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Maize (Zea mays L.) is an annual grass that originated in tropical and subtropical regions

of the NewWorld. Maize is highly sensitive to cold stress during seed gemination and the

seedling phase, which can lead to reductions in plant vigor and grain production. There

are large differences in the morphological and physiological changes caused by cold

stress among maize varieties. In general, cold tolerant varieties have a stronger ability

to maintain such changes in traits related to seed germination, root phenotypes, and

shoot photosynthesis. These morphological and physiological characteristics have been

widely used to evaluate the cold tolerance of maize varieties in genetic analyses. In recent

years, considerable progress has been made in elucidating the mechanisms of maize

in response to cold tolerance. Several QTL, GWAS, and transcriptomic analyses have

been conducted on various maize genotypes and populations that show large variations

in cold tolerance, resulting in the discovery of hundreds of candidate cold regulation

genes. Nevertheless, only a few candidate genes have been functionally characterized.

In the present review, we summarize recent progress in molecular, physiological, genetic,

and genomic analyses of cold tolerance in maize. We address the advantages of

joint analyses that combine multiple genetic and genomic approaches to improve the

accuracy of identifying cold regulated genes that can be further used in molecular

breeding. We also discuss the involvement of long-distance signaling in plant cold

tolerance. These novel insights will provide a better mechanistic understanding of cold

tolerance in maize.
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INTRODUCTION

Maize (Zea mays L.) is one of the world’s most important cereal crops for food, economy, and feed
(Wang et al., 2020a). Maize is particularly susceptible to cold injury as it is a crop that requires
high temperatures due to its tropical/subtropical origins (yyGreaves, 1996). Although studies have
shown that maize is susceptible to the effects of low temperature during grain filling (Chen and
Tang, 2012), cold stress mainly affects seed germination, seedling development, and growth at the
seedling phase, eventually leading to reduced grain production (Li et al., 2019b). Cold damage in
early spring is one of the main meteorological disasters that can befall maize production, especially
in northern regions and high altitude areas in mountainous regions (Zhang, 2014).
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Cold reduces both the seed germination rate and seedling
vigor (Zhang et al., 2020). When maize seeds are exposed to low
temperatures during the water absorption phase (imbibition),
the permeability of cell membranes is impaired, resulting in
the loss of cellular components (Hussain et al., 2018). Cold
may also damage the ultrastructure of the embryonic root
meristem cells and impair root development (Farooq et al.,
2009). Maize seedling growth slows down considerably when
the temperature falls below 10◦C, and it ceases at temperatures
between 6 and 8◦C (Peng et al., 2016). The cells and tissues of the
seedling can be irreversibly damaged at lower temperatures. Low
temperatures during the seedling phase can reduce plant height,
root length, the ability of the roots to absorb mineral nutrients,
leaf chlorophyll content, and the net photosynthetic rate in
seedlings. This will eventually result in growth inhibition, leaf
yellowing, wilting, and necrosis, or even death of the seedlings
(Chen and Tang, 2012; Yang et al., 2018). Cold stress can not
only reduce the emergence rate and seedling vitality of maize
directly, but can also affect plant health indirectly by increasing
the chances of infection by soil bacteria (Juurakko et al., 2021).
These direct and indirect impacts can both acutely reduce the
yield and quality of the maize crop. Improving cold tolerance in
maize will allow early sowing to withstand cold snaps that occur
in early spring. Early sowing can result in an extended vegetative
period, thus allowing the plants to accumulate additional biomass
(Aydinoglu, 2020).

Detailed cold tolerance mechanisms have been investigated in
other plant species, such as Arabidopsis [Arabidopsis thaliana (L.)
Heynh.] and rice (Oryza sativa L.; Farhangi-Abriz and Torabian,
2017; Ding et al., 2019; Ritonga and Chen, 2020). In recent
years, considerable progress has been made in elucidating the
mechanisms by which maize responds to cold stress. Although
three very recent reviews have discussed the efficacy of genetic
and genomic approaches used to assess maize cold tolerance
(Frascaroli and Revilla, 2018; Sowiński et al., 2020; Gillani et al.,
2021), a comprehensive review of this subject is still lacking.
Here, we have summarized the recent progress in molecular,
physiological, genetic, and genomic analyses of cold tolerance
in maize in order to provide a theoretical basis for molecular
breeding of cold tolerance in maize.

THE COLD-RESPONSIVE MOLECULAR
NETWORK IN ARABIDOPSIS

The cold-responsive pathways of Arabidopsis have been the
subject of intensive studies. Briefly, when Arabidopsis plants
are exposed to cold stress, some cold-responsive inorganic
substances activate transcription factors (TFs) through signal
transduction pathways. Activated TFs bind to cis-elements
present in downstream cold-responsive genes to activate their
expression and induce cold tolerance in the plants (Li et al.,
2019a). The signal pathway with CBF (C-repeat-binding factor)
transcription factors as the core elements is mainly involved in
regulation of the cold response (Rihan et al., 2017; shown in
Figure 1A). There are three members of the CBF gene family
in Arabidopsis: CBF1/DREB1B (dehydration responsive element

binding factor 1B), CBF2/DREB1C, and CBF3/DREB1A (Liu
et al., 2018). Overexpression of AtCBF1, AtCBF2, and AtCBF3
in Arabidopsis and other plant species is reported to significantly
improve plant cold tolerance (Liu et al., 2018, 2020; Ding et al.,
2019). The CBF genes have been cloned from other plant species
such as rice, Brassica rapa, wheat and maize, indicating that the
CBF genes show an important association with the cold response
in plants (Liu et al., 2018, 2020; Ding et al., 2019).

Overexpression of CBF genes significantly induces the
expression of COR (Cold-regulated) genes in plants (light green
ellipses in Figure 1A). COR refers to a class of genes regulated
by cold stress, such as LTI (LOW TEMPERATURE INDUCED)
and KIN (COLD INDUCIBLE). Some of these genes encode key
enzymes involved in synthesizing osmotic substances, and are
associated with the accumulation of cryoprotective proteins and
soluble sugars to normalize cellular osmotic pressure and provide
protection from freezing damage (Shi et al., 2018; Ding et al.,
2019; small dots in Figure 1A). The CBF protein recognizes
CRT/DRE (C-repeat/ Dehydration Responsive Element) motifs
in the promoters of COR genes and induces their expression to
enhance cold tolerance (Lu et al., 2017). The removal of the CBF-
CRT/DRE regulatorymodule of AtCBF2 protein reduces the level
of cold resistance in plants (Park et al., 2015).

The expression of CBF genes is regulated by both
transcriptional activators and repressors (indicated by arrows
and lines with a bar in Figure 1A). The positive regulatory
genes include AtICE1 (inducer of CBF expression 1), AtICE2,
and CAMTA (calmodulin-binding transcription activator;
Chinnusamy et al., 2007; Ding et al., 2015). The transcriptional
inhibitors which are directly involved in inhibiting cold-induced
CBF activation include AtMYB15 and the AtPIFs (phytochrome
interacting factors; Shi et al., 2018; red lines with a bar in
Figure 1A). The AtICE1 protein interacts with the MYC-binding
sequences present in the promoters ofCBF genes to increase their
expression during cold stress (Chinnusamy et al., 2003). Over-
expression of AtICE2 has been shown to improve cold tolerance
and the expression of AtCBFs in Arabidopsis (Fursova et al.,
2009). The CAMTA3 protein binds to a CAMTADNA regulatory
motif, vCGCGb, located in a region of the promoter of AtCBF
genes and functions together with CAMTA1 and CAMTA2 to
promote the expression of CBF genes and cold tolerance in plants
(Doherty et al., 2009; Kim et al., 2013). AtMYB15 and AtICE1
form a protein complex that binds to MYB recognition sites in
the promoters of CBF genes. Overexpression of AtMYB15 results
in reduced expression of CBF genes, whereas loss-of-function of
AtMYB15 leads to increased expression of CBF genes (Agarwal
et al., 2006). Furthermore, it has been recently discovered that
redox changes mediated by cold stress can induce structural
transformations and functional activation of CBF proteins (Lee
et al., 2021).

At present, the ICE-CBF-COR cold responsive pathway is
a well-accepted defense mechanism to cope with cold stress,
but only some of the COR genes are regulated by CBF (Park
et al., 2015). Some other transcription factors, including HSFC1
(Heat shock transcription factor C1), AtZAT10, and AtZAT12,
are also capable of inducing COR gene expression under cold
stress, and may co-regulate cold signal transduction with CBF
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FIGURE 1 | Schematic diagram of the cold-responsive molecular networks in Arabidopsis (A) and maize (B). The eight green dashed arrows that point to (A) from (B)

indicate that the maize genes were functionally verified in transgenic Arabidopsis plants. The orange dashed arrows in (B) indicate that the maize genes were

functionally studied in tobacco. The blue dashed arrow in (B) indicates that the Arabidopsis gene AtICE1 was transformed into forage maize. The colored ellipses

represent molecular elements that belong to the ICE-CBF-COR pathway. Small dots represent osmotic substances. Brackets encompass genes with the same

induction level. Straight and dashed arrows represent positive regulation, whereas lines ending with a bar represent negative regulation. At, Arabidopsis thaliana L.;

Zm, Zea mays L.; Zmm, Zea mays ssp. mexicana L.; Nt: Nicotiana tabacum L.; CAMTA, Calmodulin-binding transcription activator; ZAT, Zinc-finger transcription

factor; HSFC, Heat shock transcription factor C; JAZ, Jasmonate ZIM-domain; DREB, Dehydration responsive element binding factor; LTI, Low temperature induced;

KIN, Cold inducible; MPK, Mitogen-activated protein kinase; SEC14P, Sec14-like protein; RR, Response regulator; DBP, Dehydration responsive element binding

protein; CesA, Cellulose synthase; MKK, Mitogen-activated protein kinase kinase; ERD, Early response to dehydration; JA, Jasmonic acid; ABA, abscisic acid; SA,

Salicylic acid; BL, Brassinolide.

(Park et al., 2015). Plant hormone JA (jasmonic acid) also
positively regulates the CBF signal by mediating the interaction
between the JAZ1/4 protein and ICE1/2, thereby regulating the
transcriptional activity of ICE proteins and the expression of
CBF1-3 (Hu et al., 2013). Taken together, these findings indicate
that the cold regulatory network is very complicated in its
functioning and needs to be seen in a broader sense so that it can
be better understood.

THE COLD-RESPONSIVE MOLECULAR
NETWORK IN MAIZE

The ICE-CBF-COR pathway has also been investigated in
maize, in order to understand its involvement in cold tolerance
in maize (as shown by ellipses in Figure 1B). However, the
functional verification of most of these maize genes, as well as
other cold-responsive genes, were determined by expression in
heterologous species such as Arabidopsis or tobacco, and not in
maize (green and orange arrows in Figure 1B). Four maize CBF
TF genes, includingZmDREB1A, ZmDREB2A, ZmDBP3, and
ZmDBP4, are induced by cold stress in maize. Overexpression

of ZmDREB1A, ZmDBP3, and ZmDBP4 in Arabidopsis induced
the overexpression of cold-inducible genes, resulting in enhanced
cold tolerance (Qin et al., 2004; Wang and Dong, 2009; Wang
et al., 2011). The overexpression of ZmDREB2A was found to
enhance thermotolerance, but not cold tolerance (Qin et al.,
2007). A low temperature-associated gene, ZmmICE1, has been
isolated from Zea mays ssp. mexicana L., a close relative of
maize, and ectopic expression of ZmmICE1 in the Arabidopsis
ice1-2 mutant was observed to be associated with enhancing
plant cold tolerance (Lu et al., 2017). When transformed with
the Arabidopsis AtCBF1 gene, plants of the forage maize line
SAUMZ1 showed reduced relative electrolyte leakage compared
to wild type plants, and this resulted in improved cold tolerance
(Xiang et al., 2012; blue dashed arrow in Figure 1B). These
studies indicate that ICE-CBF-COR is a conserved pathway
in various plant species. Other than the ICE and CBF genes
reviewed above, there are many other regulators, such as
transcription factors and protein kinases related to cold tolerance,
that have been functionally characterized (Weckwerth et al.,
2015; Erpen et al., 2018; Kimotho et al., 2019; Wang and Fu,
2019).
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ZmMYB Family Genes
The MYB family is one of the largest TF families in plants, and
it was named for the conserved MYB domain that is present
in all eukaryotic MYB TFs (Katiyar et al., 2012). MYB TFs
play important roles in the tolerance to various stresses in
plants, including cold stress (Wu et al., 2019). The Arabidopsis
CBF gene promoters contain a MYB recognition sequence
and can be activated by MYB TFs (Li et al., 2019a). Unlike
AtMYB15 in Arabidopsis, which is a negative regular of CBF
gene transcription, two characterized maize MYBs are positive
regulators of CBF genes (Figure 1B). Expression of the maize
ZmMYB31 gene, which encodes an R2R3-MYB transcription
factor, is induced at low temperature. Overexpression of
ZmMYB31 inArabidopsiswas found to upregulate the expression
of Arabidopsis CBF genes, thereby enhancing the resistance of
transgenic Arabidopsis plants to low temperature and oxidative
stress (Li et al., 2019a). Meng and Sui (2019) isolated another
nucleus-located R2R3-MYB transcription factor, ZmMYB-IF35.
Low temperature induced the expression of ZmMYB-IF35 in
the cold-tolerant maize inbred line M54. Transgenic Arabidopsis
plants overexpressing ZmMYB-IF35 showed improved cold
tolerance, higher antioxidant enzyme activity, reduced levels of
reactive oxygen species (ROS), and less ion leakage. ZmMYB-
IF35 expression also positively regulated the expression of stress-
related genes such as AtCBF2, AtCBF3, AtCOR1, and AtCOR2.
Similar to the functions of maize ZmMYB genes, overexpression
of a rice R2R3-MYB gene, OsMYB2, was found to improve cold
tolerance, indicating that OsMYB2 is also a positive regulator of
cold tolerance in rice (Yang et al., 2012). Further analysis of the
expression patterns of 46 ZmMYB genes under different abiotic
stress showed that 22 of these genes respond to different stress
treatments. Among them, there were six ZmMYB genes that
responded to cold treatment, but only ZmMYB53 expression was
exclusively induced by cold stress (Chen et al., 2018).

Protein Kinase Family Genes
MAPK or MPK (mitogen-activated protein kinases) proteins, a
family of serine/threonine protein kinases, are involved in many
important processes including stress signal transduction and
development (Kong et al., 2013). The MAPK cascade pathway
is a ubiquitous signal transduction module in eukaryotes that
transmits biological signals from receptors to target molecules
through a variety of intracellular and extracellular routes
(Moustafa, 2014). The MAPK cascade component involves a
three-kinase module, namely MAPK, MAPKK (MAPK kinase),
and MAPKKK (MAPKK kinase; Xiang et al., 2021). The
MAP kinase cascade can phosphorylate AtICE1 to promote
its degradation, and thus is involved in the regulation of cold
tolerance in Arabidopsis (Zhao et al., 2017; Figure 1A). In maize
leaves, ZmMPK5 was found to be involved in the recovery of
plants from cold stress (Berberich et al., 1999). Kong et al. (2011)
isolated ZmMKK4, a group CMAPKK gene, from the root system
of maize variety “Zhengdan 958,” and expression of the ZmMKK4
transcript was found to be up-regulated by low temperature
exposure. Overexpression of ZmMKK4 in Arabidopsis increased
the plants’ cold tolerance, which showed that ZmMKK4 is a
positive regulator of cold tolerance in maize (indicated by the

green arrow in Figure 1B). Pan et al. (2012) identifiedZmMPK17,
a group D MAPK gene, that was induced by cold stress. The
overexpression of ZmMPK17 enhanced cold tolerance in tobacco
(Nicotiana tabacum L.) plants by affecting the antioxidant defense
system. Cai et al. (2014) isolated and identified ZmMKK1, a
groupAMAPKK gene, from “Zhengdan 958”. Ectopic expression
of ZmMKK1 in tobacco enhanced its cold tolerance, suggesting
that ZmMKK1 is also involved in the response of plants to
low temperature.

A very recent study identified a new cold regulation
pathway, ZmMPK8-ZmRR1-ZmDREB1.10/ZmCesA2, in maize
(Zeng et al., 2021; Figure 1B). The ZmRR1 (type-A Response
Regulator 1) transcript level is slightly decreased, whereas the
ZmRR1 protein level is increased by cold treatment of maize
seedlings at 4◦C. Overexpression of ZmRR1 leads to enhanced
cold tolerance by accumulating and inducing the expression of
the downstream genes, ZmDREB1.10 and ZmCesA2 (Cellulose
synthase 2), suggesting that ZmRR1 acts as a positive regulator of
maize cold tolerance. The ZmMPK8 protein, a negative regulator
of cold tolerance, phosphorylates ZmRR1 at Ser15. A natural
variation of ZmRR1 with a 45-bp deletion that encompasses
Ser15 prevents its phosphorylation by ZmMPK8. At present,
the ZmMPK8-ZmRR1-ZmDREB1.10/ZmCesA2 pathway is the
best characterized cold regulation pathway in maize, and it
provides an in-depth understanding of the molecular mechanism
underlying cold tolerance in maize.

To date, functional investigations of many cold responsive
genes have been performed in maize, but the functions
of many of these genes were studied by overexpression in
model plant species. As shown by the green and orange
dashed arrows in Figure 1B, a total of eight maize genes
were transformed into Arabidopsis, and two maize genes were
transformed into tobacco. Only one study investigated the
molecular function of ZmRR1, ZmMPK8, and their downstream
genes ZmDREB1.10 and ZmCesA2, by either mutating or over-
expressing the corresponding genes in maize. Transformation
of maize genes into maize plants not only provides stronger
evidence for gene functions, but also enables the straightforward
elucidation of molecular pathways to provide in-depth biological
insights. Furthermore, such native transformation would provide
potential genetic resources for improving cold tolerance inmaize.

PHYSIOLOGICAL ACCLIMATION AND
SEED TREATMENTS TO RELIEVE DAMAGE
IN MAIZE DUE TO COLD STRESS

Cold stress can induce a series of physiological responses
in maize, such as the adjustment of osmotic substances,
accumulation of ROS, disruption of hormonal homeostasis,
impaired uptake of mineral nutrients, and a decrease in
photosynthesis. To survive under such unfavorable conditions,
plants need to maintain cellular function and integrity by
stabilizing the cell membranes and biologically active proteins
in order to sustain basic physiological activities (Ritonga and
Chen, 2020). Even though plants have developed mechanisms
by which they can to acclimate to cold temperatures, several
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strategies have been developed to reduce the effects of cold stress
on maize seedlings.

Adjustment of Osmotic Substances
Osmotic adjustment is one of the most important physiological
mechanisms employed by plants to cope with many types
of stresses. Under adverse conditions, osmotic adjustment
substances help to maintain cell turgor and the capacity of
tissues to retain water, and the contents of osmotic adjustment
substances are positively correlated with plant stress resistance
(Farhangi-Abriz and Torabian, 2017). The accumulation of
osmotic adjustment substances can reduce the water potential in
plant cells, prevent water outflow, and at the same time protect
the structure of macromolecules in the cell (Li et al., 2013). The
main osmotic adjustment substances in plants include soluble
sugars, soluble proteins, and free proline (Zhang, 2014).

Soluble sugars are strongly hydrophilic, and they can reduce
the stress damage to plant cells by reducing the water potential
and maintaining the activity of some biological macromolecules
(Guan et al., 2009). Soluble proteins can scavenge ROS
(reactive oxygen species) and stabilize cell membrane structure
(Nadarajah, 2020). Proline is a hydrophilic amino acid, and
free proline functions to stabilize the metabolic process in the
cytoplasm (Guan et al., 2009). Ma et al. (2015a) found that
cold stress induces the expression of ZmP5CS1, a key gene for
proline synthesis in immature maize embryos. Some studies have
reported that low temperature treatments increase the contents
of soluble sugars, proline, and soluble proteins in the seedlings
of many maize varieties. The relative increases were larger in
the varieties with strong cold tolerance compared to the varieties
with relatively weaker cold tolerance. The lower the temperature,
the more significant the difference between varieties (Li and
Fang, 2018; Zhao et al., 2020). In conclusion, cold tolerant maize
can maintain the water absorption capacity of cells and can
reduce cold damage by accumulating higher levels of osmotic
adjustment substances in response to cold stress.

Antioxidant Enzyme System and MDA
Production
Cold stress can destroy cellular homeostasis and cause the
accumulation of high levels of ROS in plant cells. Excessive levels
of ROS can be harmful to the cell membrane system because
of lipid peroxidation (Nadarajah, 2020). Plant cells can induce
the expression of a protective system to resist the threat posed
by ROS. The protective enzymes within a plant cell, such as
SOD (superoxide dismutase), CAT (catalase), POD (peroxidase),
and APX (ascorbate peroxidase), cooperate with one another
to scavenge the reactive oxygen free radicals so as to maintain
normal physiological metabolic activities as much as possible to
avoid damage to cell components (Nadarajah, 2020). Maize cells
can stabilize the membrane structures and reduce cell damage
by constantly oxidizing the reactive oxygen free radicals. Many
studies have shown that cold stress enhances the activities of
SOD, POD, and CAT in maize. The activities of the three main
antioxidant enzymes and the relative expression of related genes
are positively correlated with the cold tolerance of inbred lines
(Wei et al., 2014; Yang et al., 2016; Li and Fang, 2018). For

example, an early study showed that low temperature induces
the expression of the APX gene, and the APX activity in cold
tolerant maize was found to be higher than in cold sensitive
maize (Pinhero et al., 1997). One study showed that the activities
of protective enzymes decreased in the three cold-tolerant and
three cold-sensitive maize inbred lines under cold stress, but the
relative decrease in the cold-tolerant inbred lines was less than
that in the cold-sensitive inbred lines (Peng et al., 2016). These
differences could be due to many reasons, but we can conclude
that the antioxidant enzyme system in cold-resistant maize lines
is generally stronger than that of cold-sensitive lines.

MDA (malondialdehyde) is the main product of peroxidation
of polyunsaturated cell membrane lipids and is a marker for
oxidative stress. MDA is a highly reactive compound that can
restrain the activity of cell protective enzymes and aggravate
membrane peroxidation. When the cell membrane is damaged,
a large number of electrolytes flow out of the cell, resulting in
a surge of electrolytes (Wang et al., 2006). Therefore, relative
conductivity and MDA levels are negatively correlated with cold
tolerance in maize lines (Zhang, 2014). Several studies have
reported that with increasing time of exposure to cold, the relative
conductivity and MDA content increases. The cell membranes
of cold tolerant varieties were less damaged, and the relative
conductivity and MDA contents increased to a lesser extent in
maize lines that show strong cold tolerance (Zhang, 2014; Peng
et al., 2016).

Plant Hormones
Plants tightly regulate the levels of some hormones to cope
with the changing environment (Lamers et al., 2020). ABA
(abscisic acid) is an abiotic stress hormone that can improve the
stress resistance of plants, and it participates in the regulatory
response for a variety of abiotic stresses, including cold (Qin
et al., 2021). The ABA contents in the roots of cold-tolerant lines
were significantly higher than in the roots of cold-sensitive lines.
Exogenous ABA treatment can promote the ability of maize seeds
to germinate at low temperature (Zhang, 2011). GA (gibberellic
acid) is also considered to play a role in plant cold resistance,
but its effect is not as obvious as that of ABA (Eremina et al.,
2016; Rihan et al., 2017). Studies have shown that the GA and
IAA (indole-3-acetic acid; auxin) contents in the roots of maize
seedlings decrease under cold stress, while the ABA content
gradually increased (Janowiak et al., 2002; Zhang, 2011;Wei et al.,
2014).

SA (salicylic acid) is another important plant hormone that
is involved in cold tolerance in several plant species including
maize, and its direct physiological effect is the change in the
antioxidant enzyme activity of plants (Farooq et al., 2009). At
low temperature, the increase in endogenous SA biosynthesis is
closely related to the increase in antioxidant enzyme activity in
maize seeds and during seedling growth (Wang et al., 2013). Cold
stress in maize seedlings was not moderated by treating the seeds
with SA (Gómez-Muñoz et al., 2018), but SA+H2O2 treatment
at low temperature shortened seed germination time, improved
seedling vigor, reduced cold damage to maize seeds, increased the
activities of antioxidant enzymes and the expression levels of the
corresponding genes, and thus improved cold tolerance (Li et al.,
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2017). Exogenous application of BL (brassinolide) also increased
the germination rate, reduced cold damage to maize seedlings
and caused an increase antioxidant enzyme activity, all of which
resulted in an increase in plant biomass (Sun et al., 2020). Thus,
manipulation of plant hormones appears to be an efficient way
to alleviate the damage caused by cold temperature and to ensure
the growth of seedlings at later stages of development.

Mineral Nutrients
Cold tolerance in plants is highly correlated withmineral nutrient
levels (Waraich et al., 2012). The inhibition of growth in maize
from cold stress is at least partly caused by indirect damage
due to the decreased uptake of nutrients from the soil (Gómez-
Muñoz et al., 2018). For example, the absorbance of K and Pi
(orthophosphate) by maize roots is particularly affected by cold
soil temperature (Bravo et al., 1981). Seed treatment with Mn/Zn
can mitigate the negative effects of cold stress, and it resulted
in increased biomass production in high-P soil but not in low-
P soil, indicating that the absorbance of P is relieved by Mn/Zn
treatment (Gómez-Muñoz et al., 2018). In addition, both Mn
and Zn are key co-factors of several enzymes that are involved
in the detoxification ROS caused by cold stress. Application of
Si (silicon) is also a useful strategy to improve cold tolerance
in maize seedlings during the early growth stage. The beneficial
effects of Si seed treatments included the restoration of hormonal
balances that were disrupted by cold stress and maintaining
homeostasis of other micronutrients (Moradtalab et al., 2018).
Therefore, appropriate plant nutrition is a useful strategy to
alleviate the cold stress.

Photosynthesis
Cold stress significantly decreases photosynthesis in maize
(Fracheboud et al., 2002). This decrease in photosynthesis
may result from many factors, such as impaired chloroplast
development, changes to the pigment composition, damage of
the PSII reaction centers, and reduced activity of carbon cycle
enzymes. The reduced photosynthetic ability at low temperatures
also reflects the cold resistance of maize (Hund et al., 2008).
Fracheboud et al. (2002) found that the chlorophyll a/b ratio
in the cold tolerant lines was higher than in cold sensitive
lines. Duran Garzon et al. (2020) showed that cold tolerance
is related to higher chlorophyll content, higher G6PD (glucose-
6-phosphate dehydrogenase) activity, and a higher sucrose-to-
starch ratio. Many studies have used photosynthesis-related traits
to quantify cold tolerance in maize. These studies are discussed
below and are given in Tables 1, 2.

In general, cold tolerant maize may have stronger ability
to accumulate more osmotic adjusting substances, stronger
antioxidant enzyme system to stabilized ROS, stronger ability to
maintain hormonal homeostasis, higher absorbance of mineral
nutrient, higher photosynthetic ability, etc.

GENETIC AND GENOMIC APPROACHES
TO DISSECT COLD TOLERANCE IN MAIZE

Cold tolerance in maize is a quantitative agronomic trait that is
controlled by multiple genes (Turk et al., 2019). In the past few

years, a number of genetic and genomic approaches have been
applied to dissecting the components of this complex trait.

Quantitative Genetics
Quantitative genetic analyses of cold tolerance in maize have
so far shown that heterosis, general and specific combining
abilities, reciprocal maternal and non-maternal effects, additive
effects, genotype, growth stage, and environmental factors are
all involved in the expression of cold tolerance in maize. For
example, Hodges et al. conducted two studies to explore the cold
tolerance of maize at both germination and seedling stages using
twelve hybrids derived from a complete diallel of four inbred
lines (Hodges et al., 1997a,b). The results showed that the seed
germination rate, the activities of CAT and APX in leaves at the 3-
leaf stage, and the general and the special combining ability of the
dry matter weight of leaves at the 4-leaf stage were significantly
different. Revilla et al. (2000) proposed that cold tolerance has
additive, dominant, and maternal effects. The experiment of Yan
et al. (2017) showed that there was significant heterosis in maize
cold tolerance at the seedling stage. Neta et al. (2020) used three
cold-tolerant lines and three cold-sensitive lines to carry out
partial diallel cross experiments to analyze the heterosis, general
and specific combining abilities, reciprocal maternal and non-
maternal effects, as well as the expression of CAT, APX, SOD
and other genes. Results showed that there was heterosis and a
reciprocal effect for germination under cold stress, and that the
non-additive genes were more important. The genes that control
cold tolerance depend on the particular materials used and the
traits studied (Frascaroli and Revilla, 2018). Each growth stage
of maize, including germination, emergence, and early seedling
growth, is controlled by an independent genetic model; therefore,
cold tolerance might also be regulated independently in the
different growth stages (Frascaroli and Revilla, 2018). To make
the situation more complicated, some studies have also reported
that there are interactions between genes and the environment in
the expression of cold tolerance in maize (Presterl et al., 2007).

The studies cited above show that the genetics of cold
tolerance in maize is very complicated. However, with the broad
application of genomic tools, considerable progress has been
made in recent years in the identification of genetic loci and genes
that are associated with maize cold tolerance. The information
from these studies will facilitate a deeper understanding of the
genetic mechanisms that control maize cold tolerance at the
molecular level.

QTL Mapping
QTL (quantitative trait locus) mapping is a powerful tool
for the identification and manipulation of loci underlying
important and complex traits in agricultural crops. Recent
studies have used different mapping populations, such as F2 : 3
families, RILs (recombinant inbred lines), and BC (back cross)
populations, to study the QTLs that control cold tolerance in
maize (Table 1). Most of these segregating populations were
constructed by crossing cold-sensitive and cold-tolerant inbred
lines in order to increase the relative degree of variation in the
cold-response phenotypes. Several cold responsive physiological
traits, such as seed germination rate, root phenotypes, and
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TABLE 1 | Quantitative trait loci (QTLs) for traits related to cold tolerance in maize.

References Population Number of

families or

inbred lines

Traits or indicators Number of QTLs Chr.

Fracheboud et al. (2002) RILs (Ac7643 × Ac7729/TZ) 233 Fv/Fm, ΦPSII, SR, etc. 18 1, 2, 3, 4, 6, 7, 9

Fracheboud et al. (2004) F2:3 (ETH-DH7 × ETH-DL3) 266 CFP, SDW, SPAD, etc. 19 1, 2, 3, 4, 6, 8

Hund et al. (2004) F2:4 (Lo964 × Lo1016) 168 GI, Fv/Fm, RL, etc. 60 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Jompuk et al. (2005) F2:3 (ETH-DH7 × ETH-DL3) 226 CFP, SPAD, LA, etc. 29 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Presterl et al. (2007) DH (SL × TH) 720 LC‘, LP, and FD 18 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Rodríguez et al. (2008) RILs (B73 × Mo17) 302 LC 2 3, 6

Guerra-Peraza et al. (2012) RILs (B73 × Mo17) 295 Fq’/Fm’, Fv/Fm, SPAD, etc. 19 4, 5, 6, 7, 8, 9

Rodríguez et al. (2014) F2:3 (EP42 × A661) 210 DW, ΦPSII, TAC, etc. 4 2, 4, 8

Shi et al. (2016) RILs (Yu82 × Shen137 and

Yu537A × Shen137)

420 Gp, GI, MGT, etc. 26 1, 2, 3, 4, 5, 6, 7, 8, 9

Hu et al. (2016) RILs (B73 × Mo17) 243 LTGR and LTPRL 12 4, 5, 6, 7, 9

Yan et al. (2017) F2:3 (K932 × Mei C) 207 LRD, WCS, RRS, etc. 7 1, 2, 3

Li et al. (2018) F2:3 (220 × PH4CV, 220 ×

Y1518 and P9-10 × PH4CV)

650 ER, GI, RL, etc. 43 1, 2, 3, 4, 5, 8, 9, 10

Yi et al. (2020) RILs (MAGIC) 406 RLCC, Fv/Fm, SDW, etc. 62 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Goering et al. (2021) RILs (B73 × Mo17) 97 CC, LC, and TD 2 1, 5

Jin et al. (2021) Two genetic populations 290 PA 12 2, 3

MAGIC, Multi-parent advanced generation intercross population; DH, Doubled haploid; Fv/Fm, Maximum quantum efficiency of photosystem II; ΦPSII, Quantum yield of photosystem

II; SR, stomatal resistance; CFP, Chlorophyll fluorescence parameters; SDW, Shoot dry weight; SPAD, leaf greenness; GI, Germination index; RL, Root length; LA, Leaf area; LC’, Leaf

chlorosis; LP, Leaf purpling; FD, Frost damage; LC, Leaf color; Fq’/Fm’, Operating quantum efficiency of photosystem II; DW, Dry weight; TAC, Total anthocyanin content; Gp, Germination

percentage; MGT, Mean germination time; LTGR, Low-temperature germination rate; LTPRL, Low-temperature primary root length; LRD, Leaf rolling degree; WCS, Water content in

shoots and leaves; RRS, Ratio of root-to-shoot; ER, Emergence rate; RLCC, relative leaf chlorophyll content; CC, chlorophyll concentration; TD, Tissue damage; PA, Peroxidase activity;

Chr, chromosome number.

TABLE 2 | SNPs linked to traits related to the bud and seedling stages in maize.

References Population Number of families Traits or indicators Number of Number of SNPs Chr.

or inbred lines genotyped SNPs

Strigens et al. (2013) Diversity panel 375 Fv/Fm, SPAD, LA, etc. 56,110 19 1, 4, 5, 6, 7, 10

Huang et al. (2013) Association panel 125 RLN, RSL, RFSW, etc. 56,110 43 1, 2, 3, 4, 5, 6, 7

Yan et al. (2017) TAMP(S-Mo17) 338 LRD, WCS, RRS, etc. 556,809 19 1, 2, 3, 4, 6, 10

Hu et al. (2017) Association panel 282 RDT50, RGI, RGR, etc. 2,271,584 17 1, 2, 4, 6, 7, 9

Zhang et al. (2020) Association panel 222 RGR, RGL, RRL, etc. 40,697 30 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Yi et al. (2021) Association panel 836 DE, EV, RLCC, etc. 156,164 32 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Zhang et al. (2021)c Association panel 300 FG, RL, RRS, etc. 43,943 15 1, 2, 3, 4, 5, 7, 8, 10

Jin et al. (2021) Two genetic populations 290 PA 24,860,241 + 5,759,868 4 3

TAMP, Testcrossing association mapping population; Fv/Fm, Maximum quantum efficiency of photosystem II; SPAD, leaf greenness; LA, Leaf area; RLN, Relative leaf number; RSL,

Relative shoot length; RFSW, Relative fresh shoot weight; LRD, Leaf rolling degree; WCS, Water content in shoots and leaves; RRS, Ratio of root-to-shoot; RDT50, Relative days to 50%

Germination; RGI, Relative germination index; RGR, Relative germination rate; RGL, Relative germ length; RRL, Relative radicle length; DE, Days to emergence; EV, Early vigor; RLCC,

relative leaf chlorophyll content; FG, Germination rate at 5 d; RL, Root length at 10 d; PA, Peroxidase activity; Chr, chromosome number.

seedling photosynthesis, were measured under both normal
and cold conditions (Table 1). These studies identified many
reliable molecular marker loci associated with QTLs or genes that
regulate cold tolerance and could be further used for breeding of
cold tolerant inbred lines or hybrids.

Fracheboud et al. (2002) performed a QTL analysis of five
traits related to the function of the photosynthetic apparatus at
low temperature using a set of 233 maize RILs. They identified
18 QTLs that were significantly correlated with the target traits,

of which the main QTL for leaf development at low temperature
was the main QTL for pigment composition. Fracheboud
et al. (2004) used an F2 : 3 population derived from the
cross ETH-DH7×ETH-DL3 and detected 19 QTLs controlling
chlorophyll fluorescence at low temperature. The major QTL for
photosynthetic cold tolerance in maize seedlings is located on
chromosome 6. Using the same population, Jompuk et al. (2005)
detected a major QTL for cold tolerance located on chromosome
6 that corresponded to chlorophyll fluorescence and chlorophyll
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content. Hund et al. (2004) used an F2 : 3 population constructed
from the cross Lo964×Lo1016 to map QTLs for root and shoot
development in maize seedlings under cold conditions, and
found a dominant QTL located on chromosome 5. Presterl
et al. (2007) performed QTL mapping on 720 DH (doubled
haploid) lines and found a total of 18 QTLs associated with leaf
chlorosis, leaf purpling (anthocyanin), and frost damage at low
temperature. Rodríguez et al. (2008) performed QTL analysis
by using an IBM (intermated B73×Mo17) population. None
of the QTLs was identified under normal growth conditions,
but two QTLs significantly correlated with leaf color at low
temperature were located on chromosomes 3 and 6, and these
two OTLs explained 14.2% of the phenotypic variation and 28.2%
of the genetic variation. Guerra-Peraza et al. (2012) used the
IBM302 population for QTL analysis and discovered a major
QTL for photosynthesis-related traits on chromosome 5. The
favorable allele of this QTL was contributed by Mo17 and
appeared to be the major factor that explained the differential
response of B73 and Mo17 to changes in the temperature at
night. Rodríguez et al. (2013) used an F2 : 3 population derived
from the cross of a cold susceptible (A661) with a cold tolerant
(EP42) inbred line to detected genomic regions related to the
cold-induced albino phenotype. A major QTL on chromosome
2 was identified that explained 14% of the phenotypic variation.
Using the same F2 : 3 population, 10 QTLs related to photosystem
traits were identified, with six of them at normal temperatures
and four under cold conditions. A parallel meta-QTL analysis
identified three genomic regions that regulate the development
of maize seedlings at low temperatures (Rodríguez et al., 2014).
Hu et al. (2016) performed a QTL analysis using 243 IBM
Syn4 RILs and detected six QTLs associated with the low-
temperature germination rate and six QTLs correlated with
low-temperature primary root length. Of these, four pairs of
QTLs were located in the same genomic regions. Yan et al.
(2017) performed a QTL analysis with seedlings from an F2 : 3
population (207 lines) obtained by crossing a cold sensitive line
(K932) with a cold tolerant (Mei C) inbred line. Their analysis
resulted in the detection of seven QTLs controlling four cold-
related traits, and one of the QTLs explained 10.55–25.29% of the
phenotypic variation.

While the above-cited QTL analyses used “regular”
populations, several studies have used “advanced” populations to
improve the accuracy of the study. For example, Shi et al. (2016)
constructed two connected RIL populations that shared one
parental line and were able to identify 26 QTLs associated with
seed vigor traits under low temperature conditions. Fourteen
of these QTLs were further integrated into five mQTL regions
through a meta-analysis. Two of the mQTL regions located on
chromosomes 2 and 9 had R2 values >10% and were previously
identified as QTLs for seed vigor traits. Using two cold-tolerant
and two cold-susceptible inbred lines, Li et al. (2018) generated
three connected F2 : 3 populations to detect QTLs related to seed
germination ability at low temperature. A total of 43 QTLs and
three mQTL regions were detected. Yi et al. (2020) used 406 lines
from a multi-parent advanced generation intercross (MAGIC)
population and found 858 SNPs grouped in 148 QTLs that were
significantly associated with cold tolerance-related traits, and

most of the QTLs were located in specific regions, particularly
bin 10.04.

Several studies combined QTL analyses with other genetic or
genomic approaches such as GWAS (genome-wide association
study) or transcriptome analysis to efficiently uncover further
biological insights. From the same population used by Hu et al.
(2016), Goering et al. (2021) selected a panel of 97 lines for
QTL analysis of traits including chlorophyll concentration, leaf
color, and tissue damage at low temperature. Two cold-related
QTLs with high additive impact were detected. These authors
further verified the two QTLs using transcriptome data and
identified 13 candidate genes likely to be involved in controlling
the cold responses. Recently, Jin et al. (2021) studied cold
responses in maize using a joint analyses that combined QTL
and GWAS. They first performed QTLmapping for POD activity
using an F2 : 3 population (210 lines) derived from cold-tolerant
(W10) and cold-sensitive (W72) lines, and detected 12 QTLs
significantly associated with POD activity and cold tolerance.
They then conducted GWAS on a natural population consisting
of 80 backbone inbred lines and found that four SNPs were
significantly associated with POD activity at low temperature
(Table 2). Using a joint analysis of the QTL and GWAS
results, Zm00001d002729 was determined to be a potential cold
tolerance gene. Overexpression of Zm00001d002729 increased
the cold tolerance of maize seedlings by increasing POD activity
and decreasing the MDA content and relative conductivity
(ion leakage).

Table 1 shows that the genomic loci involved in the regulation
of cold tolerance are distributed on almost all of the maize
chromosomes, but most of these QTLs have not been further
fine mapped or functionally characterized as cold tolerant genes,
which prevents more detailed studies of cold tolerant mechanism
in maize. One major reason for this may be the huge amount of
work involved in gene mapping in large populations. In recent
years, joint analysis using advanced populations or genomic
tools has become increasingly popular to narrow down the
search for candidate genes. Such an approach was recently used
successfully to identify the major-effect cold regulating gene
Zm00001d002729 (Jin et al., 2021), suggesting that it can be more
widely applied in other studies.

GWAS
Compared to biparental segregating populations, natural
populations consisting of several hundred maize inbred lines
have also been used for the genetic analyses of cold tolerance
in GWAS (Frascaroli and Revilla, 2018). Although most of the
cold-responsive physiological traits used in GWAS were similar
to those in QTL analyses, including leaf color, root length,
and seed germination-related traits (Tables 1, 2), GWAS offers
increased mapping resolution and accuracy due to the higher
level of genetic diversity in the mapping populations (Lipka et al.,
2015).

Strigens et al. (2013) conducted the first GWAS in maize to
dissect traits related to cold tolerance. Using a maize germplasm
collection of 375 inbred genotypes with 56K SNPs (single
nucleotide polymorphisms) GWAS identified 19 significant
association signals that explained between 5.7 and 52.5% of the
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phenotypic variance for cold-related traits such as early growth
and chlorophyll fluorescence. Huang et al. (2013) used 125 maize
inbred lines to perform GWAS on 10 traits related to cold
tolerance at the germination and seedling stages. A total of 43
SNPs were detected that were associated with cold tolerance and
40 candidate genes were predicted based on 31 of these SNPs.
Yan et al. (2017) crossed the cytoplasmic male sterile parental line
S-Mo17 with 338 different inbred lines to generate a test cross
association mapping population. GWAS was performed on these
338 test crosses, and 19 significant SNPs associated with cold
tolerance-related traits were detected. Hu et al. (2017) conducted
GWAS on seed germination traits using 282 inbred lines of
maize under normal and low temperature conditions. A total
of 17 associated SNPs related to cold tolerance were identified,
and seven of the SNPs were located in candidate genes. In a
population of 222 maize inbred lines, Zhang et al. (2020) used
GWAS to identify 30 SNPs related to cold tolerance during maize
seed germination. Fourteen candidate genes directly related to
the SNPs were found and further verified by gene expression
analysis. Zhang et al. (2021) studied germination-related traits
in 300 inbred lines under low temperature conditions. GWAS
analysis revealed a total of 15 significant SNPs, and three genomic
loci were repeatedly associated withmultiple traits. Yi et al. (2021)
evaluated a large panel of 836 maize inbreds, and GWAS analysis
uncovered a total of 187 significant SNPs that could be integrated
into 159 genomic regions that controlled seed emergence and
traits related to early growth.

Despite its higher genetic mapping resolution, GWAS has
not been without controversy. In particular, many of the cold-
associated SNP markers identified in these studies were found to
be located in the non-coding regions and generally thought to
function in the regulation of gene expression. But which gene(s)
do they regulate? There are large structural variations present
in the genomes of different maize inbred lines, and the genetic
loci predicted in the B73 genome may not represent all the
genetic loci in other inbred lines. Hence, there may be some other
unpredicted genes near or even located on cold-associated SNP
markers, leading to inaccurate results.

Transcriptomic Analyses
Transcriptome analyses are also widely used to understand the
molecular responses of maize to cold stress and to mine for
cold tolerant genes. Li et al. (2016) used RNA-seq analyses to
compare the transcriptomes of a freezing tolerant (KR701) and a
freezing sensitive line (Hei8834) before and after cold treatment
at the seedling stage and identified 948 DEGs (differentially
expressed genes). GO (Gene Ontology) analysis revealed that
the terms “binding functions,” “protein kinase,” and “peptidase
activity” were over-represented in the DEGs. Li et al. (2019b)
used RNA-seq to analyze the gene expression of cold tolerant
(M54) and cold sensitive (753F) inbred lines under cold stress
at the seedling stage. More DEGs were found in M54 than in
753F after both 4 and 24 h of cold treatment, indicating that
the cold-responsive signaling networks were more active in the
cold tolerant line. Li et al. (2020) analyzed the transcriptome of
maize B73 seedlings under different low temperature conditions.
In this study, 5,358, 5,485, and 5,312 DEGs were detected in

response to cold stresses of 4, 10, and 16◦C, respectively, and the
expression of five genes including ZmDERB1 was significantly
up regulated. Frey et al. (2020) selected 21 DH lines from a DH
population (flint landrace “Petkuser Ferdinand rot”) based on
their cold tolerance; 11 lines were cold resistant and 10 were cold
sensitive. The transcriptomes of the 21 DH lines were analyzed
after control and cold treatments. Here, 148, 3,254, and 563DEGs
were found to be related to cold treatment, cold tolerance, and
growth rate at low temperature, respectively. Zhang et al. (2020)
used RNA-seq to verify the correlation between the candidate
genes and low-temperature tolerance and found 10 DEGs that
were located in the linkage disequilibrium region of a GWAS
analysis. Of these genes, two of them appear to regulate cold
signal transduction and cell membrane fluidity. Li et al. (2021)
analyzed transcriptomic changes in seeds of three sweet corn
NILs and their parents under cold stress. A total of 20 DEGs
were found to be highly related to low-temperature germination,
and a gene encoding UDP-glucosyltransferase was hypothesized
to be essential to cold germination in sweet corn. Waititu et al.
(2021) conducted a comparative analysis of the transcriptomes
of seedlings of 24 cold-tolerant and 22 cold-sensitive inbred lines
under cold stress. A total of 2,237 DEGs were identified, which
included 147 TFs belonging to 32 families such as MYB, ERF,
NAC, WRKY, bHLH, MIKC MADS, and C2H2. Yu et al. (2021)
studied the leaf transcriptomic response of twomaize inbred lines
with contrasting cold tolerance levels under a time series cold
treatment. The results showed that cold tolerance in line B144
is due to active mediation of stomatal opening and protection
of photosystem II from photooxidation by upregulating the
expression of genes for D1 proteins, while the sensitive line Q319
was unable to close its stomata in response to cold.

In addition to RNA-seq analyses, other genomic tools have
also been used to study the transcriptomic changes in maize to
cold. Rodríguez et al. (2013) used microarray hybridization on
the chlorophyll-less and chlorophyll-containing sections of leaves
of maize inbred line A661 which shows a cold-induced albino
phenotype. A total of 1,002 differentially expressed transcripts
were identified between the two sections, and these DEGs were
classified into 23 categories including genes in the tetrapyrrole
biosynthesis pathway and photosynthesis. Di Fenza et al. (2017)
conducted microarray analysis with four varieties, with two
cold-tolerant and two less cold-tolerant lines, to identify genes
that were differentially expressed under chilling conditions. A
total number of 64 DEGs were identified in the two chilling-
tolerant varieties, while no significant changes in expression were
observed in less cold-tolerant lines. Another study used cDNA-
AFLP to analyze the gene expression changes in response to cold
stress and identified three maize genes, ZmMAPKKK, ZmCLC-
D, and ZmRLK, that were possibly involved in the cold response
(Yang et al., 2011).

To investigate the regulatory roles of miRNAs (microRNAs)
in cold tolerance, Aydinoglu (2020) studied the miRNome
(miRNA microarray) in seedlings of the maize hybrid ADA313
that were treated with cold temperature. In this study, 24, 6,
and 20 miRNAs were specifically differentially regulated in the
meristem, the elongation zone, and the mature zone by cold
stress, respectively. This study highlighted the importance of
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miRNAs in the maize response to cold stress. Combined with
large-scale bioinformatic analysis, Zhou et al. (2022) examined
the transcriptome changes in seedlings of the inbred lines B73,
Mo17, and W22 and the F1 hybrids with all three combinations
(B73xMo17, W22xB73, and W22xMo17) in response to cold or
heat stress. They identified many stress-related DEGs among
the different maize genotypes and assigned these expression
changes to cis-or trans-regulatory mechanisms using the F1
hybrid data. Their study answered the question of how sequence
differences in cis-elements of different genotypes impact a gene’s
responsiveness to stress, and shed light on the prediction of a
plant response to stress by implementing a more sophisticated
model construction (convolutional neural networks).

Above transcriptomic analyses indentified tens to thousands
of DEGs in individual studies. This astonishing variaiton in the
numbers of DEGs indicates that a vast majority of the DEGs can
not overlap to each other, leaving an almost impossible task to
mine the conserved overlaping genes. In deed, when Sowiński
et al. (2020) surveyed 13 independent studies addressing the
transcriptomic changes in response to cold stress in maize
seedlings at the V2-V5 stages, they found <500 DEGs were
reported in more than one study and the rest are specific to
individual studies. Furthermore, among the 13 independent
studies survied, four of these 13 studies used moderate low
temperature stress and the other nine used severe cold stress.
By comparing the DEGs, it was found that the transcriptomic
changes that occur in response to moderate low tempreture
and severe cold stress are fundamentally different (Sowiński
et al., 2020). Taken together, the variation in gene expression
in different studies can be caused by the genotypes, tissue,
developmental stage, experimental design and the strength
of cold. Although the results of individual studies varied
considerably, the “common genes” shared by several independent
projects after carefully eliminate the differences can be attractive
candidates for further functional studies.

LOCAL AND LONG-DISTANCE
TRANSMITANCE OF COLD SIGNALS

All of the above studies extensively investigated the “responses”
of maize to cold, but how does maize actively perceive cold
and transmit these signals to other parts of the plant? In
rice, the OsCOLD1 protein was found to localize to the
endoplasmic reticulum and plasma membrane and promote
GTPase activity by interacting with a G-protein. In response
to cold stress, COLD1 changes membrane fluidity to mediate
extracellular Ca2+ influx and cytosolic Ca2+ concentration, and
the altered Ca2+ concentration acts as a secondary messenger
to regulate downstream genes (Ma et al., 2015b). Thus, COLD1
is thought to be the first cold sensor identified in plants (Shi
and Yang, 2015). In maize, ZmSEC14p, a Sec14-like protein,
was found to regulate the expression of phosphoinositide-specific
phospholipase C in the phosphoinositide signal transduction
pathway, which generates the second messengers inositol
1,4,5-trisphosphate and 1,2- diacylglycerol for downstream
signal transduction (Wang et al., 2016). Over-expression of

FIGURE 2 | A proposed model for the long-distance regulation of cold

signaling by the ELF4 protein and mobile mRNAs. Full and dashed arrows

indicate known and potential long-distance signaling molecules, respectively.

The thickness of the arrows indicates the relative strength of the signal. ELF4,

Early flowering 4.

ZmSEC14p results in the up regulation of some cold-responsive
genes such as CBF3, suggesting its important role in cold
signal transduction.

The above studies, together with the findings in the ICE-CBF-
COR pathways, lay important foundations for understanding the
cold signal transduction pathway within a local cell; however, the
way in which plants transmit cold signals to other parts of the
plant is largely unknown. One of the possibilities involves the
long-distance signaling system. The phloem sap contains plant
hormones, small peptides, transcription factors, and various
types of RNA molecules (mRNAs, miRNAs, and tRNAs) that
can travel long distances to the other parts of the plant. These
molecules, as potential signaling factors, regulate plant growth
and development and the stress response (Xia et al., 2018).
Wang et al. (2020b) developed a watermelon–bottle gourd
heterografting system to identify the mobile mRNAs under both
control and cold conditions. Their results showed that cold stress
significantly enhances the mobility of mRNAs in the phloem
(Figure 2). In particular, some of the scion-delivered mobile
mRNAs in the rootstock are derived from some well-known
genes related to osmotic adjustment and cold tolerance, while
mRNA that moves in the opposite direction includes transcripts
from genes related to ABA-activated signaling. In another study,
Chen et al. (2020) found that the Arabidopsis clock component
ELF4 (EARLY FLOWERING 4) protein showed long-distance
movement from the shoot to the root through the vascular system
to control the root clock in a temperature-dependent manner,
and low temperatures favored ELF4 mobility (Figure 2). Hence,
ELF4 has been suggested to a mobile long-distance cold signal
that establishes a shoot-to-root communication for temperature
information. In addition to ELF4 protein and mobile mRNAs,
Ca2+ has also been implicated as a long-distance signal for water
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trafficking and defense signaling (Shkolnik et al., 2018; Toyota
et al., 2018). A previous study showned that the AtMIZ1 (Mizu-
Kussey 1) protein regulates AtECA1 (ER-type CA2+-ATPase 1) to
generate the long-distance phloem-mobile Ca2+ signal for water
trafficking (Shkolnik et al., 2018). Interestingly, both AtMIZ1 and
AtECA1 were found to be responsive to cold treatment (He et al.,
2016; Sharma et al., 2018). Despite the involvement of Ca2+ in
local cold signaling, it is unknown whether Ca2+ also functions
as a long-distance cold signal through the MIZ1-ECA1- Ca2+

pathway (Figure 2). These studies clearly show that long-distance
signaling is involved in the response to cold. One very recent
study shows that monocotyledonous plants are also capable of
being grafted (Reeves et al., 2021), and discoveries related to cold-
induced long-distance signaling in maize can be expected soon
through use of this powerful method.

CONCLUSION

Cold tolerance is an important breeding objective in the pursuit
of high productivity and better environmental compliance. Cold
tolerance research in maize is of great significance to stabilize
yield and enhance food security by broadening the geographical
regions in which maize can be cultivated. Cold tolerance in
maize is a complex trait and is a cumulative function of many
physiological and molecular pathways. Significant achievements
have made in studying the physiology of maize cold tolerance,
but much remains to be done to solve the problems that result
from cold damage to maize plants. The molecular analyses of
maize cold tolerance mechanisms are still insufficient, and many
of the current studies do not contribute much to maize biology
compared to those in Arabidopsis and rice. This could be due in
part to the lack of discovery of novel genes that may regulate cold
tolerance in maize.

There are large differences in cold tolerance among various
maize varieties. Cold tolerant varieties usually have a stronger
ability to maintain osmotic pressure, the ROS balance, hormonal
homeostasis, mineral nutrient absorbance, and photosynthesis.
These physiological characteristics have been widely used to
evaluate the cold tolerance of maize varieties in QTL and GWAS

analyses. Many of the QTL and GWAS analyses were based
on various maize genotypes and populations that express large
variations in cold tolerance, but only a few candidate genes have
been identified. Further fine mapping and map-based cloning
of genes in the genomic regions identified via QTL and GWAS
analysis is required, andmore candidate genes will provide a basis
for further understanding the molecular and genetic mechanism
of cold tolerance in maize. Furthermore, using QTL mapping
and GWAS, molecular markers closely linked to cold tolerance
genes can also be identified as resources forMAS (marker assisted
selection) of cold tolerant varieties. In addition, with the aid
of data used for GWAS analysis, future work can also use GS
(genomic selection) to predict cold tolerant varieties in large
maize populations.

Transcriptome analysis is a powerful tool that has been
used in many studies for the identification of cold-responsive
genes. Comparisons of the DEGs detected in different studies
have shown little overlap with each other. A few studies
integrated QTL, GWAS, RNA-seq, and other methods, which
significantly reduced the number of candidate genes for selection,
partly because joint analyses in the same study can eliminate
the differences that arise from the genotypes used or the
experimental design. Future research that integrates more
methods, such as phenomic, proteomic, metabolomic, and
bioinformatic approaches, may greatly improve the accuracy of
identifying cold-regulated genes and provide better candidates
that can be further used in molecular breeding.
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