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Plants produce a wide diversity of specialized metabolites, which fulfill a wide range of 
biological functions, helping plants to interact with biotic and abiotic factors. In this study, 
an integrated approach based on high-throughput plant phenotyping, genome-wide 
haplotypes, and pedigree information was performed to examine the extent of heritable 
variation of foliar spectral reflectance and to predict the leaf hydrogen cyanide content in 
a genetically structured population of a cyanogenic eucalyptus (Eucalyptus cladocalyx 
F. Muell). In addition, the heritable variation (based on pedigree and genomic data) of more 
of 100 common spectral reflectance indices was examined. The first profile of heritable 
variation along the spectral reflectance curve indicated the highest estimate of genomic 
heritability ( hg2 =0.41) within the visible region of the spectrum, suggesting that several 
physiological and biological responses of trees to environmental stimuli (ex., light) are 
under moderate genetic control. The spectral reflectance index with the highest genomic-
based heritability was leaf rust disease severity index 1 ( hg2 =0.58), followed by the 
anthocyanin reflectance index and the Browning reflectance index (hg2 =0.54). Among the 
Bayesian prediction models based on spectral reflectance data, Bayes B had a better 
goodness of fit than the Bayes-C and Bayesian ridge regression models (in terms of the 
deviance information criterion). All models that included spectral reflectance data 
outperformed conventional genomic prediction models in their predictive ability and 
goodness-of-fit measures. Finally, we confirmed the proposed hypothesis that high-
throughput phenotyping indirectly capture endophenotypic variants related to specialized 
metabolites (defense chemistry), and therefore, generally more accurate predictions can 
be made integrating phenomics and genomics.

Keywords: genomic and phenomic prediction, genomic heritability, defense chemistry, spectral reflectance 
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INTRODUCTION

Plants produce an outstandingly wide diversity of specialized 
metabolites (or secondary metabolites), fulfilling a wide range 
of biological functions, and helping plants to better cope with 
abiotic and biotic factors. These molecules are usually divided 
into three groups, including phenolic compounds, terpenes, 
and nitrogen-containing compounds (Zeng et al., 2020; Balestrini 
et  al., 2021; Mieres-Castro et  al., 2021). The major classes of 
nitrogen-containing specialized metabolites in the plant kingdom 
are cyanogenic glucosides, alkaloids, and non-protein amino 
acids. In particular, cyanogenic glycosides are present in various 
trees and plants, many of which are utilized as a source of 
food for humans and animals (Gleadow and Møller, 2014). 
These specialized metabolites are part of a plant’s strategy 
against herbivores and therefore play a major role in the 
ecosystem as defense-related compounds (Zenk and Juenger, 
2007). The endogenous plant enzymes can react with cyanogenic 
glycosides and release hydrogen cyanide (hereafter referred to 
as HCN), a process known as cyanogenesis, which may be toxic 
to generalist herbivores and pathogens (Appenteng et al., 2021). 
Therefore, the effectiveness of cyanogenesis is a phytochemical 
defense strategy, dependent on cyanogenic plants’ capability 
to release HCN in sufficient quantities to be  considered toxic.

There are over 3,000 cyanogenic plant species, representing 
more than 130 families, including Fabaceae, Leguminosae, 
Myrtaceae, Rosaceae, and many others (Gleadow and Møller, 
2014; Appenteng et  al., 2021; Mora-Poblete et  al., 2021). In 
addition to serving as important compounds, cyanogenic 
glycosides play multiple roles in physiological functions involved 
in phenotypic plasticity during specific developmental stages 
and particularly under challenging environmental conditions, 
such as drought (Gleadow and Møller, 2014; Pičmanová et al., 
2015; Rosati et  al., 2019). In fact, cyanogenic glycosides can 
play an important role in primary metabolism processes as 
nitrogen and glucose transporters (Møller, 2010). The metabolic 
profile in cyanogenic species is modulated according to the 
interaction between genes and environmental conditions, 
resulting in a physiological trade-off between the production 
of defense metabolites and growth-related tasks (Gleadow and 
Woodrow, 2000; Gleadow and Møller, 2014).

The biosynthesis, degradation, biological functions, 
polymorphism, and regulation of cyanogenic glycosides have 
been widely studied in plant species (Sun et  al., 2018), such 
as sorghum (Darbani et  al., 2016), cassava (Zidenga et  al., 
2017), Prunus spp. (Thodberg et  al., 2018), and Eucalyptus 
spp. (Goodger et  al., 2004; Hansen et  al., 2018). More than 
20 species of the Eucalyptus genus have been identified to 
be cyanogenic (Gleadow et al., 2008), which serves as a powerful 
experimental system to study cyanogenesis as a chemical defense 
response against herbivores and pathogens. Among the Eucalyptus 
species studied to examine their cyanogenic content are E. nobilis, 
E. polyanthemos, E. yarraensis, E. dalrympleana, E. camphora, 
E. viminalis, and E. cladocalyx (Gleadow et  al., 2003, 2008; 
Goodger et  al., 2004; Neilson et  al., 2006; Hansen et al., 2018). 
Gleadow et  al. (2003) and Neilson et  al. (2006) reported 
concentrations of HCN ranging from 0 to 0.153 mg HCN g−1 

dw and from 0.01 to 0.5 mg HCN g−1 dw in leaves of E. nobilis 
and E. camphora, respectively. In E. polyanthemus, Goodger 
et  al. (2004) found that these compounds can vary from 0.002 
to 0.2 mg HCN g−1 dw in leaves by supplementing the plants 
with different concentrations of nitrogen. Moreover, prunasin 
concentration is highly variable depending on tissue type and 
leaf age in E. cladocalyx (Gleadow and Møller, 2014). In fact, 
prunasin concentration of less than 20 ug HCN g−1 dw can 
be  found in adult leaves, while a concentration of 60 ug HCN 
g−1 dw can be  found in immature flower buds (Hansen et  al., 
2018). Furthermore, Mora-Poblete et  al. (2021) reported that 
the concentration in adult leaves can reach up to 1.5 mg HCN 
g−1 dw under dry land conditions. Different types of cyanogenic 
glycosides have been identified in Eucalyptus trees, such as 
prunasin (the predominant type); amygdalin; sambunigrin (the 
epimer of prunasin); neoamygdalin (the epimer of amygdalin); 
and eucalyptosin A, B, and C (Gleadow et  al., 2008; Neilson 
et  al., 2011; Hansen et  al., 2018). These specialized metabolites 
are synthesized from phenylalanine, a process in which several 
cytochrome P450s (CYP) proteins are involved, to produce 
monoglycosides (Yamaguchi et  al., 2014; Hansen et  al., 2018). 
Particularly, defense mechanisms against pathogens and pests 
have rarely been reported in cyanogenic Eucalyptus spp., unlike 
other crops (Yactayo-Chang et  al., 2020). On the other hand, 
it has been shown that the biosynthesis of these metabolites 
is induced by different abiotic factors (i.e., soil nutrients and 
water level, light, and temperature; Gleadow and Woodrow, 2002; 
Goodger et  al., 2002, 2004; Simon et  al., 2010).

In E. cladocalyx, prunasins were mainly found in floral and 
vegetative tissues, along with amygdalin in a minor concentration 
(Hansen et  al., 2018). In this cyanogenic species, three CYP 
proteins and one UDP-glucuronosyltransferase protein (UGT) 
are involved in prunasin biosynthesis. First, L-phenylalanine 
is converted into phenyl acetaldoxime by CYP79A125 and is 
then dehydrated into phenyl acetonitrile by CYP706C55. Phenyl 
acetonitrile is converted into mandelonitrile by CYP71B103. 
Subsequently, UGT85A59 catalyzes the conversion of 
mandelonitrile into prunasin. In other cyanogenic plants, it 
has also been reported that another UGT protein catalyzes 
the conversion of cyanogenic monoglycosides (such as prunasin) 
into diglycosides (amygdalin; Yamaguchi et al., 2014; Del Cueto 
et  al., 2017; Thodberg et  al., 2018).

Despite the importance of cyanogenic glycosides as a source 
of defense-related compounds, and the advances made in the 
biosynthesis, catabolism, transport, and storage of these 
specialized metabolites, few published works have focused on 
the prediction of the amounts of cyanogenic glycosides in 
Eucalyptus trees. The complex nature of the genetic architecture 
of cyanogenic glycoside content may be a bottleneck for genomic 
prediction studies, especially when high-density marker panels 
are not available or when study species are poorly represented 
in commercial DNA arrays (Aguirre et al., 2019; Ballesta et al., 
2020; Lebedev et  al., 2020). According to Pryce et  al. (2014), 
the use of low-density marker panels will inevitably affect the 
accuracy of the genomic prediction of target traits to some 
degree. In this sense, Mora-Poblete et  al. (2021) found a 
moderate predictive ability for HCN content (of up to 0.47) 
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in a genetically structured breeding population of cyanogenic 
E. cladocalyx, using a low-density marker panel of single 
nucleotide polymorphisms (SNPs) and haplotype blocks 
constructed from them, which had a better predictive ability 
(slightly higher) than the individual SNPs for predicting HCN 
content in leaves. Consistently, these findings are in line with 
other studies, which have concluded that the use of haplotypes, 
instead of individual SNPs, could have a higher predictive 
ability of certain quantitative traits (Contreras-Soto et al., 2017; 
Ballesta et  al., 2019; Valenzuela et  al., 2021). Consequently, in 
the present study, we  examined a strategy of prediction that 
integrates conventional pedigree information, genomic data, 
and high-throughput phenotyping techniques, which is an 
effective method with which to break through the bottleneck 
of low-density marker panels.

Similarly, an integrated genomic and phenomic selection 
strategy that has been performed in breeding programs of 
plants and forest trees (Rincent et  al., 2018; Krause et  al., 
2019), in which spectral reflectance data are used as regressors 
(or reflectance-derived relationship matrices) for accelerating 
the breeding progress of complex traits. Interestingly, Rincent 
et  al. (2018) and Krause et  al. (2019) observed that prediction 
models using spectral signatures performed similarly or superior 
to marker- and pedigree-based genomic selection models when 
predicting within and across environments. We  hypothesized 
that high-throughput phenotyping platforms could indirectly 
capture endophenotypic variants, which could be  related to 
specialized metabolites, and, therefore, we  expected to be  able 
to perform a more robust prediction, considering the spectral 
reflectance relationship among the trees. Consequently, indirect 
endophenotypic measures could enable these phenomic prediction 
methods to be incorporated into studies of specialized metabolites, 
such as cyanogenic glycosides. Additionally, we  presented the 
first profile of heritable variation (genomic- and pedigree-based 
approaches) in the leaves of cyanogenic Eucalyptus (E. cladocalyx) 
along the spectral reflectance curve for each 1-nm wavelength 
interval (from 400 to 2,400 nm). The genomic- and pedigree-
based heritability of the most widely used spectral reflectance 
indices (SRIs) was also estimated, such as the photochemical 
reflectance index (PRI), the green normalized difference 
vegetation index (GNDVI), water-related SRIs, the normalized 
difference vegetation index (NDVI), and the normalized pigment 
chlorophyll ratio index (NPCI), among others. This represents 
the first exploration of the genomic variation along the reflectance 
curve in a tree species and supports high-throughput phenotyping 
as a suitable approach for the prediction of specialized metabolites.

MATERIALS AND METHODS

Plant Materials
The study was carried out in a provenance/progeny trial of 
Eucalyptus cladocalyx, established in 2001, and situated in the 
southern Atacama Desert, in Chile, Choapa Province (31° 55´ 
S, 71° 27´ W, 167 m.a.s.l.). The climate in this area is classified 
as predominantly arid, according to the De Martonne aridity 
index (Arriagada et al., 2018). The trial consisted of a genetically 

structured population with 49 half-sib families (details in 
Valenzuela et  al., 2021) according to a randomized complete 
block design, with 30 blocks and single-tree plots.

The concentration of hydrogen cyanide (HCN) was determined 
in the leaves of 310 trees with three replications using the 
protocol developed by (Brinker and Seigler, 1989). Fully expanded 
and fresh mature leaves (~10 leaves per tree) were collected 
in the first third and from the northern side of the tree canopy 
(Woodrow et  al., 2002). The methods for obtaining and 
quantifying HCN for each leaf sample can be  reviewed with 
details in Mora-Poblete et  al. (2021). Briefly, a hydrolysis of 
cyanogenic glucosides from plant tissue was performed, trapping 
the resulting HCN in a well containing 1 M NaOH. The cyanide 
captured was quantified using the König reaction. The final 
absorbance was measured at 595 nm using a Genesys 10UV 
spectrophotometer (ThermoSpectronic). The amount of cyanide 
was determined by interpolation into a calibration curve built 
with sodium cyanide (0.2–1.2 μg/ml, R2 = 0.9935). All samples 
were analyzed in triplicate, and results were presented as mean 
mg HCN equivalents g−1 dry weight (dw). The cyanide 
concentration was expressed as mg HCN equivalents g−1 dry 
weight (dw) primarily for the glucoside prunasin (Gleadow 
and Woodrow, 2000). The trees exhibited a HCN content from 
<0.0001 mg HCN g−1 dw up to 1.54 mg HCN g−1 dw in 
their leaves.

Spectral Reflectance Assessments
Absolute reflectance measurements of leaves (0.1 g lyophilized 
leaf powder per sample) were performed using a portable 
FieldSpec® 4 HiRes spectroradiometer (ASD Inc., Boulder, CO, 
United  States), which covers the 350–2,500 nm range (the full 
range of the solar irradiance spectrum) with a 2.3-mm-diameter 
optical fiber. The spectral range between 350–399 and 2,400–
2,500 nm was removed. RS3 software (ASD Inc., Boulder, CO, 
United States) was used to calibrate and control the spectrometer 
and acquire spectral signatures. The equipment was configured 
to integrate three samples per scan. The reflectance data were 
extracted using View Spec Pro 2008 software (ASD Inc., Boulder, 
CO, United  States). The spectral data were pre-processed 
according to method of Rincent et al. (2018), in the R package 
Prospectr (Stevens and Ramirez-Lopez, 2014), in which the 
reflectance measures were normalized (centered and scaled), 
and their first derivative was computed using a Savitzky–Golay 
filter, with a window size of 37 data points.

The raw spectral reflectance data were also used to calculate 
more than 125 previously characterized spectral reflectance 
indices (SRIs), using either normalized or simple ratios of 
reflectance measures in the hsdar package (Lehnert et al., 2018). 
These SRIs have been shown to correlate with different 
physiological and biochemical components in plants and to 
provide information about several physiological (and agronomic) 
traits (Lobos and Poblete-Echeverría, 2017). A stepwise regression 
was conducted to evaluate and determine an appropriate number 
of predictor variables (SRIs) for HCN content. The optimal 
model was selected based on Akaike’s information criterion 
(AIC). Multicollinearity among SRIs was examined using the 
variance inflation factor (VIF). The VIF value for each SRI 
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was interpreted as follows (Liu et  al., 2019; Qian et  al., 2019): 
0 < VIF < 10, 10 ≤ VIF < 100 and VIF ≥ 100, indicating that there 
is no strong and severe multicollinearity, respectively.

DNA Isolation and Genotyping
Genomic DNA was extracted from the leaves of individual 
samples of E. cladocalyx, according to the method of Ballesta 
et  al. (2019, 2020). All individuals were genotyped using an 
array (Illumina Infinium) of ~60,000 single nucleotide 
polymorphisms (SNPs). SNP markers with a call rate < 90% 
and a minor frequency allele <0.05 were removed from the 
SNP data matrix. A total of 3,897 SNPs were retained, which 
were distributed across the 11 chromosomes (~ 350 SNPs per 
chromosome) of Eucalyptus, with a density of one SNP for 
every 11,000 bp. After applying these filters, haplotype blocks 
were constructed according to the solid spine method in 
Haploview v. 4.2 (Barrett et  al., 2005), which were later used 
in the haplotype-based genomic prediction of HCN. Only 
haplotype blocks with a D ‘value ≥  0.9 and a LOD score ≥  2 
were considered for the further analyses. According to previous 
studies, genomic prediction models based on SNPs forming 
haplotypes have a slightly higher predictive ability of HCN 
content than individual markers (Mora-Poblete et  al., 2021). 
Therefore, this antecedent was considered in the present study, 
in such a way that all genomic prediction models were 
implemented using haplotypes as predictor variables, instead 
of SNP markers.

Heritability in Single Wavelengths and 
Spectral Reflectance Indices of Leaf
The following prediction models were used to estimate the 
heritable variation along the reflectance curve and for all SRIs 
evaluated in Eucalyptus leaves:

 y X Qv Z g� � � �� �1 1  (1)

 y X P Za� � � �� � �  (2)

where y  corresponds to phenotype records, i.e., SRIs or 
spectral reflectance measurements for each wavelength. X , 
Q , Z , Z1 , and P  are the incidence matrices of the associated 
vectors. β  corresponds to the vector of the block effect 
(experimental design). v  and ρ  are the vectors of genetic 
population structure (Pritchard et  al., 2000) and provenance 
(seed source) effects, respectively. g1  is the vector of genomic 
values with g1  ∼ N(0, G1σ g1

2 ), where G1 is the genomic 
relationship matrix (based on filtered SNP data), and σ g1

2  
corresponds to the genomic variance component. a  is the 
vector of the polygenic background effects (based on pedigree 
information), in which a  ∼ N(0, Aσa

2 ), where A corresponds 
to the pedigree-based numerator relationship matrix and σa

2  
is the additive genetic variance, and ε  is the vector of residual 
effects, distributed as ε  ∼ N(0, Iσe

2 ), where I is the identity 
matrix and σe

2  is the residual variance. Heritability estimates 
(narrow sense heritability ha2  and genomic heritability hg2 ) 

of each wavelength measure and SRI were calculated according 

to the following formulas: ha a

a e

2
2

2 2�
�

�
� �

 and hg
g

g e

2
2

2 2
1

1

�
�

�

� �
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Prediction Models for HCN in Eucalyptus 
Leaves
The following prediction models were performed using the 
pedigree, genomic, and spectral information. The first model 
included only genomic data, as follows:

 y Qv Z g� � � �2 2 �  (3)

where y∗  corresponds to the vector of adjusted phenotypes 
(HCN) for block effects (experimental design). Z2  is the 
incidence matrix associated with the g2  vector, which corresponds 
to genomic values based on haplotypes (Mora-Poblete et al., 2021). 
The Model 4 can be  expressed in matrix form as:

 y P Za� � � �� �  (4)

where the terms Pρ  and Za  are described in the 2.4 section 
(see Models 1 and 2). The Model 5 included the population 
genetic structure and polygenic effects (see above):

 y Qv Za� � � � �  (5)

The fourth prediction model (Model 6) combined the 
polygenic and genomic effects:

 y Qv Za Z g� � � � �2 2 �  (6)

The following model (Model 7) included the spectral data 
as regressors in the prediction model:

 y Qv Z h� � � �3 �  (7)

where, Z3  is the incidence matrix associated to h  vector, 
which corresponds to the vector of wavelength effects (Gonçalves 
et  al., 2021). The prediction Model 8 comprised the genomic 
and wavelength effects:

 y Qv Z g Z h� � � � �2 2 3 �  (8)

Similarly, the Model 9 included the polygenic and 
wavelength effects:

 y Qv Za Z h� � � � �3 �  (9)

The Models 10, 11, and 12 included the SRIs effects, as follows:

 y Qv X Z gi i
� � � � �� �2 2  (10)
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 y Qv X Z hi i
� � � � �� �3  (11)

 y Qv X Za Z gi i
� � � � � �� �2 2  (12)

where, Xi  is the incidence matrix for the βi vector (fixed 
effect), which corresponds to SRIs’ effects (1, …, n). The βi  
vector contains a single SRI or multiple SRIs (selected according 
to the stepwise regression method); as a covariate (s) in the 
model. The Model 13 included the wavelength effects in 
combination with polygenic and genomic effects:

 y Qv Za Z g Z h� � � � � �2 2 3 �  (13)

The Model 14 corresponded to the full prediction model, 
which integrated all effects above described:

 y Qv X Za Z g Z hi i
� � � � � � �� �2 2 3  (14)

The following three Bayesian regression methods were used 
to predict the effect of each wavelength: Bayes B, Bayesian 
ridge regression (BRR), and Bayes C (Meuwissen et  al., 2001; 
Gianola et  al., 2006; Habier et  al., 2011). These methods 
were selected because they have different analytical assumptions, 
which allows the analysis of traits with different genetic 
architectures, and are traditionally used in the context of 
genomic prediction. BRR method assumes that the regressors 
(For instance, SNPs or reflectance measurements) have a 
common variance and have the same contraction effect. The 
predictor effect (mi ) is distributed ( )σ σ2 2~ 0,i m mm N∣ , and 
the common variance is distributed scaled- inverse Chi-squared 
(σ α −2 2, ~m m mS X∣ (αm mS, ) , where αm  and Sm  corresponds 
to degree freedom and scale parameters, respectively. Contrarily, 
Bayes B denotes that each regressor has its own variance, 
and uses a mixed distribution with a mass at zero, such that 
the prior distribution of the effects of the all regressors is 
assumed as:

 
( )

π
σ π

σ π

=  −

2
2

0  
,

0,  1i mi
mi

with probability
m

N with probability
∣

The π parameter represents the probability that the regressor 
effect tends to be  zero. Bayes C is a method that combines 
assumptions of Bayes B and BRR, in which the predictors 
effects have a common variance and it assigns a non-null 
prior probability for the predictor effect to be  equal to zero 
(see more details about methods in Meuwissen et  al., 2001, 
Gianola et  al., 2006 and Habier et  al., 2011). The Bayesian 
Generalized Linear Regression (BGLR) library in R (Pérez and 
De los Campos, 2014) was used for fitting all models and 
making predictions. The BGLR procedure considered a run 
with 1,000,000 iterations, a burn-in period of 100,000 and a 
thin of 50.

Assessing Model Fitting and Predictive 
Ability
Prediction models 3 to 14 were evaluated and compared in 
terms of their predictive ability (PA) and goodness of fit using 
the deviance information criterion (DIC; Spiegelhalter et  al., 
2002). A DIC difference > 10 between two competitive models 
was considered to be  supported against a model with higher 
DIC; a DIC difference between 3 and 10 was considered as 
substantial difference between models, while a difference < 3 
was considered as not significant. All models were calibrated 
using ~300 individuals (which were also used for the estimation 
of genetic parameters) and validated considering the 20% of 
the total population. The PA of each model was calculated as 
the correlation between the adjusted phenotypes ∗( )y  from 
the validation dataset and the predicted phenotypes ( ∗

y ; Ballesta 
et  al., 2020; Mora-Poblete et  al., 2021). A process of fivefold 
cross-validation was used to evaluate the PA of all models.

RESULTS

Heritable Variation in Single Wavelengths 
and SRIs
The estimates of genomic heritability for 1-nm wavelength 
bands along the reflectance curve (400–2,400 nm) ranged from 
0.18 to 0.41, whereas pedigree-based estimates varied from 
0.19 to 0.46 (Figure  1). The pedigree- and genomic-based 
heritability patterns were highly correlated (Pearson’s coefficient, 
r = 0.60). The highest estimate of genomic heritability ( hg2  = 
0.41) was found within the visible region: 460–490 nm. The 
estimates of pedigree-based heritability peaked at two different 
wavelength regions. The first one was at 575–590 nm ( ha2 = 
0.46; the visible region), and the second one was at 700–715 nm 
( ha2  = 0.46; the red edge spectral region).

The SRI with the highest genomic-based heritability was leaf 
rust disease severity index 1 (LRDSI1; hg2  = 0.58; Table  1; 
Supplementary Table S1), which was calculated with reflectance 
measurements at 605 and 455 nm, followed by the anthocyanin 
reflectance index (ARI) and the Browning reflectance index (BRI; 
hg2  = 0.54); whereas the least heritable index was the enhanced 
vegetation index (EVI; hg2  = 0.22), which was calculated using 
reflectance at 800, 670, and 475 nm. The index with the highest 
heritability based on pedigree was the REP_LE index (ha2  =0.48), 
which was calculated with reflectance measures within the red 
edge region, followed by the double difference Index (DD), 
REP_LE, the derivative index (D2), and the Datt index (ha2  = 
0.47), whereas the least heritable index was the EVI index (EVI; 
ha2  = 0.18). According to the stepwise regression method, four 
spectral reflectance indices were significantly associated with HCN 
(p < 0.05); i.e., simple ratio 10 (SR10), normalized difference lignin 
index (NDLI), normalized difference nitrogen index (NDNI), and 
normalized pigment chlorophyll index (NPCI). The multiple 
regression adjusted by the three SRIs explained ~18% of the 
total variation (p = 7.336*10−11). The SR10, NDLI, NDNI, and 
NPCI indices explained ~10, 8, 2, and 6% of the total variation, 
respectively. In this way, these four SRIs were considered for 
predicting HCN. Heritability estimates based on pedigree and 
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genomic data (SNP markers) were equivalent for the indices SR10 
(ha2  = 0.41; hg2  = 0.41) and NDNI (ha2  = 0.28; hg2  = 0.29; 
Table  2). The pedigree-derived relationship matrix accounted for 
a greater portion of the NDLI index variation than the SNP-derived 
relationship matrix (ha2  = 0.34; hg2  = 0.28). In contrast, the 
estimation of genomic heritability of the NPCI index (hg2  = 
0.46) had a higher value than that based on pedigree (ha2  = 0.40).

Prediction of HCN Content in Leaves of 
Adult Eucalyptus Trees Using an 
Integrated Approach
The goodness-of-fit measures for all the prediction models of 
HCN content that consider spectral reflectance data, based on 
different Bayesian regression methods (i.e., Bayes B, Bayes C, 
and Bayesian ridge regression), are shown in Table  3. On 
average, the Bayes B method had the best goodness-of-fit statistics 

(deviance information criterion; DIC) for the majority of the 
study models. Therefore, based on this Bayesian method, predictive 
ability (PA) estimates ranged from 0.41 to 0.60 (Table 4). Models 
that included spectral reflectance data as regressors outperformed 
conventional genomic prediction models in terms of PA and 
goodness-of-fit measures (Table  4). In fact, the goodness of fit 
of the prediction model based exclusively on genomic data 
(Model 3) was significantly increased with the incorporation 
of spectral data (Models 8 and 10; ∆DIC = 30 and 70, respectively).

The prediction model with the best goodness-of-fit measure 
(DIC = −395.2) was the one that included genomic, spectral 
reflectance, and pedigree information (Model 13), which had 
a predictive ability of 0.59. In terms of each component of 
Model 13, spectral reflectance data explained the greatest 
percentage of the phenotypic variation (24%), whereas genomic 
and pedigree data explained ~22% and ~ 12% of the total 
variation in HCN content, respectively. The model that included 
reflectance indices (SRIs; as covariates) showed a slight reduction 
in terms of goodness of fit (DIC = −392.7), whereas the PA 
value was maintained. The solution of wavelength effects 
accomplished using Model 13 is shown in Figure  2. Seven 
specific points of the reflectance spectrum had a greater effect 
on HCN: two regions within the visible spectrum (400–410 
and 530–540 nm), one region within the visible–red edge spectral 
regions (660–670 nm) and four regions in the near and shortwave 
infrared regions (1,200–1,210, 1,490–1,500, 1,650–1,660, and 
2,125–2,130.

Ten out of twelve models that included either spectral reflectance 
data or SRIs as regressors had a PA value above 0.5, whereas 
the models that exclusively included genomic and/or pedigree 
data had a PA below this value. The models that included the 
spectral reflectance component (h) had a PA value varying 
between 0.57 and 0.6. It should be  noted that the goodness-
of-fit statistics of Model 7 (exclusively based on spectral data) 
were increased by ~3 and 6% when genomic (Model 8) and 
pedigree (Model 9) data were included, respectively. The measures 

FIGURE 1 | Estimation of pedigree-based heritability (blue) and genomic heritability (green) along the reflectance curve (in the range of 400–2,400 nm) in leaves of a 
cyanogenic species of Eucalyptus. The upper axis indicates the range of the three main regions of the electromagnetic spectrum: visible, near infrared (NIR), and 
shortwave infrared (SWIR).

TABLE 1 | The most heritable spectral reflectance indices (SRIs), according to 
genomic-based heritability ( )≥ 0.52hg  measured in adult leaves of cyanogenic 
Eucalyptus cladocalyx.

SRIs Formula 2h g (s.e.)

Leaf Rust Disease Severity Index 1 
(LRDSI1)

6.9 × (R605/R455)–1.2 0.58(0.03)

Anthocyanin Reflectance Index (ARI) (1/R550)–(1/R700) 0.54(0.04)
Browning Reflectance Index (BRI) R450/R690 0.54(0.03)
Simple Ratio 7 (SR7) R440/R690 0.53(0.02)
Blue Green Pigment Index (BGI) R450/R550 0.52(0.02)
Edge green first derivative normalized 
difference (EGFN)

(max(D650:750)–max(D500:550))/ 
(max(D650:750) + max(D500:550))

0.50(0.01)

Edge green first derivative ratio 
(EGFNR)

max(D650:750)/max(D500:550) 0.50(0.01)

Gitelson and Merzlyak Index 1 (GMI1) R750/R550 0.50(0.03)
Simple Ratio 3 (SR3) R750/R550 0.50(0.02)

Genomic- and pedigree-based heritability estimates for all SRIs are presented in 
Supplementary Table S1. s.e., standard error.
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of the PA and goodness of fit of the model based exclusively 
on genomic data (Model 3; DIC = −307.4; PA = 0.47) were enhanced 
with the integration of genomic data and spectral reflectance 
indices (Model 10; DIC = −338.7; PA = 0.56). In particular, the 
prediction model that combined genomic data and the SR10 
index had a lower DIC (DIC = −339.5) than the model based 
exclusively on genomic data and a 21% higher PA value. 
Additionally, the NPCI index increased the PA of model 3 by 
10%, and improved its goodness of fit by 5% (DIC = −324.0). 
In contrast, the model that combined spectral data and SRIs 
(Model 11) had a lower goodness-of-fit statistic than the model 
based exclusively on spectral reflectance data (Model 7).

DISCUSSION

Heritable Variation in Single Wavelengths
The spectral reflectance of the E. cladocalyx leaves showed 
a relatively moderate genetic control (h2 = 018–0.46) across 

the 400-to-2,400-nm spectral range. The heritability 
distribution along the reflectance curve indicates that additive 
gene effects fluctuate along the reflectance curve (Čepl et al., 
2018). The reflectance regions with the highest genetic control 
(either genomic- or pedigree-based heritability) corresponded 
to the visible spectrum, between the wavelengths 460–490 
and 575–590 nm, and the red edge region (700–715 nm). 
In agreement with this, Čepl et  al. (2018), found that the 
maximum pedigree-based heritability value (i.e., h2 = 0.39) 
corresponded to the red edge inflection point (722 nm 
wavelength band) measured in a half-sib progeny test of 
Pinus sylvestris. The canopy reflectance at wavelengths between 
400 and 1,000 nm is predominantly influenced by plant 
pigments (i.e., chlorophylls a and b) and cell structures 
(Schlerf et  al., 2010; Raper and Varco, 2015; Zarco-Tejada 
et  al., 2019). For instance, Schlerf et  al. (2010), reported 
that the reflectance in the visible and red edge spectrum 
regions, measured in the canopy of Picea abies, can be  used 
as a proxy for chlorophyll and nitrogen content. These 

TABLE 3 | Goodness-of-fit testing for all prediction models of HCN content that consider spectral reflectance data, based on different Bayesian regression methods: 
Bayes B, Bayes C, and Bayesian ridge regression (BRR).

Model Method SRI DIC PVG PVSR PVA

ε= + +∗
3y Qv Z h  (7)

Bayes B – −367.5 – 24.4 –

Bayes C – −365.4 – 24.6 –
BRR – −364.7 – 22.9 –

ε= + + +∗
2 2 3y Qv Z g Z h  (8) Bayes B – −377.3 30.8 19.1 –

Bayes C – −379.8 30.8 20.4 –
BRR – −380.4 30.6 18.9 –

ε= + + +∗
3y Qv Za Z h  (9) Bayes B – −389.1 – 27.0 20.1

Bayes C – −389.5 - 28.1 20.3
BRR – −390.1 – 26.8 20.9

β ε= + + +∗
3y Qv X Z hi i  (11) Bayes B All −365.5 – 27.8 –

Bayes C All −364.7 – 28.4 –
BRR All −363.9 – 25.7 –

ε= + + + +∗
2 2 3y Qv Za Z g Z h  (13) Bayes B – −395.2 21.9 24.1 11.5

Bayes C – −392.5 22.1 24.9 11.3
BRR – −388.1 21.6 22.4 12.1

β ε= + + + + +∗
2 2 3y Qv X Za Z g Z hi i  (14) Bayes B All −392.7 22.2 22.9 12.4

Bayes C All −390.8 22.4 24.1 11.2
BRR All −391.1 22.2 22.3 12.2

The goodness of fit was tested using the deviance information criterion (DIC). PVG, PVSR, and PVA are the percentages of variation of HCN explained by the genomic, spectral 
reflectance information, and pedigree, respectively. SRIs, Selected spectral reflectance indices; SR10, simple ratio 10, NDLI, normalized difference lignin index, NDNI, Normalized 
difference nitrogen index, and NPCI, Normalized pigment chlorophyll ratio index.

TABLE 2 | Estimates of pedigree-based heritability ( 2ha ) and genomic heritability ( 2hg ) of selected reflectance indices (SRIs): simple ratio 10 (SR10), normalized 
difference lignin index (NDLI), normalized difference nitrogen index (NDNI), normalized pigment chlorophyll index (NPCI), and hydrogen cyanide (HCN) content.

SRIs/Trait Formula 2h a (s.e.) 2h a (s.e.)

SR10 R685/R655 0.41(0.002) 0.41(0.02)
NDLI (log(1/ R1,754)−log(1/R1,680)/(log(1/R1,754) + log(1/R1680) 0.34(0.001) 0.28(0.001)
NDNI (log(1/R1,510)−log(1/R1,680))/(log(1/R1,510) + log(1/R1,680)) 0.28(0.001) 0.29(0.001)
NPCI (R680−R430)/(R680 + R430) 0.40(0.002) 0.46(0.002)

The letter Rn indicates the reflectance value at the nth wavelength used to calculate each of the SRIs. s.e., standard error; SRIs, Selected spectral reflectance indices: SR10, simple 
ratio 10, NDLI, Normalized difference lignin index, NDNI, Normalized difference nitrogen index, and NPCI, Normalized pigment chlorophyll ratio index.
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FIGURE 2 | Absolute values of the wavelength effects along the reflectance curve (400–2,400 nm), estimated by the model with the best goodness-of-fit results 
(Model 13). The upper axis shows the three main regions of the spectrum: visible, near infrared (NIR), and shortwave infrared (SWIR).

findings can be  observed in trees grown in different types 
of climates, such as tropical, Mediterranean, and oceanic 
climates (Schlerf et  al., 2010; Li et  al., 2019; Zarco-Tejada 
et  al., 2019). In this context, chlorophyll content and other 
components in leaf cells could not only be  regulated by 
abiotic and/or biotic factors, but also may be  determined 
by inheritance patterns. Li et  al. (2019) determined that 
the chlorophyll content and other variables related to the 
leaf color in Sassafras tzumu exhibit a high additive genetic 
control. In contrast, McKown et  al. (2014) and Guerra et  al. 
(2016) showed that ecophysiological parameters, such as 

chlorophyll content, photosynthetic rate, and nitrogen content, 
exhibit relatively low genetic control in Populus spp. This 
implies that the genetic control of the cellular components 
in the leaves (e.g., pigments) and their reflectance could 
be  plant-specific. According to the results of this study, the 
cellular components of E. cladocalyx leaves, associated with 
reflectance between wavelengths 460 and 700 nm (e.g., 
chlorophylls and other pigments), could show relatively 
moderate genetic control.

In the present study, the estimates of the heritability of 
reflectance based on pedigree and genomic approaches in the 

TABLE 4 | Predictive ability (PA) and goodness-of-fit measures for all models used for predicting cyanide (HCN) content in Eucalyptus trees.

Model* SRI PA DIC PVG PVSR PVA

ε= + +∗
2 2y Qv Z g  (3)

– 0.47 −307.4 35.2 – –

ρ ε= + +∗y P Za  (4) – 0.41 −313.5 – – 27.0

ε= + +∗y Qv Za (5) – 0.41 −350.2 27.3

ε= + + +∗
2 2y Qv Za Z g (6) – 0.47 −320.8 30.3 – 15.0

ε= + +∗
3y Qv Z h  (7) – 0.59 −367.5 – 24.4 –

ε= + + +∗
2 2 3y Qv Z g Z h  (8) – 0.58 −377.3 30.8 19.1 –

ε= + + +∗
3y Qv Za Z h  (9) – 0.59 −389.1 – 27.0 20.1

β ε= + + +∗
2 2y Qv X Z gi i  (10) All 0.56 −338.7 39.2 – –

SR10 0.57 −339.5 35.3 – –

NDLI 0.46 −306.8 34.1 – –

NDNI 0.48 −308.2 33.7 – –

NPCI 0.52 −324.0 34.5 – –

β ε= + + +∗
3y Qv X Z hi i  (11) All 0.60 −365.5 – 27.8 –

β ε= + + + +∗
2 2y Qv X Za Z gi i  (12) All 0.57 −358.5 29.4 – 17.3

ε= + + + +∗
2 2 3y Qv Za Z g Z h  (13) – 0.59 −395.2 21.9 24.1 11.5

β ε= + + + + +∗
2 2 3y Qv X Za Z g Z hi i  (14) All 0.59 −392.7 22.2 22.9            12

The goodness of fit was tested using the deviance information criterion (DIC). PVG, PVSR, and PVA are the percentages of variation of HCN explained by the genomic, spectral 
reflectance information, and pedigree, respectively. *Models based on the method Bayes B. SRIs: Selected spectral reflectance indices: simple ratio 10 (SR10), normalized difference 
lignin index (NDLI), normalized difference nitrogen index (NDNI), and normalized pigment chlorophyll ratio index (NPCI).
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short-wave infrared region (1,400–2,400 nm) were relatively 
lower than those in the visible spectrum region (including 
the red edge region). The reflectance in the short-wave infrared 
region has been associated with different primary and secondary 
metabolites, such as starch, celluloses, lignin, and other 
carbohydrates (Türker-Kaya and Huck, 2017; Čepl et al., 2019). 
In this sense, Paaso et  al. (2017) reported that lignin exhibits 
a relatively low level of genetic control in senescent leaves of 
Betula pendula. Moreover, both the cellulose and lignin content 
in Eucalyptus wood are traits of moderate genetic control (Denis 
et  al., 2013; Chen et  al., 2018), which is consistent with the 
present study results.

Heritable Variation in Spectral Reflectance 
Indices Associated With HCN Content in 
Leaves
Among the studied SRIs, only 3% of them were significantly 
associated with HCN. According to stepwise regression analysis, 
the SR10, NPCI, and NDLI indices were negatively correlated 
with HCN, whereas NDNI was positively correlated. These 
four selected SRIs had a similar pattern of heritability to those 
estimated at each wavelength. The indices calculated based on 
reflectance in the visible spectrum (i.e., SR10 and NPCI) showed 
greater heritable variation than the SRIs calculated within the 
SWNIR spectrum (i.e., NDLI and NDNI), which is in agreement 
with the heritability estimates in the different regions of the 
full spectrum (400–2,400 nm). SR10 (an index measured at 
685 and 655 nm) has been previously related to chlorophylls 
and the efficient use of light (Chen et  al., 2018). At the same 
time, the NPCI index was originally developed to evaluate 
the chlorophyll content in leaves (Peñuelas et al., 1994; Hatfield 
and Prueger, 2010). Previous studies have confirmed that this 
index could also be  a proxy for the nitrogen content and 
could be  an indicator of water stress and a good predictor of 
photochemical quenching (Filella et  al., 1995; Huang et  al., 
2014; Maimaitiyiming et  al., 2017). On the other hand, the 
NDLI index has been proposed as an indicator of lignin content 
(Serrano et  al., 2002; Daughtry et  al., 2004). However, it has 
also been considered to predict leaf biomass in rice (Cheng 
et  al., 2017). According to Serrano et  al. (2002), this index 
has been used as an indicator of the nitrogen content in leaves 
in different plants (Wang et  al., 2016; Wang and Wei, 2016; 
Liang et al., 2018). In this context, most of the indices significantly 
correlated with HCN have been used to predict nitrogen content 
in leaves. According to Gleadow and Møller (2014), the content 
of cyanogenic glycosides is closely related to the availability 
of nitrogen in the soil, such that high doses of fertilizers 
increase the cyanogenic capacity of different crops. Relatedly, 
Gleadow and Woodrow (2000) and Simon et al. (2010) reported 
that the cyanogenic capacity of E. cladocalyx trees is increased 
with a greater availability of nitrogen in the soil (or substrate). 
Additionally, Mora-Poblete et  al. (2021) reported a negative 
(although not significant) relationship between nitrogen and 
chlorophyll content (indirectly measured) and HCN in the 
leaves of E. cladocalyx. In fact, reflectance indices related to 
chlorophyll content can also be  good predictors of nitrogen 

content in various tree species, such as Picea, Acer, and Sorbus 
(Wang et  al., 2016).

Regarding the relationship between the NDLI index and 
HCN, the lignin content could be  indirectly related to the 
HCN content. In fact, both prunasin and lignin correspond 
to secondary metabolites that come from a biosynthetic pathway 
that begins with the amino acid phenylalanine (Phe). The 
enzyme phenylalanine ammonia lyase converts Phe into 
cinnamate, which is subsequently converted to lignin through 
a series of enzymatic reactions. On the other hand, Phe can 
be  hydroxylated by cytochrome P450 (in E. cladocalyx, 
CYP79A125; Hansen et  al., 2018) and converted into 
phenylacetaldoxime, which is subsequently transformed into 
prunasin, suggesting a possible trade-off between the content 
of both secondary metabolites. On the other hand, these results 
should be interpreted with caution due to cyanogenic glycosides 
content competes for nitrogen with other nitrogen-containing 
compounds, since cyanogenic glycosides could account for up 
to 20% of leaf nitrogen (Hansen et  al., 2018).

Prediction of HCN Content in Eucalyptus 
Leaves
In this study, the most suitable model used to predict HCN 
in leaves of cyanogenic Eucalyptus was the one that included 
high-throughput phenotyping data, genomic information 
(haplotypes), and genealogical data (pedigree) in terms of the 
goodness-of-fit measurements. According to the results, the 
spectral reflectance explained a higher percentage of the HCN 
variation than both genomic and pedigree data, considering 
a half-sib progeny test. Consistently with these findings, Krause 
et  al. (2019) reported that the prediction ability of a model 
based on a hyperspectral reflectance-derived relationship matrix 
could be  equal to or greater than a prediction model that 
combined the genomic selection (GS) model with pedigree-
derived relationship matrix (GS-A) for grain yields in wheat. 
Furthermore, the model that combined the three types of 
information was slightly superior to the GS-A model. In the 
present study, the prediction ability for HCN content based 
on spectral reflectance data (Model 7) was superior to that 
obtained by models based on either genomic or pedigree data. 
However, the model combining spectral reflectance, pedigree, 
and haplotype-based genomic data (Model 13) was not superior 
to Model 7 (in terms of its prediction ability). Gonçalves et  al. 
(2021) reported that the prediction ability based on the spectral 
reflectance of the fiber and sucrose content of sugarcane stems 
was superior to that of the model based on genomic data 
alone. However, the combined use of spectral reflectance and 
genomic data did not significantly increase the prediction ability 
of the studied traits.

The hypothesis that a high-throughput phenotyping platform 
could indirectly capture endophenotypic variants can be related 
to specialized metabolites. Therefore, the expectation of a more 
robust prediction, considering the spectral reflectance relationship 
among trees, was confirmed. This result is consistent with that 
of Rincent et al. (2018), who showed how predicting the heading 
date in wheat based on spectral data is more accurate than 
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that based on genomic information. In the same study, however, 
the prediction of wood-related traits in Populus trees based 
on spectral data was less precise than that based on genomic 
data. In another study, Sandhu et  al. (2021) reported that the 
genomic prediction ability for protein content and grain yield 
in wheat could be  increased by 12 and 20%, respectively, 
through the combined use of genomic data and SRIs. Interestingly, 
in the present study, the use of SRIs as covariates in predictive 
models of HCN led to an increase in the goodness-of-fit 
measures and the predictive ability of the GS model (Model 
3). Therefore, the predictive capacities of both information 
resources could depend on the trait under study, the species, 
and the type of population. In practice, all types of information 
available must be  tested. Indeed, in another study, Rutkoski 
et  al. (2016) demonstrated that the use of spectral reflectance 
indices could increase GS precision by up to 70% for predicting 
the grain yield of wheat. It should be  noted that none of the 
models that combined genomic data and SRIs was superior 
to the model based exclusively on spectral data in terms of 
prediction ability. However, SRIs may be  relevant to explain 
the variation of HCN and the accuracy of the HCN prediction 
may require the use of various regions of the reflectance 
spectrum. In forage sorghum (Sorghum bicolor), Fox et  al. 
(2012) determined that using a predictive model that combined 
the visible, NIR, and SW-NIR spectra allowed a better estimation 
of HCN than a model based on a single region of 
spectral signatures.

In general, the concentrations of different compounds in 
plants are estimated through the combined use of NIR spectral 
data with variable selection and dimensionality reduction models, 
such as PLS (Assis et  al., 2017; Rizvi et  al., 2018; Sampaio 
et  al., 2018). However, the PLS method and other related ones 
are challenging to implement in genetically structured populations 
(genetic structures) or trials with complete pedigree information 
(Rincent et  al., 2018; Krause et  al., 2019). These types of 
information are relevant to the prediction process. In the present 
study case, three different Bayesian regression methods were 
evaluated, in which the Bayes B model offered a better goodness-
of-fit measurement and a slightly higher prediction ability 
compared with both the BRR and Bayes C models. Bayes B 
is a regression method with a hierarchical Bayesian approach 
that performs the selection and reduction of the predictor 
variables (Meuwissen et  al., 2001). Some studies have found 
that Bayesian regression models, such as Bayes B, have been 
more accurate than the PLS method (Solberg et  al., 2009; 
Ferragina et  al., 2015). Moreover, Gonçalves et  al. (2021), 
reported that the Bayes B method was up to approximately 
two times more accurate than PLS in predicting fiber and 
sucrose con-tent in sugarcane stems. According to several 
studies (Kainer et  al., 2018; Thistlethwaite et  al., 2019; Rio 
et  al., 2021), the Bayesian methods, such as Bayes B, can 
improve the predictive ability in genome -based evaluations. 
For instance, Kainer et  al. (2018) evaluated the ability of 
different genomic prediction models of eight traits related to 
foliar terpene yield in Eucalyptus polybractea, using three 
different marker densities. According to these authors, Bayes 
B method outperformed ABLUP and GBLUP methods in the 

54% of the total cases (total: 24 cases; 3 marker densities and 
8 traits).

The Bayes B method allows for the identification of the 
most relevant variables to explain the variation of a response 
variable. In the present study, seven subregions of the spectral 
reflectance curve had a relatively greater effect on HCN (i.e., 
two, one, one, and five subregions of the reflectance curve: 
visible, red edge, near infrared, and shortwave infrared, 
respectively). Consistently, the SRIs significantly associated 
with HCN (i.e., SR10, NPCI, NDLI, and NDNI) were calculated 
from reflectance measurements located within (and near) these 
seven subregions of the spectrum. For example, the SR10 and 
NPCI indices were calculated from reflectance measurements 
located between the visible spectrum and in the red edge 
region (680 and 685 nm), whereas the NDNI and NDLI indices 
were calculated from reflectance measurements at 1680, 1510, 
and 430 nm. Based on the HCN prediction analysis, considering 
the model with the best good-ness-of-fit (Model 13), the 
spectral reflectance data explained the highest percentage of 
the phenotypic variation (24%), whereas genomic and pedigree 
components explained ~22 and 12% of the total variations 
in HCN content, respectively. These results suggest that the 
variation in the HCN content in Eucalyptus leaves could 
be  mainly related to the spectral signature of the individual 
rather than its genotypic characterization based on haplotypes. 
However, several factors could affect the accuracy of genomic 
prediction models, including marker density (Lorenz and Smith, 
2015). The density of markers (either haplotype and/or SNPs) 
used in the present study could be  considered relatively low 
compared to other species of the genus Eucalyptus (Ballesta 
et al., 2020). In this sense, a greater number of markers should 
be  included to address a greater number of regions in the 
genome explaining the variation of a specialized metabolite, 
mainly due to the quantitative nature of its genetic control 
(Mora-Poblete et  al., 2021). Genomic prediction models have 
shown low to high prediction ability of secondary metabolites 
in trees (Kainer et  al., 2018; Yamashita et  al., 2020; Mora-
Poblete et al., 2021). Our study proposes an alternative method 
to predict specialized metabolites in plants, which may 
be  relevant in an economic, ecological and/or human health 
context. Yamashita et al. (2020) developed genomic prediction 
models for tea quality-related metabolites in 150 tea accessions, 
in which six models produced moderate prediction accuracy 
values for epigallocatechin gallate and caffeine, and low for 
free amino acids and chlorophylls. Kainer et al. (2018), compared 
several methods of genomic prediction for eight traits related 
to foliar terpene yield in Eucalyptus polybractea. PA was higher 
for the individual compounds, such as foliar α-pinene and 
1,8-cineole concentration, than total foliar oil concentration, 
but the PA was significantly increased as the number of markers 
increased in most traits.

CONCLUSION

This is the first study to examine heritable variation along the 
reflectance curve (in the range of 400–2,400 nm) and several 
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spectral reflectance indices measured in leaves of a cyanogenic 
Eucalyptus. According to results, the variation in reflectance 
measurements and indices could be partially genetically driven, 
such that this information may help to recognize genotypes 
with specific chemical properties, such as cyanogenic capacity 
in leaves. The spectral reflectance of leaves of E. cladocalyx 
showed a relatively moderate level of genetic control. 
Consequently, we found four indices to be significantly associated 
with HCN content, all of which have been previously associated 
with nitrogen content in leaves, which agrees with previous 
studies examining the relationship between nitrogen and HCN 
in Eucalyptus leaves.

The model with the best fit to predict HCN content in 
leaves of cyanogenic Eucalyptus was the one that included 
spectral reflectance data, genomic information (haplotypes), 
and genealogical data (pedigree), as determined in terms 
of goodness-of-fit measures. In particular, its ability to predict 
HCN content in Eucalyptus leaves based exclusively on 
spectral data was superior to that obtained by models based 
on genomic and/or pedigree information. The strategy of 
prediction that integrates conventional pedigree information 
and genomic data, along with high-throughput phenotyping 
techniques, may be  beneficial when the genome coverage 
is low or when the number of molecular markers is limited 
to predict a complex trait, such as secondary metabolites. 
Finally, we confirmed that the high-throughput phenotyping 
platforms indirectly capture endophenotypic variants related 
to secondary metabolites. Therefore, a more robust prediction 
can be made, considering the spectral reflectance in cyanogenic 
plant species.
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