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Gene-editing tools, such as Zinc-fingers, TALENs, and CRISPR-Cas, have fostered a new 
frontier in the genetic improvement of plants across the tree of life. In eukaryotes, genome 
editing occurs primarily through two DNA repair pathways: non-homologous end joining 
(NHEJ) and homologous recombination (HR). NHEJ is the primary mechanism in higher 
plants, but it is unpredictable and often results in undesired mutations, frameshift insertions, 
and deletions. Homology-directed repair (HDR), which proceeds through HR, is typically 
the preferred editing method by genetic engineers. HR-mediated gene editing can enable 
error-free editing by incorporating a sequence provided by a donor template. However, 
the low frequency of native HR in plants is a barrier to attaining efficient plant genome 
engineering. This review summarizes various strategies implemented to increase the 
frequency of HDR in plant cells. Such strategies include methods for targeting double-
strand DNA breaks, optimizing donor sequences, altering plant DNA repair machinery, 
and environmental factors shown to influence HR frequency in plants. Through the use 
and further refinement of these methods, HR-based gene editing may one day 
be commonplace in plants, as it is in other systems.

Keywords: homologous recombination, homology-directed repair, gene targeting, donor template, programmable 
nucleases

HOMOLOGOUS RECOMBINATION IN PLANTS: AN IDEAL 
GENOME ENGINEERING TOOL WITH LOW EFFICIENCY

Homologous recombination (HR) is a complex process whereby DNA segments that share 
significant sequence homology are exchanged. In some organisms, such as bacteria and yeast, 
DNA integration occurs primarily through HR. When double-stranded DNA breaks at a given 
locus, HR can accurately transfer a donor sequence that contains flanking regions of homology 
into the targeted locus (San Filippo et  al., 2008). Using HR-based gene editing, scientists have 
successfully performed targeted sequence insertions, replacements, and point mutations by 
exchanging the original sequence with designed donor sequences (Hoshijima et  al., 2016; 
Ghosh et  al., 2021). The highly specific genome edits enabled by HR have led to widespread 
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use of the technique in yeast, bacteria, and vertebrates (Bernardi 
and Wendland, 2020). HR-mediated genome editing in plants, 
generally referred to as gene targeting (GT), was first achieved 
by Paszkowski et al. (1988) in tobacco cells. This work focused 
on restoring a defective kanamycin-resistance gene using plasmids 
bearing the missing sequence through homologous recombination 
in protoplasts (Paszkowski et al., 1988). Although this approach 
was successful, the observed GT frequency in tobacco protoplasts 
was only 0.5–4.2 × 10−4, consistent with the natural rate of 
HR-based repair in higher plants, which ranges from 10−3 to 
10−6 (Paszkowski et  al., 1988; Mengiste and Paszkowski, 1999; 
Terada et  al., 2002). To this day, the low efficiency of HR in 
higher plants is a major barrier to the wider application of 
GT in crop genome engineering and plant genetics research 
(Puchta and Fauser, 2013; Barakate et  al., 2020; Miller et  al., 
2021). Here, we review work aimed at improving the efficiency 
of HR-based plant genome engineering and discuss possible 
strategies for maximizing GT efficiency in plants (Figure 1).

PROGRAMMABLE NUCLEASES AND 
NICKASES: MOLECULAR SCISSORS TO 
ENHANCE HR FREQUENCY IN PLANT 
CELLS

Puchta et  al. (1993) performed the first experiments to induce 
site-specific breaks in a plant genome using the homing 
endonuclease Saccharomyces cerevisiae endonuclease I-SceI (Puchta 
et al., 1993). By recognizing a non-palindromic 18mer recognition 
sequence present into the genome, I-SceI induced double-strand 
breaks (DSBs) at the sequence-specific locus (Perrin et al., 1993; 
Puchta et  al., 1993; Moure et  al., 2003). The DSB created by 
transiently expressed I-SceI was successfully repaired by HR 
using sequences bearing homology to the target locus provided 
by an exogenous T-DNA in Nicotiana plumbaginifolia protoplasts 
(Puchta et  al., 1993, 1996). Notably, introducing DSBs at the 
I-SceI target locus and supplying the cell with homologous repair 
fragments increased the frequency of HR by around 100-fold 
relative to the naturally occurring rate in tobacco cells, of roughly 
10−5 to 10−3 (Puchta et  al., 1996; Puchta, 2005). DSBs induced 
by I-SceI resulted in high frequency HDR not only in the dicot 
plant tobacco, but in the monocot species maize and barley 
also resulted in high frequency of HDR (D’Halluin et  al., 2008; 
Ayar et al., 2013; Watanabe et  al., 2016). A major drawback to 
this approach is that it requires the presence of an I-SceI 
recognition site at the targeted locus. Fortunately, multiple 
nucleases with programmable and sequence-specific recognition 
sites have been developed to induce DSBs at specific loci.

Programmable nucleases are usually created by combining 
DNA-binding domains that recognize specific genetic loci with 
a nuclease domain that nicks the DNA (Gupta and Musunuru, 
2014; Kim and Kim, 2014; Chandrasegaran and Carroll, 2016). 
This was first accomplished by a combination of a highly 
variable class of zinc-finger transcription factors and a cleavage 
domain of the restriction enzyme FokI (Kim et al., 1996; Smith 
et  al., 2000). Zinc-finger nucleases (ZFN) were used to create 

site-specific DSBs, which greatly promotes the occurrence of 
HR. For instance, the introduction of ZFN-mediated DSBs 
resulted in HR-mediated repair of approximately 20% of 
GUS:NPTII reporter genes in tobacco protoplasts (Wright et al., 
2005), while the remainder was modified by a combination 
of HR and NHEJ. In later work, the Voytas group successfully 
used ZFN-mediated gene targeting to engineer the endogenous 
tobacco herbicide-resistance genes (ALS SuRA and SuRB), where 
the HR frequency ranged from 0.2 to 4% for these endogenous 
genes (Townsend et  al., 2009). This approach has not only 
been successful in dicots, but also in monocot crops. In maize, 
ZFN-mediated GT was used to restore IPK function, resulting 
in the transgenics with an herbicide-resistant phenotype and 
altered inositol phosphate content in seeds (Shukla et al., 2009). 
Like ZFNs, transcription activator-like effector nucleases 
(TALENs), coupled with HR, have been used in plant genome 
engineering (Baltes et  al., 2014; Čermák et  al., 2015). TALENs 
are composed of a TAL effector DNA-binding domain and a 
FokI nuclease domain which act as dimers for recognizing 
and cutting the target sites (Miller et al., 2011). GT experiments 
using TALENs in tobacco protoplasts demonstrated that it is 
possible to introduce a 6 bp modification to the ALS gene 
with GT frequencies of up to 4% (Zhang et  al., 2013), which 
is comparable to ZFN-mediated GT frequency (Zhang et al., 
2010). With enhancing GT frequency, these programmable 
nucleases were also used for precise stacking of multiple crop 
traits in a single locus through HR, thus generating transgenic 
plants with multiple linked advantageous traits (Ainley et  al., 
2013; Kumar et  al., 2015; Demorest et  al., 2016).

The clustered regularly interspaced short palindromic repeat 
(CRISPR)-Cas9 system has proven to be  another useful tool 
for introducing DSBs into plant genomes (Wiedenheft et  al., 
2012; Shan et  al., 2013; Zhu et  al., 2020). HR-mediated GT 
experiments utilizing CRISPR-Cas9 have been performed in 
numerous plant species, such as Arabidopsis (Li et  al., 2013; 
Hahn et  al., 2018), tobacco (Li et  al., 2013), maize (Shi et  al., 
2017; Agarwal et  al., 2018), rice (Li et  al., 2016; Romero and 
Gatica-Arias, 2019; Van Vu et al., 2019), and tomato (Dahan-
Meir et  al., 2018; Van Vu et  al., 2020). Unlike ZFNs and 
TALENs, which use FokI to create DSBs at the target sequence, 
the CRISPR-Cas9 approach takes advantage of a guide RNA 
to direct the Cas9 nuclease to the target site (Wiedenheft et al., 
2012). The use of Streptococcus pyogenes Cas9 (SpCas9) by Li 
et  al. (2013) for HR-mediated GT resulted in successful GT 
in 9% of tobacco protoplasts; a result comparable to the use 
of ZFN- and TALEN-mediated GT. Despite this success, GT 
experiments using CRISPR-Cas9 have not demonstrated high 
efficiency in all tested species. For example, this approach did 
not enable HR-mediated GT in Arabidopsis protoplasts (Li 
et  al., 2013). Although HDR was achieved using transgenic 
Arabidopsis lines with high levels of Cas9 expression in the 
germline (Miki et  al., 2018), attempts at improving the low 
efficiency of HR-mediated GT in Arabidopsis have largely been 
unsuccessful (Shan et  al., 2018). In Arabidopsis, the nickase 
Cas9 was found to induce HR at a similar frequency as the 
nuclease Cas9 or I–SceI (Fauser et  al., 2014). In another 
experiment, Cas9 nickase was used in place of the Cas9 nuclease, 
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and regenerated Arabidopsis harboring HR-mediated repair of 
the glabrous1 gene was detected at a frequency of only 0.12% 
(Hahn et  al., 2018). These Arabidopsis experiments that used 
different variants of Cas9 raised the question of whether different 
nucleases or nickases may alter the efficiency of HR via their 
specific strand-breaking mechanism, and whether specific features 
of these enzymes may enhance HR-mediated GT in Arabidopsis.

Another widely used Cas protein, Cas12a (Bernabé-Orts 
et  al., 2019), was tested for its ability to enhance HR-mediated 
GT efficiency in Arabidopsis, tobacco, and tomato. The use 
of Lachnospiraceae bacterium Cas12a (LbCas12a) resulted in 
a greater HR-mediated GT frequency than that observed with 
Cas9  in Arabidopsis or tomato (Wolter and Puchta, 2019; Van 
Vu et  al., 2020). Overall, the frequency of GT observed using 
LbCas12a is around 50% higher than that achieved using 
Cas9  in Arabidopsis, and 3-fold higher than that achieved 
with Cas9  in tomatoes (Van Vu et  al., 2020). GT based on 
Cas12a may be  more efficient than Cas9 due to two unique 
ways Cas12a processes DNA. One difference between the two 
enzymes is that when Cas12a cuts DNA, it produces staggered 
5′ overhangs, while Cas9 produces blunt ends (Zetsche et  al., 
2015; Bothmer et  al., 2017; Swarts and Jinek, 2018; Huang 
and Puchta, 2019). Cohesive ends generated by these staggered 

cuts may facilitate the invasion of the donor template into 
the targeted DNA, followed by HR-based double-strand DNA 
repair (Puchta, 1998; Zetsche et  al., 2015; Huang and Puchta, 
2019). Another unique feature of Cas12a is that the DSBs it 
creates are located outside of the targeted genomic region 
recognized by the guide RNA (Zetsche et  al., 2015), which 
preserves the sequence of the target locus until HR-mediated 
GT has occurred. If Cas12a is proven to enable greater GT 
efficiency in additional plant species, it is likely an ideal 
programmable tool for GT in plants.

Fusion of Cas proteins with HR-mediated repair pathway 
proteins has been shown to enhance HR efficiency in mammalian 
species. Cas9 proteins were fused with either yeast RAD52, 
which promotes strand invasion (Shao et  al., 2017), or human 
CtIP, which is involved in DNA resection at the early steps 
of homologous recombination (Charpentier et al., 2018). These 
protein fusions resulted in a more than 2-fold increase in HR 
efficiency in mammalian cells compared to the native Cas9 
(Shao et al., 2017; Charpentier et al., 2018). Given that RAD52 
and CtIP functions are conserved in HR-mediated repair 
pathways across mammals and plants (Manova and Gruszka, 
2015), it is worth testing whether Cas9 fusions with HDR 
pathway proteins also improve HR efficiency in plants.
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FIGURE 1 | Approaches for enhancing homologous recombination (HR) and gene targeting (GT) frequency in plants. (A) Sequence-specific nucleases can induce 
double-strand breaks (DSBs) at target loci. These nucleases include I-SceI, TALENs (TALE repetitive domain with FokI), ZFNs (Zinc-finger binding domain with FokI), 
Cas9, Cas12a, and Cas9 fusion proteins (Cas9-CtIP, Cas9-RAD52, and Cas9-Vir2). (B) Methods that can increase the dosage of donor templates in plants, 
encompassing biolistic, carbon nanotubes (CNTs), and geminivirus-based replicons (GVRs). (C) Modifications of donor template structure that result in higher HR 
efficiency. Altering the donor template symmetricity, labeling the 5′ or 3′ end of the donor template using phosphorothioate linkages or biotin, and attaching the 
donor template with histones as “mini-chromatin” can improve GT efficiency in plant cells. (D) Improved GT efficiency by genetic manipulation of the NHEJ and HR 
pathways. Knockout mutations in NHEJ pathway genes Ku70, Ku80, and Lig4, and the overexpression of HDR pathway genes RAD51, RAD52, and RAD54 can 
enhance HR efficiency in plants. (E) Strategies for bringing donor templates to target loci. These strategies include in planta gene targeting, delivery of the donor 
templates to the DSB during cell cycle phases when HDR occurs, conjugating the gRNA with the donor template, and attaching the donor template with the 
nuclease. (F) Environmental factors and hormones that alter HR efficiency. *Designates phosphorothioate modification at the end in donor template.
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DONOR TEMPLATE STRUCTURE: WHAT 
DONOR TEMPLATE IS IDEAL FOR 
ENHANCING HR FREQUENCY IN PLANT 
CELLS?

One strategy for optimizing HR frequency is to determine the 
optimal type or structure of the donor template. The first 
exogenous donor template used for HR-mediated GT was 
double-stranded DNA (dsDNA), delivered as a plasmid in 
tobacco protoplasts. Using the same tobacco protoplast system, 
HR-mediated GT was achieved using a T-DNA that carried 
the donor dsDNA template. The HR frequency observed between 
the T-DNA and the target locus was comparable to that between 
plasmids and the target locus (Offringa et al., 1990). In subsequent 
experiments, DNA oligos and DNA–RNA hybrid oligos 
containing regions homologous to the target sequence were 
used as donor templates for HR in various plant species, 
including maize, tobacco, rice, and wheat (Beetham et al., 1999; 
Zhu et  al., 1999, 2000; Okuzaki and Toriyama, 2004; Dong 
et  al., 2006). The use of chimeric oligonucleotides increased 
the efficiency of GT to ~10−4 in these species, which is higher 
than the HR frequency obtained using a single donor dsDNA 
template (Beetham et al., 1999; Zhu et al., 1999, 2000; Okuzaki 
and Toriyama, 2004; Dong et  al., 2006). Additionally, single-
stranded DNA (ssDNA) has been used as a donor template 
in plants (Bilang et  al., 1992; Svitashev et  al., 2015), but with 
no obvious improvement in HR-mediated GT efficiency compared 
to dsDNA. This observation in plants is surprising, considering 
that ssDNA was superior to dsDNA as a template for HDR 
in zebrafish (Bai et  al., 2020). ssRNA has also been used as 
a donor template for GT in rice. However, the observed HR 
frequency was significantly lower than that observed when 
ssDNA was used as the donor template (Li et  al., 2019).

Recently, efforts to further modulate donor template structure 
have been made to enhance HR frequency in mammalian 
species. Several strategies could significantly enhance 
HR-mediated GT, including modifying the lengths and ratios 
of the homologous and non-homologous parts of the donor 
templates (Baker et  al., 2017; Zhang et  al., 2017), altering the 
donor template sequence symmetricity (Richardson et al., 2016; 
Moreno-Mateos et al., 2017), labeling the 5′ or 3′ end of donor 
templates using phosphorothioate linkages (Renaud et al., 2016) 
or biotin (Gutierrez-Triana et  al., 2018), and attaching the 
donor template with histones as “mini-chromatin” (Cruz-Becerra 
and Kadonaga, 2020). Some of the above strategies have been 
used in plant genome engineering, although the mechanisms 
through which these strategies improve HR frequency are poorly 
understood. For example, in rice, chemical modification of 
the donor template using phosphorothioate linkages at the 5′ 
and 3′ ends improved the HR-mediated GT frequency compared 
to donor templates lacking such modifications (Ali et al., 2020). 
This improvement may be due to the end modifications protecting 
the donor templates from degradation (Ali et  al., 2020), which 
are also observed in NHEJ-mediated repair in rice (Li et  al., 
2019). Lu et  al., also observed higher HDR efficiencies when 
tandemly repeated sequences are present near DSBs and then 

developed a tandem repeat-HDR strategy (TR-HDR) to achieve 
targeted GT. This TR-HDR was successfully used to introduce 
in-locus tags, with editing efficiencies ranged from 3.4 to 11.4% 
in rice (Lu et  al., 2020).

IMPROVING HR FREQUENCY BY 
INCREASING DONOR TEMPLATE 
DOSAGE

Protoplasts are a useful tool for implementing and monitoring 
HR-based genome editing (Beard et  al., 2021; Wright et  al., 
2005; Townsend et  al., 2009; Puchta and Fauser, 2013; Zhu 
et al., 2020; Hsu et al., 2021). Working with protoplasts enables 
the convenient and efficient delivery of large quantities of donor 
template as well as DNA that encodes for sequence-specific 
nucleases (Sant’Ana et  al., 2020; Nicolia et  al., 2021; Lin et  al., 
2022). It has been hypothesized that efficient delivery of large 
amounts of donor template results in increased HR-mediated 
GT efficiency (Baltes et  al., 2014). To address this question, 
Baltes et al. (2014) developed geminivirus-based replicons (GVR) 
to deliver and produce high levels of donor templates to plant 
cells (Baltes et  al., 2014). The GVRs used sequences derived 
from the Bean Yellow Dwarf Virus (BeYDV), including the 
short intergenic region (SIR), two copies of the long intergenic 
region (LIR) flanking the replicon cargo, and the Rep/RepA 
replicase expression cassette for replicon formation and 
amplification. The GVR, which contained a nuclease expression 
cassette and donor template, was delivered as a T-DNA to 
tobacco epidermal cells using agrobacterium-mediated 
transformation. Following transformation, rolling circle 
replication of the replicon initiates at the LIR sites, resulting 
in the assembly of the circularized replicon (Baltes et al., 2014). 
The circularized replicon can then undergo further rounds of 
replication, thereby generating large amounts of the donor 
templates (Baltes et  al., 2014). In a transgenic N. tabacum 
reporter line, the GVR approach enhanced GT efficiency by 
one to two orders of magnitude relative to traditional T-DNA 
delivery of the repair template (Baltes et  al., 2014). Further 
studies using this approach also demonstrated that including 
the repair template within the replicon enhanced GT efficiency, 
whereas including the nuclease within the replicon had a 
negligible effect on GT efficiency (Baltes et  al., 2014; Wang 
et  al., 2017).

Geminivirus replicon (GVR)-based GT has been employed 
in various plant species, such as tomato, potato, tobacco, and 
rice (Baltes et  al., 2014; Čermák et  al., 2015; Butler et  al., 
2016; Gil-Humanes et  al., 2017; Wang et  al., 2017). Notably, 
a BeYDV-based GVR system was employed to enhance donor 
template delivery in tomato. This approach proved to be highly 
efficient, resulting in the precise repair of crtiso mutants at a 
frequency of 25% (Dahan-Meir et  al., 2018). A Wheat Dwarf 
Virus (WDV)-based GVR system was employed for GT in 
rice, where the ACT1 and GST loci were successfully modified 
in up  19.4% of instances (Wang et  al., 2017). Despite the 
successful use of GVRs for improving GT in these species, 
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GVR-based approaches have failed in Arabidopsis (de Pater 
et  al., 2018; Hahn et  al., 2018; Shan et  al., 2018). Hahn et  al. 
observed that only 3  in thousands of regenerated Arabidopsis 
plants underwent successful HR-mediated GT, whereas no plants 
were successfully regenerated following GVR-based editing 
(Hahn et  al., 2018). Another report failed to recover heritable 
GT events in Arabidopsis using a BeYDV GVR, despite a 
high HR frequency observed among transformed plants (Shan 
et  al., 2018). This problem is not limited to Arabidopsis. The 
regeneration of plants edited using GVR-based methods has 
been an issue in multiple species (Gil-Humanes et  al., 2017; 
Hummel et al., 2018). For example, despite a successful insertion 
of fluorescent marker genes into wheat cells and scutella using 
a WDV-based replicon approach, the regeneration of edited 
plants is not reported (Gil-Humanes et  al., 2017). Based on 
these observations in wheat and Arabidopsis, it was hypothesized 
that the geminivirus-based replicons and replicase machinery 
might negatively impact plant regeneration and growth 
(Gil-Humanes et  al., 2017). This hypothesis is supported by 
experiments in cassava employing GVRs (Hummel et al., 2018). 
Many of the regenerated cassava plants edited using BeYDV 
replicons displayed stunted growth and leaf chlorosis, which 
are common disease symptoms associated with viral infection 
(Lei et al., 2017; Hummel et al., 2018). Given these limitations, 
alternative methods or modifications to existing GVR-based 
replicon systems may be  necessary to employ replicon-based 
genome editing approaches in plant species. Additionally, 
agrobacterium-based delivery of morphogenic or developmental 
regulators (WUS, MP, and BBM) together with the gene-editing 
machineries also improved the efficiency of HR-mediated GT 
(Jones et  al., 2019; Maher et  al., 2020; Peterson et  al., 2021), 
by increasing the number of transgenics recovered and screening 
accuracy. However, the effects of these regulators on HR 
frequency have not been investigated. Another approach to 
delivering large amounts of donor template is biolistic delivery 
(Ozyigit and Kurtoglu, 2020), which utilizes microparticles 
coated with DNA. Once these particles are introduced into 
plant cells, the DNA dissociates from the particles and can 
be  transiently expressed or integrated into the host genome. 
Relative to Agrobacterium-mediated delivery of a donor template, 
biolistic approaches allow for greater control over the amount 
of donor template delivered by coating defined quantities of 
the template into particles, which could positively impact GT 
frequency. In maize, successful GT events were observed in 
4.1% of cases when a biolistic-based method was used. In 
contrast, no successful GT was observed when the donor 
template was instead delivered by Agrobacterium-mediated 
transformation, despite the same nucleases and donor template 
being used (Svitashev et  al., 2015). Additionally, biolistic-based 
approaches enable genome editing without integration of the 
editing machinery into the genome by directly delivering 
DNA-RNA hybrids, RNA, DNA-protein complexes, RNA-protein 
complexes, or chemically modified nucleotides to plant cells 
(Zhang et al., 2016; Ozyigit and Kurtoglu, 2020). Given that 
modifications to donor template structure or composition can 
improve HR-mediated GT frequency, biolistic approaches for 
delivering donor templates provide an advantage over 

Agrobacterium-based approaches for HR-mediated GT. Despite 
these advantages, work in rice and maize has demonstrated 
that biolistic methods often induce unintended sequence 
disruptions to the host genome, such as additional DNA breaks 
and shearing (Liu et  al., 2019). These off-target effects are a 
significant drawback to using biolistic-based methods, especially 
when a major motivation for using HR-mediated GT for genome 
engineering is its ability to modify the target precisely and 
accurately. Therefore, another delivery method capable of shuttling 
large amounts of donor template that does not negatively impact 
genomic integrity or the ability to regenerate transgenic plants 
is highly desirable for improved GT in plants.

Carbon-based nanoparticles have the potential to be  used 
for genome editing by enabling the delivery of DNA that can 
be  transiently expressed or used as repair templates for HDR 
(Demirer et al., 2019a,b; Ahmar et al., 2021). Carbon nanotubes 
(CNTs) have been utilized to successfully deliver DNA for 
expression in plant cells. CNT-based approaches could enable 
species- and tissue-independent passive delivery of DNA, RNA, 
and proteins. DNA delivered using CNTs could be  expressed 
at high levels, and no genomic damage has been reported 
(Cunningham et al., 2018; Demirer et al., 2019a,b; Ahmar et al., 
2021). Like biolistic-based approaches, CNT-mediated delivery 
of DNA to plant cells should enable some degree of control 
over the amount of donor template delivered to plant cells. 
CNT-based delivery of nuclease-encoding plasmids may also 
enable highly efficient genetic editing without transgene integration. 
Transient expression of gene-editing reagents has been shown 
to result in lower off-target editing and toxicity relative to 
methods that rely on genome integration and stable expression. 
CNT-based repair template delivery may prove superior to 
biolistic-based delivery approaches by avoiding the genomic 
damage induced by biolistic delivery (Ahmar et al., 2021). Given 
these advantages, CNT-based approaches may prove useful for 
HR-mediated GT for the delivery of genome editing machinery 
as well as donor templates. Additionally, non-Agrobacterium 
species have been used to enhance HDR in plants (Kumar 
et  al., 2022). O. haywardense was used to deliver CRISPR-Cas9 
components and donor template into soybean. T0 plants were 
regenerated 6-8 weeks after transformation, with observed GT 
efficiency higher than that resulting from particle bombardment-
mediated delivery (Kumar et  al., 2022).

FACE-TO-FACE: BRINGING THE DONOR 
TEMPLATE AND TARGET LOCUS 
TOGETHER IMPROVES HR FREQUENCY

Given that high copies of donor templates can positively impact 
HR frequency, approaches that position the donor templates 
near the target locus may have a similar effect. In plants, one 
such approach, in planta gene targeting (in planta GT), has 
been successfully used to enhance HR-mediated GT (Fauser 
et  al., 2012). The principle behind in planta GT is to increase 
the spatial and temporal availability of donor template sequences 
to the DSB position, thereby enhancing the frequency of 
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HR-mediated GT. The in planta GT method involves the 
integration of the donor template and nuclease-encoding 
sequences into the same chromosome bearing the target site. 
Subsequent expression of the nucleases resulted in the excision 
and release of the donor template and the induction of dsDNA 
breaks at the target locus (Fauser et  al., 2012; Wolter and 
Puchta, 2019). In planta GT enables the donor template to 
be  produced simultaneously and near the DSB generated by 
the nuclease. Using I-SceI-based in planta GT in Arabidopsis, 
the frequency of HR-mediated GT reached 10−2 (Fauser et  al., 
2012), denoting one GT event per 100 seeds could be recovered. 
The recent in planta GT experiment in Arabidopsis used 
LbCas12a as the nuclease, which further improved the frequency 
of HR-mediated GT (Wolter and Puchta, 2019). In planta gene 
targeting were also successfully applied in crop species, such 
as maize (Barone et al., 2020; Peterson et al., 2021), and barley 
(Lawrenson et  al., 2021).

Similar attempts to improve HR frequency by increasing 
the spatial and temporal availability of donor sequences have 
been made in yeast and animals. These attempts included the 
delivery of nuclease and donor sequences to the target site 
during S/G2 phase when HDR occurs (Lin et  al., 2014), the 
conjugation of single-stranded donor templates to the gRNA 
(Lee et  al., 2017), the use of retrons (Sharon et  al., 2018), the 
attachment of the donor template directly to the nuclease or 
by DNA aptamer (Ling et  al., 2020), attachment of nucleases 
to donor template-interacting proteins (Aird et  al., 2018; Savic 
et  al., 2018) or proteins that localize near the target site (Roy 
et  al., 2018). These attempts at co-localizing donor templates 
with target loci significantly increased HR-mediated GT frequency 
3- to 30-fold. Most of the above approaches may similarly 
improve HR frequency in plants but have yet to be  applied. 
To our knowledge, the only attempts at bringing the donor 
sequence and target loci together for improved gene targeting 
were performed in rice (Ali et  al., 2020). Ali et  al. (2020) 
fused Cas9 with a VirD2 relaxase to bring the donor template 
close to the targeted DSB site. The Cas9-VirD2 fusion protein 
enhanced the efficiency of HDR repair by more than 4-fold 
compared to Cas9 alone and enabled precise modification of 
ACETOLACTATE SYNTHASE (OsALS) allele, the OsCCD7 gene, 
and to make an in-frame epitope tag fusion at OsHDT for 
generating herbicide-resistant and trait-modified rice (Ali 
et  al., 2020).

THE DNA REPAIR SEESAW: BALANCING 
DNA REPAIR MACHINERIES TO 
ENHANCE HR FREQUENCY

When DSBs occur, plant cells employ HR to accurately repair 
the damaged locus or NHEJ to repair the template imprecisely 
(Johnson and Jasin, 2001; Manova and Gruszka, 2015). In higher 
plants, the naturally occurring rate of NHEJ is much higher 
than that of HR, resulting in an imbalance between precise repair 
(HR) and imprecise repair (NHEJ; Schmidt et  al., 2019). This 
competition between HR and NHEJ in repairing DSBs has been 

observed in many species, including yeast, animals, and plants 
(Shrivastav et  al., 2008; Kass and Jasin, 2010; Gratz et  al., 2014; 
Manova and Gruszka, 2015; Schmidt et  al., 2019). In animal 
species, knockout mutations in NHEJ pathway genes have been 
shown to repress NHEJ-mediated repair and enhance HR frequency 
(Pierce et  al., 2001). Given the advantages of HR-mediated GT 
over NHEJ-mediated repair for genome engineering, many studies 
have investigated the effects of suppressing the NHEJ pathway 
to enhance HR using chemical and genetic approaches (Beumer 
et al., 2008; Maruyama et al., 2015; Nakanishi et al., 2015; Robert 
et  al., 2015; Weber et  al., 2015; Devkota, 2018). These studies 
have primarily focused on NHEJ regulators, including the ku70/
ku80 heterodimer, DNA-protein kinase catalytic subunit (DNA-
PKcs), and DNA ligase IV (Davis and Chen, 2013). Since no 
DNA-PKcs kinase has been identified in plants (Manova and 
Gruszka, 2015), plant biologists have primarily studied the HR 
frequency in ku70/80 and DNA ligase IV mutants. Studies in 
Arabidopsis have demonstrated a 5- to 16-fold increase in 
HR-mediated GT in ku70 mutants and a 3- to 4-fold increase 
in GT in lig4 mutants (Qi et  al., 2013). In contrast, the 
intrachromosomal HR frequency in ku80 is close to that in 
wildtype plants (Gallego et al., 2003). A similar effect was observed 
in rice, where knocking-down NHEJ regulators, including OsKu70, 
OsKu80, and OsLig4, increased the frequency of HR (Nishizawa-
Yokoi et  al., 2012). Subsequent work showed that knockout 
mutations in OsLig4 could enhance HR-mediated GT in rice, 
enabling greater HR-mediated replacement of acetolactate synthase 
(ALS; Endo et  al., 2016). Consistent results were demonstrated 
in another experiment in which knocking-down ku70/80 or Lig4 
enhanced the efficiency of HR in rice (Nishizawa-Yokoi et  al., 
2012). Given that ku70/80 and Lig4 mutants display growth defects 
(Nishizawa-Yokoi et al., 2012; Qi et al., 2013), an inducible system 
in which the expression of ku70/80 or Lig4 could be  controlled 
following the delivery of genome editing machinery and donor 
template could improve HR-mediated GT frequency in plants.

Effort has also been made in analyzing the effects of modifying 
the homology-direct repair (HDR) pathway in plants to improve 
HR-mediated GT (Lieberman-Lazarovich and Levy, 2011; Pradillo 
et  al., 2014; Steinert et  al., 2016; Hernandez Sanchez-Rebato 
et al., 2021). In yeast, the core components of the HR machinery 
are RAD51, RAD52, and RAD54 (Li and Heyer, 2008). In 
Arabidopsis, five RAD51 homologs have been identified as: 
AtRAD51B, AtRAD51C, AtRAD51D, AtXRCC2, and AtXRCC3 
(Osakabe et  al., 2005). Plants with knockout mutations in 
AtRAD51B, AtRad51C, AtRAD51D, and AtXRCC2 were found 
to have reduced HR frequencies (Abe et  al., 2005; Serra et  al., 
2013). Two RAD52 homologs, AtRAD52-1 and AtRAD52-2, have 
been identified in Arabidopsis (Samach et al., 2011). Overexpression 
of nuclear-localized AtRAD52-1A enhanced the HR-mediated 
GT frequency in Arabidopsis only when the target gene was 
also targeted by RNAi (Samach et  al., 2018), suggesting that 
the siRNA pathway may affect HR machinery. This hypothesis 
is supported by the observation that all tested Arabidopsis siRNA 
biogenesis defective mutants (Dicer-like 2 (DCL2), DCL3, and 
DCL4, RNA-dependent RNA polymerase 6 (RDR6)) have reduced 
HR frequencies (Yao et  al., 2016). Arabidopsis RAD54 mutants 
display reduced efficiency of somatic HR (Osakabe et  al., 2006), 
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consistent with observations that overexpression of yeast RAD54 
significantly enhances HR-mediated GT in Arabidopsis seeds 
(Shaked et  al., 2005) and egg cells (Even-Faitelson et  al., 2011). 
However, RAD51 and RAD54 do not have the same HR-elevating 
effects in all plant species. In tomato, overexpression of either 
SlRAD51 or SlRAD54 did not enhance HR-mediated GT frequency 
(Van Vu et  al., 2020). The different results between these two 
plant species suggest that further study is needed to elucidate 
the roles of RAD51, RAD52, and RAD54  in HR-mediated GT.

Suppression of HDR repressors has also been explored as 
an approach to improving HR-mediated GT. Enhanced 
spontaneous somatic HR frequencies were observed in Arabidopsis 
cells with knockout mutations in the HDR suppressors RTEL1, 
RMI2, and FANCM1 (Recker et  al., 2014; Röhrig et  al., 2016). 
However, in rtel1-1 fancm-1 and rtel1-1 rmi2-2 Arabidopsis 
mutants, HR-mediated GT frequency was unaffected (Wolter 
and Puchta, 2019); although around 20-fold (rtel1-1 fancm-1) 
and around 80-fold (rtel1-1 rmi2-2) increases in HR frequency 
were observed in each of these double-mutants when measuring 
somatic HR events between the sister chromatid or homologous 
chromosomes (Recker et  al., 2014; Röhrig et  al., 2016). This 
discrepancy between HR and GT frequency was reasoned by 
Wolter and Puchta (2019) to be due to the fact that the absence 
of RTEL1, RMI2, and FANCM1 reduces the stability of 
chromosomal homologous sequences, negatively impacting DNA 
damage repair. Therefore, RTEL1, RMI2, and FANCM1 might 
not be good targets for modification for improving HR-mediated 
GT in plants. Modifications to other HR regulatory genes have 
been tested for their effects on HR frequency (Jia et  al., 2012; 
Kwon et  al., 2012; Qi et  al., 2013; Steinert et  al., 2016). Unlike 
RTEL1, RMI2, and FANCM1, other HR suppressors may serve 
as viable targets for increasing GT frequency. Improved HR 
frequencies were observed in rice overexpressing the DSB resection 
proteins OsRecQI4 and OsExo1 (Kwon et al., 2012). Additionally, 
in Arabidopsis, loss of the sister-chromatid-based HR-required 
protein SMC6B/MIM (Qi et  al., 2013) and the meiotic 
recombination complex RAD50 and MRE11 (Gherbi et al., 2001; 
Jia et  al., 2012) increased HR frequency. Therefore, these genes 
may be  valuable targets for improving HR-mediated GT.

Chromatin remodeling plays a critical role in DNA repair 
pathways, including HR (Price and D’Andrea, 2013; Donà and 
Mittelsten Scheid, 2015). Altered HR frequencies have been observed 
in Arabidopsis chromatin-remodeling mutants. Mutations in inositol 
auxotrophy 80 (INO), NUCLEOSOME ASSEMBLY PROTEIN1 
(NAP1), and the SWR1 Chromatin-Remodeling Complex subunits 
ACTIN-RELATED PROTEIN6 (ARP6) and SWR1 COMPLEX6 
(SWRC6) result in reduced HR frequencies (Fritsch et  al., 2004; 
Gao et  al., 2012; Rosa et  al., 2013). Additionally, a mutation in 
the nucleosome assembly gene chromatin assembly factor 1 (CAF-1) 
was found to result in increased HR frequency (Endo et  al., 
2006). Given these observations, genome engineers should consider 
targeting chromatin-remodeling genes to improve HR-mediated GT.

Another approach to increase HDR frequency in mammalian 
cells is to concurrently knockout DNA polymerase theta and 
one of several NHEJ pathway proteins (DNA ligase IV, Ku70, 
and Ku80), which results in a significantly increased rate of 
HDR (Mateos-Gomez et  al., 2015). DNA polymerase theta 

plays an important role in theta-mediated end joining (TMEJ), 
a DSB repair pathway involved in genome stability (Brambati 
et  al., 2020). Integration of T-DNA into plant genomes was 
shown to be  primarily DNA polymerase theta-dependent in 
Arabidopsis and rice (Van Kregten et  al., 2016; Nishizawa-
Yokoi et  al., 2021). Further study showed that the mutation 
of Poly θ in Arabidopsis stimulates a shift from NHEJ to 
HDR, leading to error-prone GT elucidated by low-frequency 
random integration of T-DNA (Van Tol et  al., 2022). Poly θ 
mutations in crops might provide a valuable genetic resource 
that may eliminate donor DNA integration into the genome 
and enhance the efficiency of HDR-mediated GT.

OTHER FACTORS THAT INFLUENCE 
PLANT HR FREQUENCY

The interplay of genetic and environmental factors influences 
many biological processes in plants (Huang, 2016), including 
those that regulate HR (Boyko et al., 2005; Yao and Kovalchuk, 
2011). Therefore, the effects of various environmental conditions 
should be considered for their role in influencing GT frequency 
in plants. Here, we focus on environmental factors that influence 
HR frequency but do not damage DNA integrity or introduce 
unexpected edits. These factors include temperature, light, abiotic 
stress, and stress-related hormone treatment.

The frequency of HR is significantly higher in Arabidopsis 
plants grown at either 4° or 32° C than at optimal temperatures 
(Boyko et  al., 2005). Modulating day/night cycle also affects 
HR frequency. Such alterations were shown to result in over 
15-fold increases in efficiency, with the lowest HR frequency 
observed in 24 h light/0 h dark treatment, and the greatest 
observed with an 8 h light/16 dark treatment (Boyko et  al., 
2005). These observations indicate that light and temperature 
altered HR efficiency in plants. Abiotic stresses such as salt, 
flooding, and cold stress can also increase HR frequency in 
Arabidopsis (Boyko et  al., 2006a; Yao and Kovalchuk, 2011). 
Additionally, the HR frequency in plants has been demonstrated 
to be  increased during pathogen attack (Lucht et  al., 2002).

Further studies identified a potential connection between the 
stress-induced hormone abscisic acid (ABA) and HR (Roy and 
Das, 2017). Exogenous treatment of ABA enhances HR frequency, 
and plants with knockout mutations in the HR-related genes 
AtRAD51, AtRAD52, AtRAD54, and AtBRCA1 display an ABA 
hypersensitive phenotype in seed germination (Roy and Das, 
2017). Furthermore, the ABA hypersensitive mutant, abo4-1, 
exhibits a 60-fold increase in HR frequency relative to wild type 
(Yin et  al., 2009). Although it is still largely unknown what 
molecular mechanisms link ABA, pathogen attack, abiotic stress, 
and other environmental conditions to HR frequency, genetic 
engineers may wish to take advantage of certain conditions to 
enhance HR-mediated GT efficiency. Based on the studies discussed 
here, growing plants in higher or lower temperatures, longer 
days, or treating them with ABA may result in greater GT efficiency.

Another interesting question is whether various plant cell 
types, tissues, or organs have unique HR frequencies. The cell 
types and tissues with the highest native HR frequencies would 
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be  optimal candidates for HR-mediated GT experiments. In the 
model dicot species Arabidopsis, the highest native HR frequencies 
were detected in leaves, especially on the lateral half of the leaves 
(Boyko et  al., 2006b). However, in rice, embryogenic cells, such 
as callus, showed the highest HR frequencies: up to 10-fold 
higher than that seen in root cells and around 100-fold higher 
than in leaf cells (Yang et  al., 2010). Notably, for the same cell 
type in rice, smaller sized cells demonstrated higher HR frequencies 
(Yang et  al., 2010). Another difference between Arabidopsis and 
rice with regard to HR is that HR frequency in rice roots is 
10 times higher than that in leaves, whereas the HR frequency 
in Arabidopsis roots is 2-fold lower than that in leaves, suggesting 
that tissue-specific HR frequency is unique in different plant 
species. These studies emphasize the importance of choosing the 
correct tissue type for GT experiments.

CONCLUSION

Here, we  focus on strategies that have been implemented to 
increase HR frequency and the efficiency of gene targeting in 
plants. By reviewing the advantages and disadvantages of these 
various approaches, tools, and methods, we provide a perspective 
on the potential and challenges for implementing HR in gene 
editing of plants. Adopting new strategies from non-plant systems, 
exploring novel technologies, or perhaps combining numerous 

strategies concurrently may further enhance our ability to precisely 
alter plant genomes for crop improvement and basic science research.
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