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As global population grows rapidly, global food supply is increasingly under strain. This

is exacerbated by climate change and declining soil quality due to years of excessive

fertilizer, pesticide and agrichemical usage. Sustainable agricultural practices need to

be put in place to minimize destruction to the environment while at the same time,

optimize crop growth and productivity. To do so, farmers will need to embrace precision

agriculture, using novel sensors and analytical tools to guide their farm management

decisions. In recent years, non-destructive or minimally invasive sensors for plant

metabolites have emerged as important analytical tools for monitoring of plant signaling

pathways and plant response to external conditions that are indicative of overall plant

health in real-time. This will allow precise application of fertilizers and synthetic plant

growth regulators to maximize growth, as well as timely intervention to minimize yield

loss from plant stress. In this mini-review, we highlight in vivo electrochemical sensors

and optical nanosensors capable of detecting important endogenous metabolites within

the plant, together with sensors that detect surface metabolites by probing the plant

surface electrophysiology changes and air-borne volatile metabolites. The advantages

and limitations of each kind of sensing tool are discussed with respect to their potential

for application in high-tech future farms.

Keywords: nanosensors, wearable sensors, volatiles, plant health, non-destructive

INTRODUCTION

Plant health monitoring is an attractive and sustainable strategy that could be used for optimization
of crop growth practices. It complements popular agricultural techniques used by farmers to
maximize yield including crop rotation, intercropping and genetic modification (Uzogara, 2000;
Wang et al., 2014; Yang et al., 2020). It also allows the precise calibration of optimal dosage
and application of agrichemicals such as pesticides, herbicides or plant growth regulators (Ang
et al., 2021; Roper et al., 2021). However, current chromatography-based analytical techniques are
limiting the potential of plant health monitoring in influencing farm management decisions on a
day-to-day basis (Pan et al., 2010; Balcke et al., 2012). Though highly sensitive and quantitative,
these techniques are destructive and highly labor-intensive, requiring laboratory-based extraction
and processing of multiple plant samples for every data point.
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The emergence of non-destructive sensors is critical in
supporting more efficient plant health monitoring. These
sensors transduce plant signals into digital signals to establish
direct communication between plants and growers (Qu et al.,
2021). By tapping into plants’ physiological events in real
time, non-destructive sensors enable prompt adjustment of
environmental conditions to augment crop productivity while
minimizing resource use (Xi et al., 2021). In this mini-review,
the focus is on sensors that detect endogenous metabolites,
phytohormones and signaling molecules within the plant itself,
and sensors that detect surface or air-borne volatile metabolites.
Dynamic changes in internal plant metabolites or signaling
molecules often influence various aspects of plant growth
and development, as well as plant acclimation responses to
external stresses. The in vivo sensors are based on either
electrochemical sensors or plant nanobionic sensors. Both
sensing platforms have shown enhancements in sensitivity and
selectivity driven by recent advances in nanotechnology which
conferred unique electrocatalytic and optical properties to the
sensors (Kwak et al., 2017; Li et al., 2021). Table 1 compares the
various in vivo electrochemical and plant nanobionic sensors,
plant metabolites it detects, nanomaterial-based sensor design,
detection method and plant species that the sensors were
demonstrated in. Besides internal signaling molecules and plant
phytohormones, plants also emit surface metabolites in the
form of electrical signals, and air-borne metabolites in the form
of volatile organic compounds (VOCs) serving as chemical
signals that mediate inter-plant communication, and trigger
defense responses of neighboring receiver plants (Erb, 2018; Hu
et al., 2021). This forms the basis of crop yield enhancement
through intercropping. Hence, non-destructive sensors that
capture and monitor the emission of VOCs in real-time would
also be indicative of plant health, enabling early diagnosis of
plant diseases.

ELECTROCHEMICAL SENSORS FOR IN

PLANTA MONITORING OF HORMONES
AND SIGNALING MOLECULES

Electrochemical sensing technology is a promising strategy
for detection of plant hormones and signaling molecules in
living plants. The key advantages of electrochemical sensing
technologies include good repeatability and accuracy, high
sensitivity, portability due to ease of miniaturization, low cost
and relatively rapid response times to analytes (Hayat and
Marty, 2014). Typically, an electrochemical sensor comprises a
sensing or working electrode, a counter electrode and a reference
electrode, separated by an electrolyte. In recent years, advances
in nanomaterials have resulted in significant enhancement in the
analytical performance of these electrochemical biosensors and
this has, in turn, opened up more possibilities for rapid and
in situ detection of analytes in biological samples (Beaver et al.,
2021). Carbon-based nanomaterials and metallic nanoparticles
are known to enhance biosensor performance and sensitivity due
to their unique electrocatalytic properties, facilitating increased
electron transfer of redox-active species (Shi et al., 2011, 2012).

One such sensing tool is a paper-based electroanalytical
device developed for detection of H2O2 and salicylic acid (SA)
in tomato leaves infected with Botrytis cinerea pathogen (Sun
et al., 2014, 2020). Out of all the reactive oxygen species (ROS)
molecules, H2O2 has the longest stability within plant cells
(Huang et al., 2019). Hence, H2O2 is the key ROS molecule
known to participate in cell signaling regulation and induction
of plant defense gene expression upon inoculation with bacteria.
On the other hand, SA is the main plant hormone involved in
plant defense and immunity (Fu and Dong, 2013; Ding and Ding,
2020; Vlot et al., 2021). For detection of H2O2 or SA on the paper-
based electroanalytical devices, circular tomato leaves samples
were punched out of the leaf at different times post infection
and transferred onto the surface of their respective working
electrodes for measurement (Figure 1A). While it provides rapid
detection of H2O2 and SA, this detection method is invasive and
destructive as punching out of leaf samples could cause wounding
and tissue senescence.

It remains challenging to achieve online monitoring of
electrochemical signals in situ without the need to extract or
cut up leaf samples. Some researchers have managed to insert
electrochemical sensors into fruits for measurement of plant
metabolites. For instance, an electrochemical tryptophan (Tryp)
sensor was fabricated onto a glass carbon electrode (GCE) for
detection in tomato fruit samples (Gao et al., 2021). Tryp is an
important precursor for auxin (IAA) biosynthesis and IAA is
a plant hormone that plays a crucial role in controlling plant
development (Teale et al., 2006). Due to the GCE size, the
Tryp electrochemical sensor causes plant tissue damage upon
electrode insertion in smaller fruits. Recently, a miniaturized
Tryp electrochemical sensor has been constructed using a
smaller graphite rod electrode (GRE) (Figure 1B) (Yang et al.,
2021) which causes less tissue damage during insertion and
has successfully detected Tryp levels in smaller fruits such as
cherry tomatoes. However, even with the miniaturized GRE,
minimizing plant tissue damage when inserting the sensor
electrode to other fragile plant parts, such as the leaves or stem,
remains complicated.

Microneedle arrays are an attractive option that has been
used for construction of minimally invasive electrodes that can
be inserted into plant samples. This strategy forms the basis
of in situ abscisic acid (ABA) (Figure 1C) and SA (Figure 1E)
electrochemical sensors (Liu et al., 2021; Wang et al., 2021). ABA
is a plant hormone crucial in plant development processes, such
as seed germination, stomato closure and plant adaptation to
stresses (Lee and Luan, 2012; Hsu et al., 2021). Both sensors
use chronocoulometry as electrochemical sensing strategy, which
measures the amperometric response currents of the analytes
and generates current-time curves. To minimize damage to
plant tissues, the ABA and SA sensors were assembled onto a
microneedle and inter-digitated microelectrode (IDME) arrays,
respectively to be inserted into plant samples such as cucumber
fruit (Figure 1D) and leaves (Figure 1F) (Liu et al., 2021; Wang
et al., 2021). Remarkably, the SA sensor could be attached to
cucumber leaves for 1 month, constantly monitoring changes
in SA levels without adversely affect plant growth, confirming
its reliability and stability. While attaching the IDME array
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sensor causedminimal tissue damage tomature cucumber leaves,
further work needs to be done to confirm if the same applies to
smaller plants or crops.

All in all, electrochemical sensors designed for in vivo
detection of plant hormones and metabolites are rapid and low-
cost. Coupled with novel nanomaterials, the sensors achieved
enhanced sensitivities which enable detection of plant hormones
and metabolites which are typically present in low quantities.
Despite this progress, most electrochemical sensors have been
designed to detect biomolecules only in fruit samples with limited
applicability to other plant organs. Future approaches include
the development of biocompatible nanoelectrodes that could be
inserted into the leaves, stem or roots of different plant species
with negligible tissue damage.

PLANT NANOBIONIC SENSORS FOR IN

VIVO MONITORING OF HORMONES AND
SIGNALING MOLECULES

Aside from possessing unique electrocatalytic properties, carbon-
based nanomaterials such as single-walled carbon nanotubes
(SWNTs) have photostable emission in the near-infrared (nIR)
region that does not overlap with chlorophyll autofluorescence
(Kwak et al., 2017). This facilitates the application of SWNTs
as in vivo optical sensors for plant signaling molecules and
hormones. The polymer or single-stranded DNA doubles up as
a SWNT dispersing agent in aqueous medium and as a synthetic,
non-biological antibody for selective recognition and binding to
specific plant signaling molecules and hormones. This technique
is known as corona phase molecular recognition (CoPhMoRe)
whereby different polymer structures or DNA sequences result
in the creation of distinct SWNT corona phases that triggers
optical modulations such as fluorescence intensity changes or
wavelength shifts upon analyte binding (Zhang et al., 2013).
Upon syringe infiltration to different plant species, including
model speciesArabidopsis thaliana and non-model plants such as
arugula and spinach, these nanosensors could non-destructively
monitor the spatiotemporal profile of endogenous signaling
molecules and hormones (Lew et al., 2020a). Such information
could be captured remotely with portable electronics, providing
users with real-time information about plant health. One such
nanosensor is designed for in planta detection of stress-induced
H2O2 signaling waves in different plant species, including
lettuce (Lactuca sativa), arugula (Eruca sativa), spinach (Spinacia
oleracea), strawberry blite (Blitum capitatum), sorrel (Rumex
acetosa) and Arabidopsis thaliana (Figure 1G) (Lew et al.,
2020b). The sensor utilizes a single-stranded (GT)15 wrapped
SWNT suspension that selectively and reversibly binds to H2O2.
Different types of stress inflicted onto the plants also resulted in
the formation of unique H2O2 signaling waveforms varying in
amplitude, velocity and full-width-half-maximum (Figure 1H).
The specific stress-induced waveforms aids in the elucidation of
complex ROS signaling pathways occurring in real-time upon
plant acclimation to external stresses.

Plant nanobionic sensors have also been developed for rapid
detection of synthetic auxin plant hormones, used extensively

in plant tissue cultures and as herbicides (Figure 1I) (Ang
et al., 2021). Synthetic auxins, 1-naphthalene acetic acid (NAA)
and 2,4-dichlorophenoxyacetic acid (2,4-D), are important
agricultural and horticultural tools as they mimic natural auxins
in influencing various aspects of plant growth and development
and are more chemically stable and potent compared to
natural auxins (Gianfagna, 1995). Separately, 2 different cationic
polymer wrapped SWNTs are reported to selectively detect
NAA and 2,4-D in different plant species including spinach,
Arabidopsis thaliana, Brassica rapa subsp. chinensis (pak choi),
and Oryza sativa (rice) grown in various media, including
soil, hydroponic, and plant tissue culture media. The 2,4-D
nanosensor also has potential application in rapid testing of 2,4-D
herbicide susceptibility as it revealed a discrepancy in uptake and
accumulation of supplemented 2,4-D in the leaves of susceptible
pak choi vs. resistant rice.

Besides plant hormones and signaling molecules, SWNT-
based optical nanosensors have been used in detection of
secondary metabolites such as polyphenols. Polyphenols are
commonly induced in plants as defense against pathogens
or herbivores (Singh et al., 2021). They are prevalent in all
plant tissues and organs and are specifically secreted into
root exudates to repel pathogenic micro-organisms (Baetz and
Martinoia, 2014). Nißler et al. (2022) discovered a selective
nanosensor for tannic acid, a key polyphenol using polyethylene
glycol phospholipid biopolymer as SWNT wrapping. The optical
nanosensor detected tannic acid level changes in Tococa leaf
methanol extracts challenged with herbivores and in Glycine
max (soybean) cell culture samples stimulated with a pathogen-
derived elicitor, a branched β-glucan cell wall component of the
Oomycete fungus Phytophthora sojae. It also enabled real-time
visualization of polyphenols secreted from the roots of soybean
seedlings over a 24 h time-period post elicitor treatment.

By embedding nanosensors into leaves, living plants have also
been engineered to detect contaminants that are transported
into the plant via the roots and stem. Recently, a plant
nanobionic sensor is developed for detection of arsenite, a
toxic heavy metal pollutant predominantly found in anaerobic
rice paddy soils taken up through silicon transporters in
the roots (Ma et al., 2008). Here, the SWNT is wrapped
with single-stranded (GT)5 which resulted in a strong
and selective turn-on response upon detection of arsenite
(Figure 1J) (Lew et al., 2021). The sensors were successfully
embedded in spinach and rice leaves that detected arsenite
that was introduced to the root medium. Further, they were
demonstrated in Pteris cretica ferns which had the natural
ability to hyperaccumulate and tolerate high levels of arsenite
(Meharg, 2003). By combining the optical properties of the
nanosensor and the intrinsic ability of these ferns to pre-
concentrate arsenite, the sensitivity of the nanosensor is
enhanced, enabling the detection of 0.6 and 0.2 ppb levels of
arsenite after 7 and 14 days, respectively. In another study,
peptide-functionalized SWNTs were designed to optically detect
picric acid, a common explosive analyte, in spinach plants
(Figure 1K) (Wong et al., 2017). In general, the real-time
information obtained by these plant nanobionic sensors could be
interfaced with portable and inexpensive electronics such as the
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TABLE 1 | Comparison of the various in vivo electrochemical and plant nanobionic sensors.

Electrochemical sensors

Plant analyte Working electrode Nanomaterials-based modification Detection method Plant species References

H2O2 Indium tin oxide Nano-gold Voltammetry Tomato leaves Sun et al., 2020

SA Carbon tape Multi-walled carbon nanotubes/Nafion Voltammetry Tomato leaves Sun et al., 2014

Tryp Glass carbon Polydopamine/reduced graphene

oxide/MnO2 nanocomposite

Voltammetry Tomato fruits Gao et al., 2021

Tryp Miniaturized graphite rod Multi-walled carbon

nanotubes/poly(sulfosalicylic acid)

Voltammetry Tomato and cherry tomato

fruits

Yang et al., 2021

ABA Ta wires Vertical graphene with core-shell

Au@SnO2 nanoparticles assembled

onto microneedle array

Chronocoulometry Cucumber fruits and juices,

grapes and radishes, blended

Arabidopsis leaf juices

Wang et al., 2021

SA Al microelectrodes Core-shell Au@Cu2O nanoparticles,

graphene and polydopamine densely

packed into IDME array

Chronocoulometry Cucumber leaves, juices and

stems

Liu et al., 2021

Plant nanobionic sensors

Plant analyte SWNT type SWNT modification Detection method Plant species References

H2O2 HiPco SWNT and

(6,5)-enriched SWNT

Single-stranded DNA oligomer: (GT)15 nIR fluorescence

quenching

Lettuce, Arugula, Spinach,

Strawberry blite, Sorrel,

Arabidopsis thaliana leaves

Lew et al., 2020b

NAA HiPco SWNT Cationic poly(N-vinyl imidazolium) nIR fluorescence

quenching

Spinach, Arabidopsis thaliana,

Pak choi, Rice leaves

Ang et al., 2021

2,4-D HiPco SWNT Cationic fluorene-co-phenyl polymer nIR fluorescence

turn-on

Spinach, Arabidopsis thaliana,

Pak choi, Rice leaves

Ang et al., 2021

Tannic acid Monochiral (6,5) SWNT Polyethylene glycol–phospholipids nIR fluorescence

red-shift and

quenching

Soybean Glycine suspension

cells, Soybean seedling root

exudates, Tococa leaf

methanol extracts

Nißler et al., 2022

As (III) HiPco SWNT Single-stranded DNA oligomer: (GT)5 nIR fluorescence

turn-on

Spinach, Rice and Pteris

cretica hyperaccumulator fern

leaves

Lew et al., 2021

Picric acid HiPco SWNT and

(6,5)-enriched SWNT

Bombolitin II peptide nIR fluorescence

quenching

Spinach leaves Wong et al., 2017

Raspberry Pi-based camera module, enabling remote sensing in
the field.

In summary, plant nanobionic sensors represent a
significant advance in the field of non-destructive sensing
in living plants. No pre-treatment, extraction or cutting up
of plant samples are required as in vivo sensing capabilities
are imparted to the plants. They are versatile and have
successfully extracted spatiotemporal information about
various analytes of interest from a diverse range of plant
species that are agriculturally important (Lew et al., 2020d).
Plant signaling pathways are however complicated and
will require the generation of an integrated response from
multiplexing of different nanosensors in order to untangle
their intricate interactions. In particular, nanoparticle design
principles to localize nanosensors within specific plant organs
or compartments will be important to facilitate sensor
multiplexing and to illuminate inter-organelle signaling
(Lew et al., 2018, 2020c).

NON-DESTRUCTIVE DETECTION OF
SURFACE AND AIRBORNE PLANT
METABOLITES

Besides internal metabolites, plants also propagate a wide range
of signaling molecules along the surface of their organs in
response to changing environmental conditions (Mcsteen and
Zhao, 2008; Wong et al., 2017; Lew et al., 2020a). These
surface metabolites can be accessed non-destructively to inform
the state of plant health and stress conditions. In particular,
conductive materials which can conform onto the leaf surface
have been engineered to probe electrical signals induced by
external stresses. Thesematerials have been shown to adhere onto
the leaf surface despite the irregular surface topographies and the
existence of trichomes in many plant species. Conductive agar
gels, connected to metal wires, can be employed as electrodes
to capture the temporal profile of electrical signals elicited upon
wounding in Arabidopsis thaliana (Mousavi et al., 2013; Nguyen

Frontiers in Plant Science | www.frontiersin.org 4 May 2022 | Volume 13 | Article 884454

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ang and Lew Non-destructive Plant Health Diagnosis

FIGURE 1 | (A) Paper-based electro-analytical device used in detection of H2O2 in circular plant samples punched out of the tomato leaves (Sun et al., 2020); (B)

Miniaturized electrochemical sensor inserted into tomato fruits for detection of auxin precursor, Tryp (Yang et al., 2021); (C) in situ ABA electrochemical sensor

assembled onto a microneedle array for detection in fruits (Wang et al., 2021); (D) Current-time curves generated when the ABA microneedle sensor is inserted into

cucumber where ABA concentrations is linearly correlated with the step current observed (Wang et al., 2021); (E) in situ SA electrochemical sensor arranged in an

IDME array for insertion into cucumber leaves (Liu et al., 2021); (F) Response current (top) and derived SA concentration (bottom) obtained from the IDME array

sensor in 5 different live cucumber leaves (Liu et al., 2021); (G) Brightfield (left) and corresponding false-colored images (right) of a spinach leaf infiltrated with H2O2

(red arrow) and reference (blue arrow) nanosensors on both sides of the leaf mid-vein. False-colored images shows the transient H2O2 wave upon mechanical

wounding of the leaf at t = 0min (Lew et al., 2020b); (H) H2O2 nanosensor response to different types of stress applied to the plant, including mechanical wounding

(red), flg22 treatment (green), high light (orange) and high heat (blue) stresses (Lew et al., 2020b); (I) Real-time sensing of 2,4-D uptake in hydroponically grown pak

choi and rice leaves using nanosensors which illustrated a turn-on response observed in pak choi but not in rice over a time-period of 5 h (Ang et al., 2021); (J)

Arsenite nanobionic sensor infiltrated into hyperaccumulator plant Pteris creticas fern, showing intensity changes corresponding to arsenic accumulation detected

over 7-day time period upon arsenite exposure (Lew et al., 2021); (K) Schematic of standoff detection of nitroaromatic compound, picric acid, using nanosensors with

real-time information relayed from the nanosensor-infiltrated plant to a portable Raspberry Pi-based electronic device (Wong et al., 2017).
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et al., 2018). Recently, the conformability of such hydrogel-
based approach was improved by using thermogels as morphable
electrodes (Luo et al., 2021). The thermogel solution can undergo
in situ gelation on hairy leaf surfaces at room temperature to
provide higher adhesiveness and improved signal-to-noise ratio
for plant electrophysiology (Figure 2A). In another approach,
biocompatible polymer electrodes were printed on the leaf
surface using the vapor-phase polymerization process (Kim
et al., 2019). Stress perception would trigger changes in
the electrical conductivity along the surface of plant organs,

which can be monitored with the vapor-deposited polymer
electrodes through bioimpedance spectroscopy. Drought andUV
photodamage in plants can be monitored over 130 days with this
approach. Through non-destructive impedance measurements,
these conformal polymer electrodes also enabled early detection
of ozone damage in fruiting plants before the manifestation
of leaf necrosis (Figure 2B) (Kim et al., 2020). Instead of
monitoring electrical signals propagated by plants, Koman et al.
developed an innovative approach to monitor the opening
and closing of stomata by printing a conductive ink across

FIGURE 2 | (A) Thermogel application to monitor electrical potential signals from plants with hairy stems (Luo et al., 2021). (B) Printed conductive polymers enabled

impedance spectroscopy to detect ozone damage (Kim et al., 2020). (C) Detection of plant VOCs using smartphone-integrated chemical sensor arrays (Li et al.,

2019). (D) Differential colorimetic response of sensor arrays upon exposure to tomato plants infected with Pseudomonas infestans (Li et al., 2019). (E) Principal

Component Analysis (PCA) plot to distinguish pathogenic infections on tomato plants based on chemical sensor arrays (Li et al., 2019).
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the stomatal apertures (Koman et al., 2017). Stomata opening
causes the contact of conductive ink across the guard cells to
be broken, leading to an increase in the electrical resistance.
The circuit is closed when the aperture closes, lowering the
resistance. Hence, this approach enabled monitoring of stomata
opening and closing latencies. Stomatal dynamics in response
to different light wavelengths and drought conditions could
be captured with the printed conductive ink over a period
of 7 days. These approaches highlight promising technologies
capable of long-term monitoring of plant electrophysiology for
stress detection. However, they are labor intensive as their
measurements necessitate physical contact with conductive wires
to obtain the electrical resistance or impedance values. If the
circuit information can be transmitted wirelessly, it will pave way
toward wider applications in the field without requiring wired
connections or skilled personnel to operate such technology.

There are various types of VOCs that plants employ as
communication signals in response to abiotic and biotic stresses
(Engelberth et al., 2004; Ton et al., 2006; Erb et al., 2015; Acton
et al., 2018). As airborne metabolites, these VOCs serve as
signaling molecules between different plant organs and between
distant plants (Maffei et al., 2011; Karban, 2017; Cofer et al.,
2018). Detection of these VOCs could therefore indicate plant
health status non-invasively (Tholl et al., 2021). In general, the
detection of VOCs from plants in the field is categorized under
two sequential procedures: sampling and analysis. Sampling
is required to trap and pre-concentrate VOCs to achieve the
detection limit of the analytical instrument. An adsorbent
material is typically used to capture VOCs, either through static
or dynamic pre-concentration (Jansen et al., 2011). Once trapped,
these VOCs can be released upon thermal desorption treatment
using a gas chromatography coupled with mass spectrometer
(GC-MS). The mixture of VOCs can then be separated and
identified with GC-MS analysis. However, this conventional
GC-MS-based analysis method requires complex laboratory
equipment with substantial time lags between sampling and
analysis, limiting on-field analysis of plant VOCs. Portable GC-
MS instruments have been developed to accelerate VOCs analysis
(Beck et al., 2015; Sharma et al., 2019; Stierlin et al., 2020), but
they often require manual sample injection and suffer from poor
compound resolution due to limited column length.

Electronic nose-based approach has been demonstrated for a
more rapid detection of plant VOCs. This technology leverages
changes in the electrical output of a chemical sensor array
when a mixture of VOCs flow over the sensor array (Cui
et al., 2018; Karakaya et al., 2020). The collective array pattern
can then be analyzed to distinguish between different VOCs,
enabling non-destructive monitoring of plant VOCs. Analysis
of VOCs emitted by diseased plants through this electronic
nose approach enabled early identification of bacterial diseases
in apple plants before symptom manifestation (Cellini et al.,
2016), as well as discrimination of healthy rice plants from
those infected with brown planthopper (Nilaparvata lugens)
(Xu et al., 2014). Building on the electronic nose approach,
nanoparticle-based chemical sensor arrays were recently coupled
with a smartphone for non-destructive analysis of VOCs from
tomato plants (Figure 2C) (Li et al., 2019). The arrays would

change color differently in response to various VOCs, enabling
fingerprinting of 10 green leaf volatiles. This concept was then
used to detect late blight in tomato as early as the second
day of pathogen inoculation (Figures 2D,E). While these are
promising developments in sensing plant VOCs, the stability and
selectivity of these technologies in response to different stressors
and pathogen infections are still to be studied for widespread
application in the field.

DISCUSSION

A multitude of advanced materials and novel technologies have
been proposed for non-destructive plant health monitoring.
These toolsets can be broadly categorized into in vivo sensors,
which aim to probe the signaling molecules within plant
tissues, or platforms to detect surface and airborne metabolites.
Monitoring the internal signaling molecules has the advantage
of detecting physiological concentrations of plant hormones
and small molecules immediately after stress is perceived,
enabling real-time plant stress detection. Electrochemical-based
microneedle array sensors and fluorescent nanosensors are
exciting developments in this area which have been employed
to study plant signaling pathways and reveal new mechanistic
understandings of plant physiology in response to stresses.
While promising, these sensors still need to be introduced
manually into the plant tissues, limiting the throughput of
such approach for agricultural applications. Non-destructive
technologies to detect surface and airborne metabolites include
conductive polymers and gels tomonitor plant electrophysiology,
as well as portable GC-MS and electronic nose approach for
VOCs analysis. These platforms do not require access to the
internal plant tissues or cells, and thus can be conveniently
applied outside of the plant organs for non-invasive monitoring.
However, some of these approaches suffer from low sensitivity,
bulky form factors and unproven demonstrations in the
field. Despite these limitations, non-destructive plant health
monitoring has significantly improved our understanding of
plant physiological responses to external stresses. Progress in this
research area should give rise to more advanced technologies
which can be applied to study agriculturally relevant crops
in the field, bridging the knowledge gap between model
plants commonly used in plant biology and economically
important crops.
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