time series is still needed for
accuracy assessment and a precise determination of the type of
insect or fungi.

Remote-sensing techniques are widely used for forest
monitoring applications. Due to the complexity of the cause-
and-effect relationships of forest ecosystems and the variety of
factors involved, the stress-response of forests and trees has
not been fully decoded yet. In the context of climate change,
an in-depth understanding of this relationship is crucial for
forest transformation and adaptation (Keenan, 2015;White et al.,
2016). Thus, the differentiation and quantification of factors and
their contribution to forest degradation and disturbance require
further research. While we believe that remote sensing is an
important addition to ground-based monitoring systems such as
ICP Forests, we believe that methods need to be harmonized and
validated in a similar way to provide valid information.
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