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Nitrogen (N) is the most limiting nutrient for turfgrass growth. Few tools or soil tests

exist to help managers guide N fertilizer decisions. Turf growth prediction models have

the potential to be useful, but the lone turfgrass growth prediction model only takes into

account temperature, limiting its accuracy. This study investigated the ability of a machine

learning (ML)-based turf growth model using the random forest (RF) algorithm (ML-RF

model) to improve creeping bentgrass (Agrostis stolonifera) putting green management

by estimating short-term clipping yield. This method was compared against three

alternative N application strategies including (1) PACE Turf growth potential (GP) model,

(2) an experience-based method for applying N fertilizer (experience-based method), and

(3) the experience-based method guided by a vegetative index, normalized difference red

edge (NDRE)-based method. The ML-RF model was built based on a set of variables

including 7-day weather, evapotranspiration (ET), traffic intensity, soil moisture content,

N fertilization rate, NDRE, and root zone type. The field experiment was conducted

on two sand-based research greens in 2020 and 2021. The cumulative applied N

fertilizer was 281 kg ha−1 for the PACE Turf GP model, 190 kg ha−1 for the experience-

based method, 140 kg ha−1 for the ML-RF model, and around 75 kg ha−1 NDRE-based

method. ML-RF model and NDRE-based method were able to provide customized N

fertilization recommendations on different root zones. The methods resulted in different

mean turfgrass qualities and NDRE. From highest to lowest, they were PACE Turf GP

model, experience-based, ML-RF model, and NDRE-based method, and the first three

methods produced turfgrass quality over 7 (on a scale from 1 to 9) and NDRE value over

0.30. N fertilization guided by the ML-RFmodel resulted in a moderate amount of fertilizer

applied and acceptable turfgrass performance characteristics. This application strategy

is based on the N cycle and has the potential to assist turfgrass managers in making N

fertilization decisions for creeping bentgrass putting greens.

Keywords: turfgrass, precision nitrogen management, decision support tool, nitrogen use efficiency, machine

learning, random forest
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INTRODUCTION

Well-managed turfgrass systems that include golf courses can
provide many beneficial environmental services to our society

(Lonsdorf et al., 2021). However, natural resources, which
include soil, water, and air, are negatively affected by the
intensive use and production of agrochemicals. In turfgrass

systems, especially on the highly maintained golf courses
and athletic fields, agrochemicals are used to achieve desired
aesthetics and functions. Nitrogen (N) fertilizer is applied in

amounts greater than all other nutrients. US golf courses
used 55,333Mg N fertilizer annually (Gelernter et al., 2016).
These N inputs pose potentially significant nonpoint source

pollution risks (Bock and Easton, 2020). Optimizing the N
application rate is one of the most effective ways to improve
turfgrass management and reduce its potentially negative

environmental impacts.
Maintenance of a high-quality playing surface of a golf course

takes priority over maximizing turfgrass yield as is common
for agricultural crops. Specifically, golf course putting greens
are the main focus for most golf course managers (Hammond
and Hudson, 2007); therefore, putting greens usually receive the
most resource inputs and energy use per unit area (Gelernter
et al., 2016). N is the most limiting nutrient for turfgrass, is
an important driver of plant growth, and plays an important
role in the visual quality of the surface. Relatively high N
fertilization rates result in verdant and aesthetically pleasing
playing surfaces. However, the rapid growth induced by relatively
high N fertilization increases thatch and soil organic matter
which reduces the function (e.g., ball roll speed) and aesthetics
of putting greens (Meinhold et al., 1973; Murray and Juska, 1977;
Throssell, 1981; Gaussoin et al., 2013). On the other hand, putting
greens receiving relatively low rates of N fertilization can be slow
to recover from ball marks and wear damage from foot traffic
which encourages weed invasion (Beard, 1972).

Other nutrient application decisions, such as potassium,
phosphate, calcium, magnesium, and so on., can be guided by
soil testing (Murphy and Murphy, 2010; Landschoot, 2017).
However, most commercial soil testing laboratories do not offer
tests for estimating available N in soil. Tests for N exist, but
they are often not quick nor cost-effective. Furthermore, plant-
available N in the soil is affected by weather, so the N release
pattern varies during the growing season. Lacking a tool or
test, N application recommendations for golf courses putting
greens are often based solely on turfgrass managers’ experience
and observations of turf quality. Annual recommended N
fertilization amounts for golf course putting greens generally
range from 49 to 195 kg ha−1 y−1 (Murphy and Murphy, 2010;
Landschoot, 2017). Applying N fertilizer based on turfgrass
visual performance might be warranted for turfgrass showing
signs of inadequate N such as chlorosis, decreased density and
growth, and slower recovery from abiotic and biotic stresses.
However, golf turf managers prefer to avoid these negative
responses and therefore regularly make fertilization applications
to turfgrass that is performing optimally. This could result
in overapplication because optimally performing turfgrass may
perform well with optimum and above-optimum N. It is clear

that a more objective N application strategy is needed to
maximize N fertilizer efficiency.

Turfgrass visual quality assessment has been widely used as a
standard to evaluate turfgrass response to various management
practices. It involves a subjective visual evaluation of a turfgrass
stand on a scale of 1 to 9 (where 1 represents completely
dead turf, 6 represents the minimally acceptable quality, and 9
represents ideal turfgrass quality) based on the evaluator’s mental
integration of turfgrass color, uniformity, and shoot density
(Beard, 1972). With the recent development and increasing
availability of sensor technology, turfgrass professionals are able
to utilize spectral reflectance data obtained from proximal and
remote sensors to subjectively quantify turfgrass response to
various practices, including N fertilization. Spectral reflectance is
measured with given wavelengths of light, and studies (Trenholm
et al., 1999; Bell et al., 2002; Fitz–Rodríguez and Choi, 2002;
Keskin et al., 2008) have shown that spectral reflectance could
be well correlated with visual quality for turfgrass species
maintained under different management practices. Spectral
reflectance is sensitive to N fertilization of turfgrasses (Caturegli
et al., 2016; Guillard et al., 2016) and therefore has the potential to
serve as an objective measurement of turfgrass performance. For
example, spectral reflectance has been used to detect chlorophyll
concentration and has also been shown to have a good correlation
with plant N status (Horler et al., 1983; Steven and Clark, 2013).
However, few studies have evaluated the feasibility of making
N application decisions solely based on spectral reflectance
measurement of turfgrass on golf course putting greens, and these
measurements are likely to play a larger role in the precision
management of turfgrass in the future.

Precision turfgrass management aims to provide optimal
management of pests, fertilizer, salinity, cultivation, and
irrigation (Stowell and Gelernter, 2006; Carrow et al., 2007; Bell
and Xiong, 2008; Krum et al., 2010). Precision N management is
a branch of precision turfgrass management that seeks to match
N supply with turfgrass N demand spatially and temporally to
maximize turfgrass function and minimize nutrient loss from
the turf system. On sand-based putting green soils, the N cycle
can be simplified using a few assumptions. Potential N loss by
denitrification, volatilization, runoff, and leaching is expected
to be negligible or quite low when best management practices
are used (Snyder et al., 1984; Morton et al., 1988; Gross et al.,
1990; Miltner et al., 1996; Erickson et al., 2001, 2008). This leaves
clipping removal as the primary output of N, and fertilization
as the primary input (assuming negligible input from irrigation
water sources and atmospheric deposition). Moreover, Zhou and
Soldat (2021a) concluded that tissue N of putting green creeping
bentgrass spanned 2.5 and 5% during the growing season under
typical conditions with an average of 3.9%. The optimal N
fertilization rate (input) can be estimated by quantifying the N
outputs (clipping mass x clipping tissue N concentration). This
requires accurate estimates ormeasurements of turfgrass clipping
yield, so that optimal N fertilizer inputs can be estimated.

The turfgrass growth potential (GP) model was developed
by Gelernter and Stowell (2005) to aid decision-making related
to fall overseeding on golf courses. Later, the turfgrass GP
model was recognized as a tool for determining monthly or
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annual turfgrass N requirements based on the turfgrass growth
potential (Woods, 2013), and this tool is used by turfgrass
managers to guide N fertilization application decisions. The
turfgrass GP model uses average air temperature to estimate
turfgrass growth potential which spans 0 to 100%. For cool-
season grasses, the model assumes that the optimal average air
temperature for growth is 20◦C (growth potential = 100%);
as the temperature deviates from 20◦C, the growth potential
will decrease correspondingly until the growth potential reaches
0% at 0 and 40◦C. The turfgrass GP model assumes that N
should be applied to match the turfgrass’ growth potential. An
obvious pitfall with this method is that turfgrass growth is
determined by complex physiological processes including genetic
potential, environmental, and edaphic factors in addition to air
temperature. For example, foot traffic stress, which is one of
the most common stresses on golf course putting greens (Beard,
1972; Carrow and Martin Petrovic, 1992), can result in turf
damage and reduced turf quality and clipping yield (Shearman
et al., 1974; Shearman and Beard, 1975; Carrow and Martin
Petrovic, 1992; Bilgili and Acikgoz, 2007). Water availability is
another important factor of turfgrass growth. Limited access to
water results in reduced root growth (Beard and Daniel, 1965),
and excessive irrigation has been shown to also be detrimental
to turfgrass growth and visual quality (Beard, 1972; DaCosta
and Huang, 2006). Although the turfgrass GP model is useful
for understanding how temperature may influence growth across
regional or larger scales, at the local scale, a more detailed model
could be useful for making more accurate predictions of turfgrass
growth and corresponding N need.

In precision agriculture, crop growth models are widely used
to guide N applications based on crop N demand to ensure
increased N use efficiency. These models often estimate crop
N needs by accounting for soil-plant processes, environmental
conditions, and interactions with various management practices.
A common approach for building a crop growth model is to
use historical data to empirically predict future crop yield via
machine learning (ML) (Jaikla et al., 2008; Brdar et al., 2011;
Fukuda et al., 2013; Kuwata and Shibasaki, 2015; Everingham
et al., 2016; Zhang et al., 2019; Van Klompenburg et al.,
2020). Because of the differences in managing agriculture crops
compared to turfgrass as well as the differing goals between
agricultural production and turfgrass management, the utility of
ML to aid turfgrass management decisions needs to be tested.
Zhou and Soldat (2021b) developed turfgrass growth models
with an ML approach and reported that the random forest
(RF) algorithm was the best among those algorithms that tested
for predicting creeping bentgrass clipping production on golf
course putting green. The ML-RF turfgrass growth model inputs
included daily weather, evapotranspiration (ET), soil moisture
content, number of rounds of play, root zone type, N fertilization
inputs, and NDRE. The aims of this study were to (1) evaluate
the feasibility of the turfgrass ML-RF growth prediction model
for improving N management and (2) compare how various N
application strategies and decision support tools in terms of N
applied and turfgrass performance characteristics. Specifically,
the study evaluated two turfgrass growth models for guiding
N fertilization: the PACE Turf growth potential model and an

ML-RF growth prediction model against two more traditional
approaches to N fertilizer management: the standard experience-
based approach (which is the current standard for putting green
fertilization) and an experience-based approach modified by
reflectance measurements.

METHODS AND MATERIALS

Study Sites
The study was conducted at the University of Wisconsin-
Madison O.J. Noer Turfgrass Research and Education Facility
located in Verona, WI, USA. Field experiments were conducted
on two different sand-based putting green root zones in 2020
and 2021 using the same plots in each year. Both research
greens were constructed according to USGA recommendations
(U.S. Golf Association, 2004) in 2000. Root zone characteristics
are reported in Table 1. Both greens were established in
2011 with “Focus” creeping bentgrass (Agrostis stolonifera),
which is the most commonly planted cool-season grass species
used on golf courses putting greens in this region. Research
plots were irrigated daily to replace 70% of reference ET as
estimated by an on-site weather station. The research greens
were topdressed with 0.6 m3 ha−1 of sand approximately every
3 weeks during the growing seasons. Hollow tine cultivation
was conducted once near the end of each growing season
(September), and the cores were removed and holes filled
with topdressing sand. Disease and other pests were monitored
and controlled as needed. A total of four N treatments along
with a non-fertilized control treatment were imposed on both
root zones, and a detailed description of the four treatments
can be found in Section Nitrogen Application Strategies.
The experiment was set out as a completely randomized
design with four replicates, and each plot measured 1.2m by
2.4 m.

Turfgrass Data Collection
Clipping was collected from both research greens during 2020
and 2021 approximately every other day between 9:00 and 12:00
(weather permitting) by mowing a 1.9m pass down the center of
each plot using a 0.54-m-wide walking greens mower (Toro Co.,
Bloomington, Minnesota, USA). Before each clipping collection,
0.27-m wide alleys were mowed at the top and bottom of each
plot perpendicular to the collection pass. This was done to
reduce the variability associated with starting and stopping the
mower. The effective clipping collection area for each plot was
1 m2. Turfgrass was maintained at 3.2mm during the research
period for both research greens. Clippings were brushed from
the mower bucket into paper bags, which were then placed in
an oven set to 50◦C for at least 48 h. Sand and other debris
were removed from the dried clippings using the water method
described in Kreuser et al. (2011). NDRE of each plot was also
recorded prior to each clipping collection event. In this study,
to quantify the estimated N uptake of creeping bentgrass, we
assumed that the tissue N concentration was 3.9% throughout
the research.
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TABLE 1 | Soil chemical properties of two putting green root zones.

Root zones ID Depth SOM 2 P φ K Ca Mg CEC ζ pH

(cm) (g kg−1) (mg kg−1) (cmol kg−1)

A 0–5 0.7 25.9 40.7 586.6 133.1 3.0 7.7

5–10 0.5 24.1 17.2 429.9 101.6 3.0 7.5

B 0–5 1.2 64.2 91.6 1210.0 295.8 8.0 7.5

5–10 0.6 17.0 25.5 578.5 143.6 4.0 7.3

θSOM, soil organic matter by loss on ignition (360◦C for 2 h) (Davies, 1974).
φNutrients extracted via Mehlich-3 (Mehlich, 1984).
ζCEC, cation exchange capacity via summation of extracted cations.

Nitrogen Application Strategies
Traditional N Fertilization Plan (Experience-Based)
Traditionally, N fertilization rates are based on manager
experience, observations, and recommendations from local
services or organizations. In this region, golf course putting
greens typically receive between 100 and 250 kg N ha−1 y−1. At
the O.J. Noer Turfgrass Research Facility, it would be typical for
the station manager to apply 10 kg ha−1 every other week during
the ∼30-week growing season to putting green plots, for a total
of ∼150 kg ha−1 N per season. Therefore, for this study, the
traditional N fertilization plan treatment utilized a 10 kg ha−1

application every other week during the growing season, which
approximately spanned the period of May to October. Urea was
used as the N source and was dissolved and sprayed as a liquid at
a nozzle pressure of 40 psi. using a CO2 pressurized boom sprayer
equipped with two XR Teejet 8004 VS nozzles.

Turfgrass Vegetative Index-Guided N Fertilization

Method (NDRE-Based)
Another N treatment in the study used the normalized difference
red edge (NDRE) obtained from the handheld proximal sensor
(Rapid SCAN CS-45, Holland Scientific Inc., Lincoln, NE) to
guide N application. NDRE is calculated using the combination
of near-infrared red light (±800 nm) and red-edge band
(±720 nm). NDRE is designed for crops with relatively high
canopy density because the red edge band is able to penetrate
deeper through the plant canopy. To calibrate the sensor and
use spectral reflectance to guide N fertilization, the spectral
reflectance readings from the turfgrass area are compared with
the readings from reference strips, and then, fertilizer decisions
are made according to the relationship between the two readings
(Blackmer and Schepers, 1995; Raun et al., 2008; Samborski
et al., 2009; Holland and Schepers, 2013; Guillard et al., 2021).
One of the types of reference strips for spectral reflectance
is called the virtual reference concept (Holland and Schepers,
2013). This method requires obtaining the spectral reflectance
references from uniform research areas in the field where
the turfgrass looks the greenest (well-fertilized) and the least
green (under-fertilized) by visual observation. Based on the
relationship between NDRE and N rate of well-fertilized and
under-fertilized turf, a N fertilizer recommendation for turfgrass
would be made based on the NDRE reading of an unknown
area. In the study, we followed a similar approach but with

some adjustments. Instead of finding the greenest and least
green strip, we aimed to maintain the turfgrass at a minimally
acceptable visual turfgrass quality. Therefore, the reference strips
were the turfgrass research areas at a visual quality of ∼6.
The mean NDRE on turfgrass areas with a quality of 6 was
0.28. Therefore, if the mean NDRE of the treatment for the
preceding 14 days was > 0.28, and then, no additional N
fertilizer was added; otherwise, additional N fertilizer was applied
at 10 kg ha−1. NDRE was collected by scanning the research
plot approximately 1m above the canopy and was measured
three times each week during the growing season prior to each
clipping collection.

Growth Potential (GP) Model (PACE Turf GP Model)
The GP model was presented as equation (1) (Woods, 2013).
N fertilization for this treatment was applied every other week
(consistent with all other treatments in this study), and the
N application rate was determined by the GP (which is a
percentage) multiplying by a maximum daily N use rate and
multiplying that by the number of days since the last fertilization
event. For this study, the maximum daily N use rate was
determined to be 3.2 g m−2 d−1 based on growth and tissue
N data collected on the same root zone during the 2019
growing season. This translates to a maximum N fertilization
amount of 17.5 kg ha−1 every 2 weeks. The amount of N
applied to each event was corrected by the GP of the previous
14 days.

GP =
1

e0.5(
T−T0
var )

2
(1)

where
e: 2.718
T: local daily average temperature; ◦C
T0: optimal temperature for turfgrass growth; 20◦C for cool-

season grass
Var: adjust the change in GP as temperature moves away from

T0; 5.5 for cool-season grass.

Machine Learning-Random Forest (ML-RF) Model
For the final N treatment, we used an RF algorithm for
predicting turfgrass clipping yield using ML (Zhou and Soldat,
2021b). The model was constructed using clipping yield data
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FIGURE 1 | Relationship between creeping bentgrass dry clipping yield and turf quality where the clipping and turf quality were collected in 2018 at the University of

Wisconsin–Madison turfgrass research facility, Verona WI, USA. Turf quality was evaluated on a scale from 1 to 9 where 1 represents completely dead turf, 6

represents the minimally acceptable quality, and 9 represents ideal turfgrass quality.

collected in 2019 and 2020, where clipping data collected in
2019 were used to train the model to predict 2020’s turfgrass
clipping production, and clipping yield data collected in 2019
and 2020 were used to train the model to predict the 2021
turfgrass clipping production. Variable inputs when making
predictions included (1) 3-day average soil moisture content
(%) which was the average soil moisture content on the
clipping collection event and the one before, soil moisture
content was measured by time-domain reflectometry with
7.6-cm rods (FieldScout TDR 350, Spectrum Technologies,
Aurora, Illinois, USA); (2) average weekly traffic intensities
(round wk−1); (3) NDRE; (4) categorical value representing
the root zone of the two putting greens; (5) days between
mowing events; (6) daily weather variables obtained from the
nearest weather station reported on Weather Underground
(an open online real-time weather information website). These
variables included daily maximum temperature (Tmax) (◦C),
minimum temperature (Tmin) (◦C), average temperature (Tavg)
(◦C), precipitation (precip) (mm), maximum relative humidity
(RHmax) (%), minimum relative humidity (RHmin) (%),
average relative humidity (RHavg) (%), and average wind
speed (Windavg) (km h−1); and (7) ET (mm) from a local
weather station. A detailed description of the processes of
choosing the input variables and detail about building and

validating the model was presented by Zhou and Soldat
(2021b).

The goal of usingML-RF growthmodel to guide N application
was to accurately predict turfgrass clipping production and
then make N fertilization decisions to maintain the clipping
production within a target range. As maintaining a good
quality of turfgrass is still the ultimate goal of turfgrass
management, target clipping production was determined by
making observations about the relationship between clipping
production and turf quality (Figure 1). We selected our target
clipping production range to coincide with visual turfgrass
quality between 6 and 7, which required the daily clipping
production to be between 1.25 and 1.6 g m−2 d−1. The N
fertilization decision used the following logic: (1) if the predicted
2-week cumulative clipping production was between 17.5 and
22.5 g m−2, the N fertilization rate would replace the N removed
as estimated by the model predicted clipping yield multiplied by
the estimated average tissue N concentration (3.9%); (2) if the
predicted clipping yield was > 17.5 g m−2 2 wks−1, then the N
fertilization rate was determined using the median clipping yield
(20 gm−2 2 wks−1) of the ideal clipping removal rangemultiplied
by the estimated average tissue N concentration (3.9%). If the
model predicted clipping yield in excess of 22.5 g m−2 for a given
2-week period, then noN fertilizer would be added. However, this
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FIGURE 2 | Creeping bentgrass clipping yield response to four nitrogen (N) application strategies, which include PACE Turf growth potential (GP) model, traditional N

fertilization plan (experience-based), machine learning-random forest (ML-RF) method, and vegetative index-based strategy (NDRE-based). (A) creeping bentgrass

growth response on root zone A, data collected in 2020. (B) bentgrass growth response on root zone A, data collected in 2021. (C) bentgrass growth response on

root zone B, data collected in 2020. (D) bentgrass growth response on root zone B, data collected in 2021. Inserted figures in each panel represent the cumulative N

fertilizer usage for each year on each root zone. Error bars indicate standard deviation.

only occurred one time during the study period (July 2021), and
the predicted clipping yield was in the range of 17.5 to 22.5 g m−2

2 wks−1 for the majority of the study except at the beginning of
each year’s data collection, where the estimated clipping yield was
lower than the target range.

Statistical Analysis
Statistical analysis was conducted using ANOVA for clipping
yield, NDRE, turfgrass quality, cumulative clipping yield overall
2 years and N use efficiency (NUE) using JMP software (version
15.0, SAS Institute Inc., USA). Data collected from 2020 to 2021
were pooled and analyzed collectively. Years were considered as
a random effect in this study. Treatment means were separated
using Fisher’s protected least significant difference (LSD) using a
p-value of 0.05. Box plots were made to represent the distribution
of the ratio of predicted clipping and actual clippings. The box
plots were set at maximum values, 75th (the upper quartile),
median, 25th (the lower quartile), and minimum. Pearson
correlation was conducted to quantify the correlation between
clipping yield and NDRE.

RESULTS

The 2-year creeping bentgrass growth response to the four N
application strategies and corresponding N fertilizer inputs is
presented in Figure 2. Generally, there was greater clipping
production when the turfgrass received greater N fertilization
rates. In this study, the PACE Turf GP model resulted in
the greatest amount of N fertilizer applied, followed by the
experience-based method. The ML-RF model recommended
the third most N fertilizer inputs, and creeping bentgrass
clipping production from that method was also lower than
the previous two N fertilization strategies. The NDRE-based
strategy resulted in the least N fertilizer use and lowest clipping
production on both root zones in both years. The creeping
bentgrass growth response to four N application plans on
both root zones had a similar trend, as N is one of the
major contributions to turfgrass growth; however, there was a
different growth pattern in each year, likely as a result of the
different weather and soil conditions (i.e., temperature, moisture)
in each year. Interestingly, creeping bentgrass clipping yield
responses to the four N application strategies were similar during
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FIGURE 3 | NDRE readings of creeping bentgrass response to four nitrogen (N) application strategies: the PACE Turf growth potential (GP) model, traditional N

fertilization plan (experience-based), machine learning-random forest (ML-RF) model, and vegetative index (NDRE)-based strategy). (A) NDRE readings on root zone A

in 2020. (B) NDRE readings on root zone A in 2021. (C) NDRE readings on root zone B in 2020. (D) NDRE readings on root zone B in 2021. The dashed line is the

NDRE decision threshold of 0.28. Error bars indicate standard deviation.

the first 5 weeks of the experiment even though different N
fertilization rates were applied during this time. Turfgrass growth
showed a delayed response to N fertilization. Creeping bentgrass
NDRE readings under the four N fertilization treatments are
presented in Figure 3. Similar to the growth response, plots
that received N fertilizer recommendation following the PACE
Turf GP model had the highest NDRE readings, followed by
the experience-based method, ML-RF model, and the NDRE-
based N fertilization strategy. The trends in NDRE readings on
both greens and both years were similar, which implied that N
fertilizer inputs were the primary driver of differences in NDRE
readings. At the end of each season, PACE Turf GP model
method had ∼20% greater NDRE compared to the NDRE-based
method, which represented the highest and lowest N fertilization
amounts. The difference in the season-end NDRE readings
between the PACE Turf GP model and ML-RF model was
∼10%, and the difference between the PACE Turf GP model and
the traditional N fertilization strategy was ∼5%. Additionally,
although there was no overall significant difference in creeping
bentgrass clipping yield among the four N treatments in the first 5
weeks of the field experiment, there were significant differences in
NDRE readings which demonstrated that N fertilization had an
immediate impact on creeping bentgrass canopy characteristics.
The creeping bentgrass readings were above the reference reading
(0.28) among the four N treatments more times in 2021 than
in 2020.

The 2-year mean creeping bentgrass clipping yield, NDRE,
and turf quality response to four N treatments, as well the 2-
year cumulative N fertilizer usage, clipping yield, and NUE,
are presented in Table 2. There was no significant difference
in clipping yield, NDRE, and turfgrass quality between the two
root zones within the same N treatment. Turfgrass that received
N treatments followed by the PACE Turf GP model produced
significantly higher clipping yield, NDRE readings, and turf
visual quality. The experience-based model produced the second
most clipping yield, NDRE, and turf quality, followed by the
ML-RF model and the NDRE-based N fertilization plan.

The 2-year cumulative clipping yield from the non-fertilized
control treatments on root zones A and B was 64.9 and 60.4 g
m−2 2 yrs−1, respectively. NUEs were highest (near 70%) on both
root zones receiving N fertilization according to the NDRE-based
method. NUEs were around 45% on the root zones following
the ML-RF N fertilization method and were about 40% following
the experience-based method. NUEs were lowest when using
PACE Turf GP model method (34%). The PACE Turf GP model
and experience-based methods do not customize N fertilization
recommendations on different root zones, whereas the ML-RF
model and the NDRE-based method are able to account for root
zone properties. The experience-based method resulted in 32%
less N fertilizer than the GP method, and the ML-RF model
applied 52 and 49% less N fertilizer on root zones A and B,
respectively, than the GP method. The NDRE-based method
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TABLE 2 | The 2-year mean creeping bentgrass clipping yield, NDRE, and turfgrass quality responses to four nitrogen (N) application strategies on two research putting

greens.

Root

zone ID

N app. strategies Clipping

(g m−2 d−1)

NDRE Turf quality† Sum of

N fertilizer¤ (kg

ha−1 2yrs−1)

Sum of

clipping

(g m−2 2yrs−1)

NUEµ (%)

A PACE Turf GP2 1.63 a‡ 0.328 a 7.6 a 281 297.5 a 33.1 d

Experienceβ 1.38 b 0.315 b 7.4 ab 190 251.6 b 39.3 bc

ML-RF approachα 1.20 c 0.302 c 7.2 b 136 216.7 c 44.6 b

NDRE-basedŴ 1.02 d 0.277 d 6.1 c 80 184.2 d 60.0 a

B PACE Turf GP 1.62 a 0.326 a 7.5 a 281 288.9 a 32.5 d

Experience 1.32 b 0.318 b 7.4 ab 190 240.1 b 37.8 cd

ML-RF approach 1.17 c 0.306 c 7.2 b 142 213.9 c 43.2 bc

NDRE-based 0.96 d 0.282 d 6.2 c 70 174.9 d 65.4 a

2PACE Turf growth potential model-guided N application strategy.
βTraditional N application plan.
αMachine learning (random forest) growth model-guided N application strategy.
ŴTurfgrass vegetative index (NDRE)-based N application strategy.
‡Within each column, means sharing the letter are not statistically different according to Fisher’s protected LSD test (α = 0.05).
†Turf quality is evaluated on a scale from 1 to 9 where 1 represents completely dead turf, 6 represents the minimally acceptable quality, and 9 represents ideal turfgrass quality.
¤ Overall, N fertilizer use on the research plots in this study in 2020 and 2021.
µNUE, nitrogen use efficiency, calculated by (N uptake by plant-N uptake by plant from non-fertilizer control plot)/2-year N fertilizer applied.

resulted in 72 and 75% less N fertilizer on root zones A and B,
respectively, than the GP method.

The PACE Turf GP model and ML-RF model were the two
approaches to making N application decisions based on turfgrass
growth rate. Figure 4 presents the prediction accuracy of 2-week
cumulative clipping yield using the two models. The ratio of
predicted and observed clipping yield was near 1 with the ML-RF
model, and therefore, it accurately predicted creeping bentgrass
clipping yield on both research greens. The ratio of predicted to
actual clipping yield with the PACE Turf GP method was much
larger than ML-RF model ratio (2.5 and 2.7 for research root
zones A and B, respectively). The range of the ratio when using
the PACE Turf GP model spanned 1.7 to 3.2 for root zone A and
1.6 to 3.1 for root zone B. The range of the ratio when using ML-
RF model spanned 0.6 to 1.2 for both root zones, and if the first
clipping collection event of each year was excluded, the range of
the ratio improved to 0.8 to 1.2.

Among four treatments, there were significant but weak
correlations between daily clipping yield and NDRE across 2
years (Figure 5), where the correlation coefficient ranged from
−0.20 to 0.15. Interestingly, the PACE Turf model had a weak
positive correlation between daily clipping yield and NDRE,
whereas the three other treatments all appeared to have negative
correlation between daily clipping yield and NDRE.

DISCUSSION

Averaged over two seasons, we recovered 34–71% of applied N
in clippings among the four N application strategies. According
to Miltner et al. (1996), about 35% of applied N fertilizer was
recovered in Kentucky bluegrass (Poa pratensis) clippings, and
the majority of the rest of the applied N was immobilized in
thatch and soil. We did not attempt to quantify the fate of the

remaining fertilizer N in this study, and the long and short-term
fate of the un-recovered N requires further investigation, but
lower N recovery does not necessarily imply N leaching losses,
and greater recovery of applied N is generally desirable assuming
performance goals are being met.

The ML-RF model more accurately predicted creeping
bentgrass clipping yield than the GP method and therefore more
accurately estimated N removal frommowing. During the 2-year
field experiment in VeronaWI, USA, the average air temperature
during the study period was 18.7◦C in 2020 and 20.1◦C in
2021 which both were near the optimum temperature for cool-
season grass. Therefore, the N fertilization rates applied based
on the GP model maintained the turfgrass growth at or close to
the maximum growth rate that we selected based on the 2019
growing season (not necessarily the genetic maximum growth
potential of the grass). A lower fertilization rate would have
resulted with this method if we had selected a lower “maximum”
growth rate. Therefore, calibration of the PACE Turf GP model
may improve its utility as a decision support tool for nutrient
applications. The GP model is simpler to use than the ML-RF
model and therefore may have a wider reach.

Vegetation indices such as NDRE and NDVI have been
evaluated asmethods to guide N fertilization or quantify turfgrass
response to fertilization (Kruse et al., 2006; Bremer et al., 2011a;
Lee et al., 2011; López-Bellido et al., 2012; Inguagiato and
Guillard, 2016; Guillard et al., 2021). Our study demonstrated
that there was a weak correlation between creeping bentgrass
clipping yield and NDRE. This implied that NDRE would also
have a weak correlation with turfgrass growth and N uptake.
Interestingly, we observed a weak positive correlation between
daily clipping yield and NDRE when the N rate was based
on the PACE Turf GP model (relatively higher N), whereas
the correlation became negative once the N application rates
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FIGURE 4 | Creeping bentgrass growth prediction accuracy of PACE Turf growth potential (GP) model and machine learning-random forest (ML-RF) model. Blue

boxes and dots represent data collected on root zone A and red boxes and dots represent data collected on root zone B. The boxplots were set at maximum, 75th

(the upper quartile), median, and 25th (the lower quartile), and minimum.

were lower (experience-based, ML-RF model, and NDRE-based
methods). Studies have concluded that NDRE has much stronger
correlations with some turfgrass growth characteristics such as
turfgrass biomass (Marín et al., 2020) and turfgrass N status
(Guillard et al., 2021). These studies applied a wider range of N
rates which resulted in large variation in turfgrass growth. In this
study, N fertilizer was applied at a relatively smaller range, and
this could be the reason for the weak correlation between NDRE
and turfgrass clipping yield.

Additionally, NDRE and other vegetative indices can be
affected by many variables in the field, such as canopy density
(Bremer et al., 2011b), turfgrass water status (Caturegli et al.,
2020), plant colorants (Obear et al., 2017), and other stresses
(Fenstermaker-Shaulis et al., 1997; Badzmierowski et al., 2019).

Because these stresses can be independent of plant N status, using
NDRE to make N fertilization decisions could be oversimplistic.
In contrast, the machine learning growth prediction model
was designed for sand-based greens and uses a simplified N
cycle to make fertilizer recommendations. This method requires
collecting and tracking clipping yield for calibration purposes
and is only practical for golf course putting greens. For other
parts of a golf course, such as fairways where it may not be
practical to measure clipping yield and are under less stress than
putting greens, using NDRE or other vegetative indices to guide
N application decision could be more appropriate.

The ML-RF model in this study relied on the previous
years’ clipping yield as well as the current year’s weather data,
management practices, and vegetative indices. It was able to
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FIGURE 5 | Pearson correlation between vegetative index (NDRE) and corresponding creeping bentgrass clipping yield, where the turfgrass was fertilized using

different strategies (A). PACE Turf GP model: using the PACE Turf growth potential model; (B) experience-based: traditional N fertilization plan that is based on

turfgrass quality and manager’s experience; (C) ML-RF model: machine learning-random forest growth prediction model; (D) NDRE-based: vegetative index

(NDRE)-guided N fertilization. The red lines illustrate the 95% prediction.

provide site-specific N recommendations for turfgrass planted
in different soil conditions, different micro-climates, and under
different management practices. The model also resulted in
reduced N input compared to the traditional experience-based
method and resulted in acceptable turfgrass quality. Similar
studies (Engel et al., 1999; Long et al., 2000) also employed
precision N management by monitoring and estimating N and

as a result increased crop quality, yield, and economic profit.
The ML-RF N application strategy proposed in this study is
anchored in the N cycle and allows turfgrass managers to adjust
the target clipping yield or clipping volume to meet different
performance goals.

Ericsson et al. (2012, 2013) concluded that 3.1 to 3.5%
leaf N concentration was sufficient to achieve a good turfgrass
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color and quality in most turfgrasses, including bentgrass and
fescues (Festuca spp.). They also concluded that turfgrass with
60% of maximum growth would be sufficient to produce good
turfgrass playing quality. The drawbacks to such a generalized
approach include the need to frequently send leaf tissue to the
laboratory for leaf N analysis, knowledge of themaximum growth
rate, and measuring turfgrass yield to compare against that
maximum growth rate. In contrast, the ML-RF model could help
turfgrass managers to make clipping yield predictions based on
weather data and management practice input without spending
time on clipping collection aside from the calibration period.
However, the ML-RF model does not yet exist in a user-friendly
graphical interface, so one would need to be created for it to
become widely used. A user-friendly decision support tool would
be able to automatically process the data input without the
need for knowledge of coding from end-users, additionally, it
would predict turfgrass clipping yield of each golf course greens
for the next weeks depending on the management practices,
environment, and weather data input. The decision support tool
would provide N fertilizer recommendations for the next N
application event based on predicted clipping yield.

Many turfgrass managers of golf courses are beginning to
recognize the benefits of regularly measuring grass growth by
tracking clipping volume of golf course putting greens, and
adjustingN fertilization based on the collected clipping. Precision
N fertilization application has the potential to provide economic
(i.e., reduced N fertilization input and other resource inputs, such
as labor and energy) and environmental benefits (i.e., reduced
N leaching and gaseous losses). However, there is not enough
research, including economic research and environmental
assessment, to evaluate precision N management and compare
with the experience-based method which has been widely used.
A better understanding of the economic and environmental
outcomes from precision N management could help turfgrass
managers choose optimized N fertilization methods.

CONCLUSION

Sustainable turfgrass systems integrate the goals of
environmentally friendly and economic profitability. Among
other resource inputs on turfgrass systems, the efficient and
effective use of N fertilizer is one of the main drivers for
improving sustainability, and proper N fertilization is in the
economic interest of those in the golf and turfgrass industry.
Our proposed precision N management attempts to help golf
courses optimize N fertilizer use while maintaining quality

standards on putting greens. Several N fertilizer management

strategies were evaluated on golf course creeping bentgrass
putting greens. The results demonstrated that a ML-RF method
was able to significantly reduce N fertilizer usage and increase N
use efficiency while maintaining high-quality turfgrass relative to
the traditional method for fertilization. Whereas, the ML-RF and
PACE Turf GP methods were both based on turfgrass growth
predictions, the ML-RF method was able to more accurately
estimate clipping removal and therefore may be useful for
helping turfgrass managers to tie N fertilization decisions to the
N cycle, rather than simply basing decisions on experience and
visual observations.
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