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Smart Environment (SE) focuses on the initiatives for healthy living, where ecological

issues and biodiversity play a vital role in the environment and sustainability. To

manage the knowledge on ecology and biodiversity and preserve the ecosystem and

biodiversity simultaneously, it is necessary to align the data entities in different ecology

and biodiversity ontologies. Since the problem of Ecology and Biodiversity Ontology

Alignment (EBOA) is a large-scale optimization problem with sparse solutions, finding

high-quality EBOA is an open challenge. Evolutionary Algorithm (EA) is a state-of-the-art

technique in the ontology aligning domain, and this study further proposes an Adaptive

Compact EA (ACEA) to address the problem of EBOA, which uses semantic reasoning

to reduce searching space and adaptively guides searching direction to improve the

algorithm’s performance. In addition, we formally model the problem of EBOA as a

discrete optimization problem, which maximizes the alignment’s completeness and

correctness through determining an optimal entity corresponding set. After that, a hybrid

entity similarity measure is presented to distinguish the heterogeneous data entities,

and an ACEA-based aligning technique is proposed. The experiment uses the famous

Biodiversity and Ecology track to test ACEA’s performance, and the experimental results

show that ACEA-based aligning technique statistically outperforms other EA-based and

state-of-the-art aligning techniques.

Keywords: ecology ontology, biodiversity ontology, ontology alignment, adaptive compact evolutionary algorithm,

semantic reasoning

1. INTRODUCTION

Smart Environment (SE) is a knowledge-based system that focuses on initiatives for healthy living
with an emphasis on environment and sustainability, where ecological issues and biodiversity
play a vital role in urban citizens’ life (Kumar, 2020). In particular, ecology research focuses on
the ecosystems, habitat restoration practices, and communities of interest, which is of help to
further our understanding of the environment and opportunities to affect change; biodiversity
investigates the species’ variability as well as their relationship to the environment. Since ecology
and biodiversity are the most complex entities on this planet, the corresponding knowledge is
usually modeled with the ontology (Madin et al., 2008), which is a powerful domain knowledge
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modeling technique (Berners-Lee et al., 2001). Currently, more
and more ecology and biodiversity ontologies have been
developed, such as Environment Ontology (ENVO) and Plant
Trait Ontology (PTO). However, since they are developed and
maintained independently, a concept might be defined with
different contexts, granularities, and terminologies, yielding the
ontology heterogeneity problem (Karam et al., 2020). Examples
of heterogeneous ecology and biodiversity ontologies are shown
in Table 1.

Therefore, to preserve the ecosystem and biodiversity
simultaneously and manage the knowledge on ecology and
biodiversity, it is necessary to link the data entities in different
ecology and biodiversity ontologies, which is the so-called
Ecology and Biodiversity Ontology Alignment (EBOA).

Aligning ecology and biodiversity ontologies aims at finding a
0–1 Aligning Matrix (AM), whose element denotes whether two
corresponding entities (the source ontology’s entities in row and
the target ontology’s entities in column) are mapped by 1 or not
by 0. Since the scale of the ecology and biodiversity ontologies
are usually large, and the constraint of single cardinality on
the aligning result, the problem of EBOA needs to find a
large-scale AM (the number of its row and column is large)
with sparse solutions (most of its element values are 0). Due
to the large search space and richness of semantic meaning
on different data entities, it is a complex task of aligning
ecology and biodiversity ontologies. In recent years, Evolutionary
Algorithm (EA) (Mirjalili, 2019) has become a popular technique
in the ontology aligning domain (Acampora et al., 2013; Xue
et al., 2018). Due to the population-based evolving paradigm,
the classic EA’s searching performance is low in terms of
memory consumption and run time. To improve the efficiency,
a new category of EA with the name Compact EA (CEA) is
presented, which uses compact encoding mechanism to describe
the whole population with probability estimation. CEA mimics
EA’s searching process by simplifying the evolving operators,
but it is easy to get stuck in the local optima especially when
two ontologies’ scale is large. To overcome this drawback, this
study further proposes an Adaptive CEA (ACEA), which uses the
semantic reasoning to filter the negative correspondences, and
adaptively alters the algorithm’s searching direction to explore
the unknown region. In the following, we list the contributions
of this study:

TABLE 1 | The examples of heterogeneous ecology and biodiversity ontologies.

ENVO ontologya SWEET ontologyb

Divergent tectonic movement Plate divergence

Tectonic movement Continental drift

FLOTO ontologyc PTO ontologyd

Inflorescence absent Inflorescenceless

Leaf alternate placement Phyllotaxy

ahttp://agroportal.lirmm.fr/ontologies/ENVO.
bhttps://bioportal.bioontology.org/ontologies/SWEET.
chttp://agroportal.lirmm.fr/ontologies/FLOPO.
dhttp://agroportal.lirmm.fr/ontologies/TO.

• The optimization model of the problem of EBOA is presented;
• A hybrid entity similarity measure is proposed to distinguish

the heterogeneous ecology and biodiversity data entities;
• An ACEA-based aligning technique is proposed, which uses

semantic reasoning to reduce searching space, and adaptively
guides the searching direction to efficiently align the ecology
and biodiversity ontologies.

The introduction process of this study is as follows: before
defining the problem of EBOA and entity similarity measure
(Section 3), the EA-based aligning techniques are overviewed
(Section 2); after that, the problem-specific ACEA is presented
(Section 4), followed by the experimental results (Section 5); and
finally, we draw the conclusion on this article’s study (Section 6).

2. EVOLUTIONARY ONTOLOGY ALIGNING
TECHNIQUE

With the rapid development of ontology engineering, the scale
of an ontology has grown from hundreds of entities to tens of
thousands of entities, and the semantic representation of the
entities also become more and more complex, which makes the
determination of a high-quality ontology alignment become an
open challenge (Shvaiko and Euzenat, 2011). Essentially, the
ontology aligning problem can be regarded as an optimizing issue
that aims at maximizing the quality of final alignment, and EA-
based aligning techniques have become a popular methodology
to address this problem.

The first EA-based ontology aligning technique is proposed
by Martinez-Gil et al. (2008) which tries to find an optimal way
of combining different similarity measures for determining the
final alignment. Later on, researchers have done a lot to improve
this category of EA-based aligning techniques. Based on this
study, Ginsca and Iftene (2010) further optimize the threshold for
filtering final alignment. Acampora et al. (2012) propose a Hybrid
EA (HEA) to improve the efficiency of classic EA’s performance.
Alves et al. (2012) further use the instance-level information in an
ontology to construct the similarity measure and then use HEA
to combine it with others. Currently, it is necessary to enhance
the performance of population-based EA in terms of running
time and memory so as to address the large-scale aligning task,
such as addressing the problem of EBOA where the ontology
contains tens of thousands of entities. To this end, an efficiency
improvement strategy should be introduced to improve classic
EA’s performance. The most popular way is the utilization of a
compact encoding based evolving paradigm, which describes the
population with a probability distribution, and on this basis, it
approximates the classic EA’s evolving process. The first CEA-
based aligning technique is proposed in Xue et al. (2015),
which executes the evolving process by one Probability Vector
(PV). According to the experimental results, CEA is able to
significantly reduce EA’s running time andmemory consumption
without sacrificing the alignment’s quality. Later on, a Hybrid
CEA (HCEA) (Xue and Wang, 2015a) and a CEA with a Re-
sample Inheritance Mechanism (RIM) (Xue and Liu, 2022) are
respectively proposed to further enhance CEA’s performance.
To address the large-scale aligning task, a divide-and-conquer
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FIGURE 1 | A segment of plant trait ontology.

method is also presented, which is of help to reduce HCEA’s
searching space (Xue and Wang, 2015b; Xue and Zhang, 2021).

Existing EA-based aligning approaches need to maintain
each similarity measure’s corresponding AM, and on this basis,
the optimization on the alignment can be executed, which
greatly raises the computational complexity. In this study,
we try to directly find a set of correspondences with the
given similarity measure, which only needs to save several
entity pairs’ similarity value instead of maintaining all the
similarity measures’ corresponding entity pairs’ similarity values.
In addition, classic CEA only uses one PV to execute the
optimizing process, which makes it easy to get stuck in the
local optima when facing a complex optimization problem. To
overcome this drawback, our approach proposes to adaptively
maintain several Probability Matrices (PMs) to guide the
algorithm’s searching direction. Finally, since the problem

of EBOA is a large-scale issue with sparse solutions, we
propose semantic reasoning based initialization to reduce the
algorithm’s searching space and evenly distribute the AM’s
element values.

3. ECOLOGY AND BIODIVERSITY
ONTOLOGY ALIGNMENT

3.1. The Problem of Ecology and
Biodiversity Ontology Alignment
An ontology consists of the concepts, the datatype properties,
and the object properties, which are referred to as entities (Xue
et al., 2021). Figure 1 shows a segment of PTO, where the oval
symbol describes the concept’s name, e.g., “plant trait,” the arrow
line is the object property or relationship between two concepts,

Frontiers in Plant Science | www.frontiersin.org 3 April 2022 | Volume 13 | Article 877120

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Xue and Tsai EBOA for SE via ACEA

FIGURE 2 | Logical contradiction between correspondences.

e.g., the concept “quantity trait” is subsumed by “plant trait,”
and each concept has several datatype properties to describe its
feature, e.g., the concept “plant trait” has the datatype property
“definition” whose value is “A plant trait (TO:0000387) that is
the commercial and /or economical value of the plant product, or
its overall improvement.”

An entity correspondence consists of 4 elements, i.e.,
e1, e2, rel, conf , where e1 and e2 are respectively two ontologies’
entities, rel is the type of their relationship (typically the
equivalence ≡), and conf denotes the confidence level
that the correspondence holds, which is often measured
by e1 and e2’s similarity value. For example, in Table 1,
(ENVO :Tectonicmovement, SWEET :Continentaldrift,≡, 0.9)
denote a correspondence between the concept “Tectonic
movement” from ENVO and the concept “Continental drift”
from SWEET, their relationship is the equivalence ≡, and
this correspondence’s confidence value is 0.9. The ontology
alignment is a correspondence set, whose quality is typically
evaluated with recall, precision, and f-measure (Rijsberge,
1975). Since reference alignment is often not available in the
practical aligning tasks, this study proposes three new metrics
to approximate them. According to Wang et al. (2006), recall(A)
can be estimated by the number of correspondences found in
A, i.e., recall′(A) = norm(|A|), precision(A) can be evaluated by
the average similarity values of all the correspondences in A,

i.e., recall′(A) =

∑

sim(corri)
|A| where corri is i-th correspondence

in A. To evaluate an alignment’s quality in terms of both
completeness and correctness, a comprehensive metric

f − measure′(A) =
2×recall′(A)×precision′(A)
recall′(A)+precision′(A) is presented, which

calculate an alignment’s harmony mean of its recall′(A) and
precision′(A). Given two ontologies O1 and O2, a 0–1 matrix M
and its corresponding alignment A, the problem of EBOA is
defined as follows:











max f (M)

s.t. M = [mi,j]|O1|×|O2|

mi,j ∈ {0, 1}, i = 1, 2, · · · , |O1|

(1)

where |O1| and O2 are respectively O1 and O2’s entity numbers,
and f (M) is equal to f − measure′(A), and the model of
EBOA aims at finding an optimal matrix by maximizing its
corresponding alignment’s f − measure′. In particular, the
decision variable is a 0–1 matrix whose row and column are
respectively two ontologies’ entities, and its element value 1
means two corresponding entities are mapped, and 0 means not.

3.2. Entity Similarity Measure
The entity similarity measure calculates two entities’ similarity
value conf , which is a real number in [0,1]. conf = 1 means
two entities are the same, and conf = 0 means they are
totally different. To improve the result’s confidence, usually,
it is necessary to comprehensively consider three categories
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FIGURE 3 | An example of encoding mechanism.

of similarity measures, i.e., string-based, linguistic-based, and
structure-based similarity measures (Xue and Huang, 2022). To
this end, this study proposes a hybrid entity similarity measure
to comprehensively calculate the similarity value: (1) given two
entities e1 and e2, before calculating their similarity value, the
numbers, punctuations, and stop-words in their names are first
removed; (2) the strings are split into the words, which are further
lemmatized and stemmed; (3) in each word set, the word will be
removed if it is the same literally or synonymous to the other one
in Wordnet (Miller, 1995), and we obtain two word sets s1 and
s2; finally, e1 and e2’s similarity value is the same as the similarity
value of two string s1 and s2:

sim(s1, s2)

=

∑|W1|
i=1 max

j=1···|W2|
(sim(w1,i,w2,j))+

∑|W2|
j=1 max

i=1···|W1|
(sim(w1,i,w2,j))

|W1| + |W2|

(2)

where |W1| and |W1| are respectively the numbers of words
in W1 and W2, and w1,i and w2,j are respectively the ith and
jth words in W1 and W2; and sim(w1,i,w2,j) is calculated with

Wordnet and N-gram measure (Kondrak, 2005):

sim(w1,i,w2,j) =











1, two words are synonyms

in Wordnet

N-gram(w1,i,w2,j), otherwise
(3)

4. ADAPTIVE COMPACT EVOLUTIONARY
ALGORITHM

Adaptive compact evolutionary algorithm adaptively maintains
PMs according to the current generation’s population
information, which is able to help the algorithm effectively
exploit the unexplored domains. In addition, ACEA uses the
anchor-based semantic reasoning strategy to initialize the
individual and refine the new individuals, which can effectively
reduce the algorithm’s searching domain. The framework of
ACEA is presented in Algorithm 1, which takes as input two
ontologies to be aligned, and the output the alignment with best
fitness value.

In the next, we successively present the Semantic Reasoning
Based Initialization and adaptive PM maintenance.
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FIGURE 4 | Sensitivity testing on Adaptive Compact EA’s (ACEA) parameter δ in terms of f-measure.

Algorithm 1 The Framework of Adaptive Evolutionary
Algorithm

PMnum =2; //Initialize the number of PM
for i = 0; i < PMnum; i++ do

AMi
elite

= initializeAM(PMi); //Initialize the elite AM
end for

gen = 0;
while gen < maxGen do

for i = 0; i < PMnum; i++ do

Update(PMi); //Execute the evolutionary operator and
update PM

end for

PMnum = adaptivePMMaintenance(); //Adaptivelymaintain
the PMs
gen = gen+ 1;

end while

4.1. Semantic Reasoning Based
Initialization
Typically, the correspondence with a high confidence value is
referred to as Positive Anchor (PA), and the one with a low
confidence value is called the Negative Anchor (NA) (Wang,
2010). The concepts in an ontology are modeled with the

hierarchy graph (Chu et al., 2020), where the node denotes the
concept and the edge represents the relationships between two
concepts. Figure 2 shows an example of correspondences’ logical
contradiction. As shown in the figure, the entities a1, a2, and a3
are three entities of ontology O1, and the entities b1, b2, and b3
belong to ontologyO2. InO1 (O2), a3 (b3) is subsumed by a1 (b1),
and a1 (b1) is subsumed by a2 (b2). Assuming the correspondence
(a1, b1) is a PA, the correspondences (a2, b3) and (a3, b2) logically
contradict with (a1, b1). It is obvious that the correspondences
that contradict with some PA will not hold, and the confidence
of correspondences that are in line with some NA should be
reduced. According to this reasoning rule, the searching space of
the algorithm can be reduced.

Each individual of ACEA is represented by a 0–1 matrix, i.e.,
the so-called AM. Figure 3 shows an example of an encoding
mechanism, wherein the top of the figure is a real alignment, and
its corresponding AM is given below it. ACEA uses Probability
Matrix (PM) to approximately describe the population, which
has the same size as AM. PM’s elements are the real number
in [0,1], which denotes the probability of being 1 with respect
to the corresponding gene bit. Therefore, we can use PM to
generate AM by comparing its elements with a random number
in [0,1].

Since the problem of EBOA is a large-scale issue with sparse
solutions, it is necessary to evenly distribute the gene value
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FIGURE 5 | Sensitivity testing on ACEA’s parameter δ in terms of running time (second).

TABLE 2 | Comparisons among Adaptive Compact EA (ACEA), Compact EA

(CEA), and Hybrid CEA (HCEA) in terms of mean f-measure and standard

deviation.

Testing case CEA HCEA ACEA

f-measure f-measure f-measure

(stdDev) (stdDev) (stdDev)

ENVO-SWEET 0.79 (0.03) 0.83 (0.01) 0.88 (0.01)

FLOPO-PTO 0.76 (0.01) 0.76 (0.02) 0.83 (0.01)

AGROVOC-NALT 0.78 (0.03) 0.80 (0.01) 0.89 (0.02)

ANAEETHES-GEMET 0.74 (0.02) 0.82 (0.01) 0.92 (0.01)

TABLE 3 | T-test on alignment’s quality.

Testing case (CEA, ACEA) (HCEA, ACEA)

t-value (p-value) t-value (p-value)

ENVO-SWEET –5.69 (0.014) –7.07 (0.009)

FLOPO-PTO –9.89 (0.005) –6.26 (0.012)

AGROVOC-NALT –6.10 (0.012) –8.04 (0.007)

ANAEETHES-GEMET –16.09 (0.001) –4.14 (0.026)

when initializing AM. Algorithm 2 shows the pseudo-code
of initialization.
We first initialize AM by setting all its elements as 0 and
determine the positive anchor set PAS with the similarity

Algorithm 2 Initialization

Initialize Aligning Matrix AM by setting all its elements as 0;
if Probability Matrix PM is not given then

initialize all the elements in PM as 0.5;
end if

initialize the Positive Anchor Set PAS;
for i = 0; i < PAS.length; i++ do

for j = 0; j < AM.row; j++ do

for k = 0; k < AM.column; k++ do

if (entityi, entityj) is contradicted with PASi then
PMi,j = 0;

else

if random(0, 1) < PMi,j then

AMi,j = 1;
end if

end if

end for

end for

end for

measure. If probability matrix PM is not given, all its
elements will be initialized as 0.5. Then, we compare all the
correspondences in AM with PAS. If the correspondence is
logically conflicted with PAS’s correspondence, its AM and
PM’s values will be set as 0, otherwise, its value is decided by
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comparing its corresponding PM’s value with a random number
in [0,1]. Through semantic reasoning, the searching space can be
significantly reduced, and initializing PM’s elements as 0.5 is also
of help to ensure the even distribution of the gene values.

4.2. Updating Probability Matrix
Adaptive compact evolutionary algorithm combines the
mechanisms of a classic EA with a competitive learning
mechanism, which is effective to lead the algorithm to determine
the optimal solution. To be specific, ACEA first uses its fitness
function to evaluate its solution’s fitness value by calculating
its corresponding alignment’s f − measure′, and through
competitions between the individuals, the algorithm updates PM
by moving it toward the elite individual. The process of updating
PM is presented in Algorithm 3.

Algorithm 3 Updating Probability Matrix

AMnew = PM.generateAM();
AM′ = PM.generateAM();
for i = 0; i < AMnew.row; i++ do

for j = 0; j < AMnew.column; j++ do

if random(0, 1) < 0.5 then
AMnew

i,j = AM′
i,j;

end if

end for

end for

compete(AMnew,AMelite);
if winner == AMnew then

AMelite = AMnew;
end if

for i = 0; i < PM.row; i++ do

for j = 0; j < PM.column; j++ do

if AMelite
i,j == 1 then

PMelite
i,j + = 0.01;

else

PMelite
i,j − = 0.01;

end if

end for

end for

for i = 0; i < PMelite.row; i++ do

for j = 0; j < PMelite.column; j++ do

if corr(ei, ej).conf < 0.2 then

PMelite
i,j = 0;

if corr(em, en) is corr(ei, ej)’s neighbor correspondence
then

if corr(em, en) does not logically contradict with
corr(ei, ej) then

PMelite
m,n− = 0.01;

end if

end if

end if

end for

end for

In Algorithm 3, we first generate two AMs and use them to
obtain a new AM AMnew with the uniform crossover operator.
Then, AMnew is compared with the elite AM AMelite, and the
winner will become the elite AM. After that, we use AMelite

to update its corresponding PM: if AMelite
i,j == 1, then

PMelite
i,j + = 0.01; otherwise, PMelite

i,j − = 0.01. We update

PM so that the newly generated AM will be closer to the elite
AM. Finally, we find the NA corr(ei, ej) from AMelite, and their
neighbor correspondence corr(em, en) where the shortest path
between em (or en) and ei (or ej) in the ontology hierarchy
graph is less than 2, we pick up those do logically contradict
with corr(ei, ej) and reduce their corresponding PM elements’
values by 0.01. In particular, the step length of updating PM
determines the algorithm’s learning rate. If the step length
is too large, the algorithm converges quickly, i.e., the value
of PMâĂŸs elements are close to 1 or 0; and if it is too
small, the algorithm consumes a long running time. Here,
we empirically set the step length as 0.01, which is able
to ensure the highest average quality of alignments on all
testing cases.

4.3. Adaptive Probability Matrix
Maintenance
At the end of the generation, adaptive PM
maintenance is executed to adjust the algorithm’s

Algorithm 4 Adaptive Probability Matrix Maintenance

if
∑

(|PMa
i,j − PMb

i,j|) < 0.5 then

if PMa
elite

is better than PMb
elite

then

remove PMb;
else

remove PMa;
end if

end if

if All elite AMs keep unchanged for δ generations then
for i = 0; i < PMnew.row; i++ do

for j = 0; j < PMnew.column; j++ do

if PMmax
i,j = PMmin

i,j = 1or0 then

PMnew
i,j = 1or0;

end if

if PMmax
i,j < 0.5 then

PMnew
i,j = PMmax

i,j + rand(0, 1)(1− PMmax
i,j );

end if

if PMmin
i,j > 0.5 then

PMnew
i,j = (1− rand(0, 1))PMmin

i,j ;
end if

if PMmax
i,j > 0.5 and PMmin

i,j < 0.5 then

PMnew
i,j = 0.5;

end if

end for

end for

AMnew
elite

= initializeAM(PMnew);
end if
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FIGURE 6 | Comparison among ACEA, CEA, and HCEA in terms of convergence graph on ENVO-SWEET.

searching direction. The pseudo-code of
adaptive population maintenance is shown in
Algorithm 4.

In Algorithm 4, we first calculate the distance between the
existing PMs. The smaller distance indicates a larger overlap
between their searching directions, and therefore, the one
with worse elite AM should be deleted. When all elite AMs
keep unchanged for δ generations, i.e., the algorithm gets
stuck in the local optima, we add a new PM PMnew with a
different searching direction. To determine PMnew’s elements,
we need to analyze the existing PMs’ elements distribution
through the maximum probability and minimum probability.
To be specific, for each of PMnew’s element PMnew

i,j , we find

its corresponding maximum probability PMmax
i,j and minimum

probability PMmin
i,j from the existing PMs. If they are all equal

to 1 or 0, we will set PMnew
i,j as 1 or 0. If PMmax

i,j < 0.5,

PMnew
i,j will be put in the left of all existing probabilities, i.e.,

PMnew
i,j = PMmax

i,j + rand(0, 1)(1 − PMmax
i,j ). If PMmin

i,j > 0.5,

PMnew
i,j will be put in the right of all existing probabilities,

i.e., PMnew
i,j = (1 − rand(0, 1))PMmin

i,j ). If PMmax
i,j > 0.5

and PMmin
i,j < 0.5, PMnew

i,j will be put in the middle, i.e.,

PMnew
i,j = 0.5. Finally, we initialize the elite AM AMnew

elite

for PMnew.

5. EXPERIMENT

5.1. Experimental Configuration
We use the track of Biodiversity and Ecology in Ontology
Alignment Evaluation Initiative (OAEI)1 to test ACEA’s
performance. Biodiversity and Ecology track consists of four
pairs of ontologies in the biodiversity and ecology domain: (1)
ENVO2-SWEET3, (2) PTO4-FLOPO5, (3) AGROVOC6-NALT7,
(4) GEMET8-ANAEETHES9. All of these ontologies are widely
used in various projects and researches on biodiversity and
ecology, which are developed in parallel and are significantly
overlapping.

In the experiment, we compare ACEA with CEA (Xue et al.,
2015), HCEA (Xue and Chen, 2019), and OAEI’s participants. In
particular, CEA’s configuration is as follows:

1http://oaei.ontologymatching.org
2http://agroportal.lirmm.fr/ontologies/ENVO
3https://bioportal.bioontology.org/ontologies/SWEET
4http://agroportal.lirmm.fr/ontologies/TO
5http://agroportal.lirmm.fr/ontologies/FLOPO
6http://agroportal.lirmm.fr/ontologies/AGROVOC
7http://agroportal.lirmm.fr/ontologies/NALT
8http://agroportal.lirmm.fr/ontologies/GEMET
9http://agroportal.lirmm.fr/ontologies/ANAEETHES
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FIGURE 7 | Comparison among ACEA, CEA, and HCEA in terms of convergence graph on FLOPO-PTO.

• The maximum generation= 3,000;
• The step length for updating PV= 0.01.

The configuration of HCEA’s is as following:

• The maximum generation= 3,000;
• The step length for updating PV= 0.01;
• The crossover probability= 0.6;
• The mutation probability= 0.03;
• The mutation shift= 0.05.

Additionally, ACEA’s configuration is given as follows:

• The maximum generation= 3,000;
• The threshold for activate PMMaintenance= 60;
• The step length for updating probability matrix= 0.01.

Ontology Alignment Evaluation Initiative’s participants’ results
are from OAEI’s official website10. We first show the sensitivity
testing on ACEA’s parameter, then ACEA is compared with CEA
and HCEA in terms of f-measure and convergence graph, and
finally, ACEA is compared with the state-of-the-art ontology
aligning techniques. ACEA, CEA, and HCEA’s results are the
mean value of 30 independent runs.

10http://oaei.ontologymatching.org/2021/biodiv/index.html

5.2. Experimental Results
First, the sensitivity testings are carried out on ACEA’s parameter
δ that determines the timing of executing the PMmaintenance. If
δ is too large, ACEAwould get stuck in the local optima for a long
time, which would hamper the algorithm from converging on the
global optima, and if δ is too small, there would be too many PVs,
which increases the computational complexity. We empirically
take five representative values, i.e., 20, 40, 60, 80, and 100, to
execute the sensitivity testing on δ, whose results are shown in
Figures 4, 5.

In Figures 4, 5, with the increasing values, the quality of
alignments begins to deteriorate when δ > 60, and the running
time start to decrease, and when δ = 60, it reaches the bottom.
Therefore, the parameter δ = 60 is able to better trade-off the
quality of alignments and the algorithm’s running time.

In Table 2, we compare ACEA with CEA and HCEA with
mean f-measure f -measure and the standard deviation stdDev. In
Table 2, the statistical t-test (Schmetterer and Lehmann, 1962) is
executed on the data presented in Table 3.

In Table 3, the T-test’s degree of freedom of is 2, and
the significance level is 0.05. On all testing cases, the p-
values are all smaller than 0.05, and thus, we can draw the
conclusion that ACEA statistically outperforms CEA and HCEA
based aligning techniques at the significance level of 5%. It
is obvious that through adaptively maintaining PMs, ACEA
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FIGURE 8 | Comparison among ACEA, CEA, and HCEA in terms of convergence graph on AGROVOC-NALT.

can effectively explore the whole feasible region and find high-
quality alignments.

As depicted in Figures 6–9, with the introduction of semantic
reasoning, the searching space of ACEA can be significantly
reduced, which makes it able to more efficiently converge to the
global optimal solution.

Finally, we compare ACEA with OAEI’s participants on
Biodiversity and Ecology track through f-measure. In Table 4,
we can see that ACEA’s mean f-measure outperforms all the
state-of-the-art ontology aligning systems on all testing cases.
ACEA makes use of the evolutionary paradigm to iteratively
refine the alignment’s quality, which is a more effective way of
improving the alignment’s quality than other machine learning
based aligning approaches (such as ALOD2Vec, POMap, and
DOME), logical reasoning based aligning methods (such as
Lily, LogMap Family, and XMap) and Word-based aligning
techniques (such as AML, Wiktionary, FCAMapKG, ATBox,
and KGMatcher).

5.3. Discussions on Experimental Results
Compact evolutionary algorithm combines the mechanisms
of a classic EA with competitive learning, which is effective
to lead the algorithm to determine the optimal solution. In
addition, the simplicity of CEA, which does not require all the

mechanisms of an EA, rather the few steps in the algorithm are
small and simple. HCEA further introduces local refinements
on the elite solution, which allows increasing the convergence
speed via the local search. Compared with CEA and HCEA,
ACEA works based on the probabilistic modeling of promising
solutions, which makes it easier to predict the movements of the
populations in the search space. When confronted with complex
optimization issues, ACEA is able to jump out of the local
optima through adaptively PM maintenance, which guides the
algorithm to explore the potential search space and learn a more
complex probabilistic model. Therefore, ACEA outperforms
CEA and HCEA in terms of both qualities of alignments and
computational efficiency.

In addition, ACEA comprehensively aggregates three broad
categories of entity similarity measure, i.e., syntactic-based
similarity measure, linguistic-based similarity measure, and
structure-based similarity measure, which lead to better
alignments than the ones that only take into consideration one
or two of them, such as AML, LogMap Family, POMap, XMap,
DOME, FCAMapKG. This is because when facing a different
heterogeneous situation, none of the similarity measures could
be effective in all matching tasks, and taking into consideration
more similarity measures could be of help to find the correct
correspondences.
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FIGURE 9 | Comparison among ACEA, CEA, and HCEA in terms of convergence graph on ANAEETHES-GEMET.

TABLE 4 | Comparisons among ACEA and state-of-the-art ontology aligning techniques in terms of f-measure.

Aligning system ENVO-SWEET FLOPO-PTO AGROVOC-NALT ANAEETHES-GEMET

AML (Lima et al., 2020) 0.84 0.86 0.87 0.85

Lily (Wu et al., 2019) 0.73 0.68 - -

LogMap (Jiménez-Ruiz, 2020) 0.78 0.80 - 0.89

LogMapBio (Jiménez-Ruiz, 2020) 0.77 0.79 - 0.89

LogMapLite (Jiménez-Ruiz, 2020) 0.77 0.75 - 0.49

POMap (Laadhar et al., 2018) 0.78 0.68 - -

XMap (Djeddi et al., 2015) 0.78 0.76 - -

DOME (Hertling and Paulheim, 2018) - 0.73 - -

FCAMapKG (Algergawy et al., 2019) 0.63 0.69 - -

POMap (Laadhar et al., 2018) 0.69 0.68 - -

ATBox (Hertling and Paulheim, 2020) 0.69 0.71 - -

Wiktionary (Portisch and Paulheim, 2020) - 0.002 - -

ALOD2Vec (Portisch et al., 2020) - 0.002 - 0.10

KGMatcher (Fallatah et al., 2021) 0.005 - - 0.063

ACEA 0.88 0.83 0.89 0.92

The symbol “-” means that the corresponding matching technique is not able to determine an alignment.

6. CONCLUSION

To manage knowledge on ecology and biodiversity and
preserve the ecosystem and biodiversity simultaneously, it
is necessary to link the data entities in different ecology

and biodiversity ontologies. To this end, this study proposes
an ACEA-based ecology and biodiversity ontology aligning
technique. In particular, the problem of EBOA is modeled
as a large-scale discrete optimization problem with a
sparse solution. Then, a hybrid entity similarity measure is
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presented to calculate the ecology and biodiversity entities’
similarity. Finally, a problem-specific ACEA is proposed,
which introduces semantic reasoning and adaptive PM
maintenance to efficiently solve the problem of EBOA. The
experimental results show that the evolutionary paradigm
is able to find a better alignment than other artificial
techniques and the proposed semantic reasoning and
adaptive PM maintenance are able to further improve the
algorithm’s efficiency.

Although ACEA based aligning technique shows its
superiority in the experiment, it is not able to detect the
m:n correspondence, i.e., multiple source entities are mapped
with multiple target entities, which is a common complex
correspondence pattern. In addition, ACEA is also not able to
find other semantic relationships among the entities, such as
the subsumption. Finally, the divide-and-conquer approach
has been proved to be a viable method that can facilitate the
effectiveness of aligning process (Hu et al., 2008), and we are
also interested in utilizing the ontology partitioning technique to
pre-process two ontologies.
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