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Vegetation restoration is assumed to enhance carbon (C) sequestration in terrestrial
ecosystems, where plant producers and microbial decomposers play key roles in soil
C cycling. However, it is not clear how the nutrient limitation patterns of plants and
soil microbes might change during vegetation restoration. We investigated the nutrient
limitations of the plant and microbial communities along a natural vegetation restoration
chronosequence (1, 8, 16, 31, and 50 years) following farmland abandonment in
Qinling Mountains, China, and assessed their relationships with soil factors. The result
showed that following natural vegetation restoration, the nitrogen (N) limitation of plant
and microbial communities was alleviated significantly, and thereafter, it began to shift
to phosphorus (P) limitation at a later stage. Plants showed P limitation 50 years
after restoration, while microbial P limitation appeared 31 years later. The changes
in plant nutrient limitation were consistent with those in microbial nutrient limitation,
but soil microbes were limited by P earlier than plants. Random forest model and
partial least squares path modeling revealed that soil nutrient stoichiometry, especially
soil C:N ratio, explained more variations in plant and microbial nutrient limitation.
Our study demonstrates that the imbalanced soil C:N ratio may determine the soil
microbial metabolic limitation and further mediate the variation in plant nutrient limitation
during natural vegetation restoration, which provides important insights into the link
between metabolic limitation for microbes and nutrient limitation for plants during
vegetation restoration to improve our understanding of soil C turnover in temperate
forest ecosystems.

Keywords: ecological stoichiometry, nutrient limitation, plant-microbe interaction, plant nutrient, vegetation
restoration

INTRODUCTION

Terrestrial forests are considered the main sinks of atmospheric CO2, and they play a crucial role
in mitigating climate change (Piao et al., 2009; Starke et al., 2021). The restoration of abandoned
farmland to natural forests could help to enhance carbon (C) sequestration, which is considered
an effective natural measure for improving the ecological environment (Morrien et al., 2017; Deng
et al., 2018). In this ecological process, plants fix CO2 from the atmosphere through photosynthesis
and store a considerable amount of C (Chapin et al., 2011). For soil microorganisms, C sources
decomposed in soil organic matter and those provided by plant roots may remain within the system
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used for new microbial cells growth or lose by microbial
respiration (Singh et al., 2004; Sinsabaugh et al., 2013; Manzoni,
2017). Thus, the activities of soil microbial communities
combined with those of plants determine C turnover in terrestrial
ecosystems (Lal, 2003). During vegetation restoration, the
availability of soil resources could restrict the growth of plants
and microbial metabolism, as well as influence their interactions,
to further affect C sequestration in the soil (Cui et al., 2020;
Teixeira et al., 2020). Therefore, it is necessary to understand
the variations in nutrient limitations for plants and microbes and
their relationship during the vegetation restoration process.

Ecological stoichiometry facilitates the understanding of the
flow of energy and nutrients among trophic levels in food
webs and is particularly useful for establishing linkages among
above- and underground ecosystem components, such as soils,
plant tissues, and microbes (Zechmeister-Boltenstern et al., 2015;
Yang et al., 2018; Xiao et al., 2021). According to it, many
studies have provided insight into the resource limitation of
plant growth and microbial processes in diverse ecosystems (Elser
et al., 2000; Cleveland and Liptzin, 2007; Heuck et al., 2015;
Zechmeister-Boltenstern et al., 2016). In the semiarid region,
the soil microbial community was limited by phosphorus (P)
throughout the succession, whereas plants were limited by low
soil P at the later stage of succession only (Cui et al., 2020).
Jiang et al. (2018) and Li et al. (2019) conducted multielement
stoichiometry in plant leaves and ecoenzymatic stoichiometry
along the Hailuogou Glacier forefield chronosequence and
suggested that the limiting factor for plant growth shifted from
nitrogen (N) to P with primary succession, whereas the limitation
for microbial communities shifted from P to N. Despite all
of them, few studies have established the connections between
above- and underground nutrient limitations during vegetation
restoration. It is well-known that plants and microorganisms
depend on each other for the supply of nutrients, where
they may engage in nutrient competition and mutualistic
interactions (Singh et al., 2004). For example, during the
vegetation restoration process, increases in plant residues and
rhizosphere exudates provide more readily available carbon to
increase the soil microbial abundance, activity, and growth,
which may provide more nutrient supplies for plants and soil
microbes or aggravate the competition for nutrients between
them (Paterson et al., 2010; Bitas et al., 2013; Kuzyakov and
Xu, 2013). The biomass compositions of different types of plants
vary, so changes in the aboveground community composition
alter the proportions of chemical elements in litter fragments
that enter the soil and the compositions of soil microbial
communities, thereby affecting plant development (Ordoñez
et al., 2009). Variations in vegetation types and the densities
of plant cover also can strongly affect evapotranspiration and
deep percolation and can alter the water-holding ability by
influencing the soil structure (Wang et al., 2011; Cui et al.,
2020). Previous study reported that variations in soil moisture
may affect soil nutrient transportation (Ouyang et al., 2016)
and further change the plant growth and microbial activity
(Deutsch et al., 2010; Liu et al., 2016). Moreover, the emergence
of some plant species with mycorrhiza (e.g., legume species)
could alleviate the plant and microbial resource limitations

by improving the availability of soil resources (Xiao et al.,
2020). Therefore, the relationship between the nutrient supply
for aboveground plant growth and the nutrient limitation of
underground microorganism activity under the influence of
environmental variables during vegetation restoration may be
relatively complex. Although previous studies have improved
our understanding of plant nutrient stoichiometry dynamics or
microbial metabolic limitations during vegetation restoration
(Amazonas et al., 2011; Goloran et al., 2015; Zhang et al., 2019),
it remains uncertain whether the nutrient limitation of plant
communities shows a similar trend with that of soil microbes and
whatever mechanisms might be behind any trends that they do
show (Zeng et al., 2017; Pang et al., 2020; Zhong et al., 2020; Cui
et al., 2021a).

In this study, we selected abandoned land that had undergone
vegetation restoration for five different periods (1, 8, 16, 31,
and 50 years) in a typical temperate forest ecosystem (Qinling
Mountains, China) to investigate the nutrient limitation patterns
and their relationships for plants and microbes at the community
level, as well as exploring their driving factors during vegetation
restoration. Previous study suggested that vegetation restoration
may aggravate soil P loss (Lemma et al., 2017). Thus, we
hypothesized that the plant and soil microbial metabolism was
more likely limited by soil P in the late restoration stages.
Moreover, we hypothesized that the plant nutrient limitation
varied synergistically with the trend of microbial nutrient
limitation during vegetation restoration, which is perhaps due
to the interactions between the plants and microorganisms.
Finally, we further hypothesized that soil available nutrients
could strongly regulate the resource limitation of plant and
microbial communities. The main objectives of this study
were (1) to explore the variations in plant and soil microbial
nutrient limitations following natural vegetation restoration
after farmland abandonment; (2) to determine whether the
variations in nutrient limitations for plants and microbes were
consistent; and (3) to quantify the contributions of different
factors to the variations in nutrient limitations for plants and
microbial communities.

MATERIALS AND METHODS

Description of the Study Area
This study was conducted at Huoditang Experimental Forest
Farm (33◦18′–33◦28′ N, 108◦21′–108◦39′ E), Shaanxi Province,
China. This forest region is situated in the middle of the
Qinling Mountains at altitudes ranging from 1,450 to 2,473 m.
This region has a moist temperate climate, with an average
annual temperature range of 8◦C–10◦C (maximum of 28.6◦C
in July and minimum of –9.5◦C in January) and an average
annual precipitation range of 1,000–1,200 mm (mostly from
July to September). The average frost-free period in this region
is 170 days, and the mean total yearly sunshine ranges from
1,100 to 1,300 h. The soil types in the study area are mainly
Cambisols, Umbrisols, and Podzols (FAO), and the mean soil
depth is 50 cm. In the 20th century, much of the human
population of the forest region moved away, and large areas
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of farmland were gradually abandoned. At present, lands
abandoned for different periods of time are widely distributed in
the region. The restored vegetation types are mainly grassland,
shrub, and natural forest after the secondary succession of the
abandoned farmlands. After natural vegetation restoration, the
overstory in the study area is dominated by Quercus aliena
var. acuteserrata, Pinus tabuliformis, P. armandii, Q. variabilis,
Tsuga chinensis, and Betula albosinensis. The main herbs
include Symplocos paniculata, Corylus heterophylla, Abelia dielsii,
Lespedeza bicolor, and Euonymus alatus, and the shrubs include
Carex lanceolata, Artemisia lavandulaefolia, Artemisia gmelinii,
Thalictrum aquilegifolium var. sibiricum, and Rubia cordifolia.

Experimental Design
In July 2020, five typical abandoned farmlands that had
undergone restoration for 1, 8, 16, 31, and 50 years were selected
as sample sites in the same watershed (Figure 1 and Table 1).
All of the abandoned farmlands were separated by at least 200
m and their elevation, slope aspect, and slope gradient were
similar. For each restoration period, five replicate sample plots
separated by 30-50 m were selected for subsequent investigation
and sampling. In total, 25 sample plots were obtained: five
restoration periods × five sample plots. The plots measured 20
m × 20 m, 5 m × 5 m, and 2 m × 2 m for forest, shrub, and
herbaceous communities, respectively.

Soil and Plant Sampling
We selected replicate points (12 in forest plots and 9 in shrub
and grassland plots) along with an “S” shape in each plot for
soil sampling. After removing the litter layer, soil samples were
collected from a depth of 0–20 cm at each point using a 4.5-cm
diameter stainless steel auger. The samples were mixed together
to obtain one composite sample per plot. The soil samples were
immediately sieved through a mesh measuring < 2 mm, and any
roots, litter, animal residues, debris, and stones were removed.
Each soil sample was divided into two parts, where one part was
naturally air-dried for physicochemical analysis and the other
part was stored at 4◦C to determine the biological characteristics.
Samples for measuring the soil water content and bulk density
were obtained from three randomly selected points on the
diagonal in each plot at a depth of 0–20 cm using a steel core
sampler with a volume of 100 cm3. We identified the dominant
species along the plant restoration chronosequence and 7–10
plants from each dominant species were selected from each plot.
Fully matured and pest-free leaves were collected according to the
different levels (high, middle, and low) and different directions
(east, south, west, and north) in each plot, and they were then
homogenized to obtain one sample.

Chemical Analyses
The soil water content was determined by oven drying the fresh
soil to a constant mass at 105◦C. The soil bulk density (BD) was
obtained by calculating the ratio of the soil mass relative to the
total volume after oven drying to a constant weight at 105◦C.
The soil pH was measured in a soil:distilled water mixture at a
ratio of 1:2.5 (w/v) using a pH meter (OHAUS ST2100, Shanghai,
China). The C contents of soil (soil C) and plant (plant C) samples

were determined using the dichromate oxidation method. The
N contents of the soil (soil N) and plant (plant N) samples
were determined using the Kjeldahl method. Soil total P (soil P),
available phosphorus (Olsen-P), and plant phosphorus (plant P)
concentrations were measured using the molybdenum antimony
reagent colorimetric method. Soil dissolved organic C (DOC) was
extracted with 0.5 M K2SO4, and quantified using a TOC analyzer
(TOC–VCPH, Shimadzu, Japan). The soil ammonium (NH4

+-
N) and nitrate-nitrogen (NO3

−-N) contents were determined
colorimetrically using a continuous flow analyzer. We combined
the soil NH4

+-N and NO3
−-N to represent soil available N

(TAN) (Bao, 2000). The soil physicochemical properties were
shown in Table 2.

Measurements of Microbial Biomass and
Extracellular Enzymatic Activity
The soil microbial biomass C, N, and P (MBC, MBN, and
MBP, respectively) were determined by chloroform-fumigation
extraction (Brookes et al., 1985). The conversion factors used
to derive MBC, MBN, and MBP were 0.45, 0.54, and 0.40,
respectively (Cui et al., 2020).

The activities of two C-acquiring enzymes [β-1,4-glucosidase
(BG) and cellobiohydrolase (CBH)], two N-acquiring
enzymes [β-1,4-N-acetylglucosaminidase (NAG) and leucine
aminopeptidase (LAP)], and one P-acquiring enzyme [acid
phosphatase (AP)] were measured using standard fluorometric
techniques (Saiya-Cork et al., 2002; German et al., 2011)
according to previously described experimental procedures
(Cui et al., 2021a). Briefly, the five enzyme activities were
measured fluorometrically using a 200 µM solution of substrates
labeled with 4-methylumbelliferone (MUB) or 7-amino-4-
methylcoumarin (AMC). In total, 50 µl of 50 mM buffer were
pipetted into wells of black 96-well microplates to serve as blanks
(buffer + slurry), and 200 µl of 50 mM buffer were pipetted
into wells as the reference standard (buffer + standard) and
negative control (buffer + substrate) (eight analytical replicates
per soil per assay). A total of 1 g of fresh soil was homogenized
in 125 ml of 50 mM buffer on a constant temperature (25◦C)
shaker for 2 h. The soil suspension (slurry) was continuously
stirred as 200 µl aliquots were dispensed into the microplate
wells that served as the sample assay (16 analytical replicate
suspensions for each sample per assay) and as the blank and
quench standard (slurry + standard) (eight analytical replicates
each). In total, 25 µl of a fluorescence standard solution (10 µM
4-methylumbelliferone-MUB or 7-amino-4-methylcoumarin-
AMC for the LAP assay) were dispensed into microplate wells
that served as a reference standard (buffer + standard) and as a
quench standard. Finally, the sample assays (slurry + substrate)
and negative controls (buffer + substrate) also received 25µl of
a 200 µM substrate solution in a final reaction volume of 125 µl.
Prepared plates were incubated at 25◦C in the dark for up to
4 h following the substrate addition. After incubation, 10 µl of
0.5 M NaOH was added to each well to terminate the reactions,
and fluorescence was measured using a microplate reader (Tecan
Infinite M200pro, Switzerland) with 365 nm excitation and
450 nm emission filters. The measurements of fluorescence
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FIGURE 1 | Map of the experimental sites.

TABLE 1 | Floristic compositions of the sampling sites.

Restoration
stages (yr)

Tree layer Shrub layer Herb layer

Dominant species Minor species Dominant species Minor species Dominant species Minor species

1 / / / / Digitaria sanguinalis,
Erigeron annuus

Artemisia hedinii

8 / / Rhus chinensis Salix matsudana,
Populus simonii

Anaphalis
aureopunctata

Artemisia hedinii, Erigeron
annuus

16 Toxicodendron
Vernicifluum, Rhus

chinensis

Castanea mollissima Rubus flosculosus Berchemia sinica,
Desmodium elegans

Artemisia argyi Erigeron annuus, Glechoma
longituba

31 Castanea mollissima Juglans cathayensis,
Populus simonii, Rhus

chinensis

Desmodium elegans,
Rubus flosculosus

Symplocos paniculata,
Corylus heterophylla

Carex rigescens,
Arthraxon hispidus

Artemisia argyi,
Pseudocystopteris atkinsonii

50 Castanea mollissima,
Rhus chinensis,

Quercus aliena var.
acutiserrata, Platycarya

strobilacea

Dendrobenthamia
japonica var. chinensis

Litsea pungens,
Lonicera fragrantissima

subsp. standishii

Carex rigescens,
Digitaria sanguinalis

Thalictrum aquilegiifolium var.
sibiricum, Pseudocystopteris

atkinsonii

for the negative controls, blanks, and quench standards were
corrected, and the enzymatic activity was expressed as nmol
g−1 h−1.

Quantification of Microbial Nutrient
Limitation
The classic threshold element ratio (TER) model defines the
elemental C:N or C:P ratio at which control of microbial
metabolism switches from energy (C) to nutrient (N/P)

availability, but cannot distinguish the single most limiting
nutrient (Sterner and Elser, 2002). A new model (TERL) based
on the TER principle was developed to redefine the boundary
between P and N limitations. TERL model defines the microbial
N or P limitation by scaling the TER. We calculated a new
TER model (TERL) to identify which nutrient has the strongest
limitation with the following equations (Cui et al., 2021b):

TERL = (1TER2C:P/BC:P) − (1TER2C:N/BC:N)
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1TER2C:X = LC:X − TERC:X

TERC:X = (EEAC:X × BC:X)/z0

where X represents N or P; TERC:X is the TER calculated
based on the C/N or C/P ratio; LC:X is the C/N or C/P
ratio of the availability of soil resources; EEAC:X represents
the between C- and N (or P)-acquiring enzyme activities [i.e.,
(BG + CBH)/(NAG + LAP) or (BG + CBH)/AP]; BC:X
is the C/N or C/P ratio of the microbial biomass; z0 = e
intercept in the standard major axis (SMA) for ln (BG + CBH)
vs. ln (NAG + LAP) or ln AP (Supplementary Table 1).
TERL > 0 represent microbial P limitations, whereas < 0
represent N limitations.

Statistical Analyses
One-way analysis of variance (ANOVA) was conducted
to determine the effects of restoration time on the soil
physicochemical properties, plant elements and their
stoichiometry, and TERL values during vegetation restoration.
Significantly different means were then compared using Tukey’s
multiple comparisons test (P < 0.05) in R. The normalization
constant z0 was obtained from the standardized major axis (Type
II) regressions (Supplementary Table 1). Pearson’s correlation
coefficients were calculated to examine the relationships among
the soil physicochemical properties, plant elements and their
stoichiometry, microbial biomasses and their stoichiometry,
and TERL values. Principal component analysis was used to
determine the overall differences in soil properties, TERL and
plant N:P during vegetation restoration and the relationships
between soil properties, TERL and plant N:P. A random forest
test could quantify the correlation importance of variables in
each input model, which is performed to identify the main
factors (Zeng et al., 2021). To tease apart the relative importance
of various soil variables on TERL and plant N:P ratio, we used the
increased node purity (IncNodePurity) of the variables. Partial
least squares path modeling (PLS-PM) was conducted to further
identify possible pathways for variables that controlled plant
and microbial nutrient limitations. All statistical analyses were
performed using R software (version 3.6.2).

RESULTS

Ecological Stoichiometry in Plants
During Restoration
Vegetation restoration led to significant variations in the plant
nutrient concentrations (P < 0.001, Figures 2A–C). The plant C
concentration increased significantly initially and then decreased
over the restoration gradient, with the highest value after
8 years (479.49 ± 13.70 g kg−1, Figure 2A). By contrast,
the N concentration decreased significantly initially and then
increased with the restoration time, where the highest value was
obtained after 1 year and the lowest after 8 years (29.04 ± 0.65
and 18.63 ± 1.60 g kg−1, respectively, Figure 2B). The P
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FIGURE 2 | Changes in plant nutrient contents and ratios during vegetation restoration stages. plant C (A), plant C concentration (D); plant N (B), plant N
concentration (E); plant P (C), plant P concentration (F). Different lowercase letters indicate significant differences at P < 0.05 using the Duncan tests.

concentration decreased significantly over time, where the
minimum value (1.30 ± 0.14 g kg−1) occurred after 50 years
(Figure 2C). In addition, the plant element ratios changed
significantly with the restoration time (P< 0.001, Figures 2D–F).
The C:N ratio increased significantly initially and peaked after
8 years (25.90 ± 2.04), then decreased gradually (Figure 2D).
Both C:P and N:P increased significantly with the restoration
time, where they ranged from 77.93 to 361.74 and from 4.98 to
15.47, respectively (Figures 2E,F).

Soil Microbial Metabolic Limitations
During Restoration
Vegetation restoration significantly affected TERC:N and
TERC:P values (P < 0.001, Figures 3A,B). TERC:N increased
significantly initially and then decreased over the restoration
gradient, with the highest value after 8 years. TERC:P also
increased significantly initially and peaked after 8 years,
before then decreasing gradually. In addition, the TERL
changed significantly with the restoration time (P < 0.001,

Figure 3C). TERL increased significantly over time, where
the TERL value in 1, 8, 16, 31 and 50 years were –
1.83 ± 0.27, -1.64 ± 1.15, -1.57 ± 0.45, -0.03 ± 0.18, and
0.80 ± 0.26, respectively. The results indicated that soil
microbial N limitation decreased significantly in the first
31 years of farmland abandonment and thereafter shifted to
microbial P limitation.

Relationships Between Soil Properties,
Microbial Metabolic Limitation, and Plant
Nutrient Stoichiometry
The results of PCA showed that soil properties, TERL, and plant
N:P explained 80.0% of the vegetation restoration variations
through two main corrected variable groups (PC1 = 66.7%;
PC2 = 13.3%). The overall differences in soil properties,
TERL, and plant N:P significantly changed during vegetation
restoration. PC1 strongly distinguished the 50-year site from
other sites. The discrimination of 8-year site from other sites was
strongly influenced by PC2. The results of PCA also showed that
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FIGURE 3 | Changes in TERL during vegetation restoration stages (A–C). Different lowercase letters indicate significant differences at P < 0.05 using the Duncan
tests.

TERL had highly association with plant N:P. Moreover, TERL and
plant N:P had similar corrections with the soil factors (Figure 4).

The results from the random forest test were used to identify
the effects of factors on the plant N:P ratio and TERL. The results
showed that soil C:N ratio was the most important factor in
plant N:P ratio, followed by soil N, pH, Olsen-P, soil P, soil C,
Moisture, DOC, soil N:P ratio, soil C:P ratio, TAN, and BD
(Figure 5A). The random forest test also showed that soil C:N
ratio was the main factor in TERL, followed by Olsen-P, soil C,
DOC, Moisture, soil N, soil C:P ratio, soil P, soil N:P ratio, pH,
BD, and TAN (Figure 5B).

Moreover, the PLS-PM identified direct and indirect effects
of restoration time, soil physical properties, pH, total nutrients,
and their ratios as well as available nutrients on plant N:P
ratio and TERL (Figures 6A,B). The restoration time (0.72),
physical properties (0.58), total nutrient contents (0.62), nutrient
ratios (0.84), and available nutrient contents (0.43) had positive
total effects on the plant N:P ratio, while the pH of –0.01
showed negative total effects on it (Figure 6C). However, all
of the restoration time (0.60), physical properties (0.41), pH
(0.05), total nutrient contents (0.60), nutrient ratios (0.75),
and available nutrient contents (0.22) had positive effects on
TERL (Figure 6D).

DISCUSSION

Trends of Plant and Microbial Nutrient
Limitation During Vegetation Restoration
Microbial communities may be subject to diverse restrictions
on soil nutrients under different environmental conditions (Cui
et al., 2021a). TERL can be used to identify which element
has the strongest limitation for microbial community growth

(Cui et al., 2021b). In this study, microbial metabolism was
N-limited at the early stage of vegetation restoration (< 31 years)
and the microbial N limitation decreased significantly, thereafter
shifted to microbial P limitation (Figure 3C). This finding
was consistent with the result obtained in the study by Jiang
et al. (2019), reporting that soil microorganisms were limited
by N at the early successional stage, while P was the main
limitation factor at a later stage in the Hailuogou Glacier
Chronosequence. Zhong et al. (2020) comparing sites along
the Robinia pseudoacacia afforestation chronosequence on the
Loess Plateau of China, reported that microbial communities
were co-limited by N and P, and they then became more
limited by P. However, Wu et al. (2021) demonstrated that
microbial metabolic P limitation was strong initially, but it then
decreased in microbial communities during secondary plant
succession on the Loess Plateau, China. Vegetation restoration
results in variations in soil substrate, plant composition, and
environmental parameters that could strongly influence the
microbial metabolic limitation (Bitas et al., 2013; Xu et al., 2017;
Moreau et al., 2019). In this study, the soil TAN content and
soil N:P ratio increased significantly, while the concentration of
Olsen-P decreased with vegetation restoration (Table 2). The
lower content of soil TAN and soil N:P ratio in the early
stage of vegetation restoration could result in the N limitation
of microbial communities. As for the vegetation restoration,
the improvement of available N derived from the input of
plant residues with the higher N:P ratio and the emergence of
legume species alleviated the microbial N limitation (Tables 1, 2).
However, the decrease in P release and soil erosion could intensify
the loss of soil P, and thus contribute to the soil P limitation at the
late stage of vegetation restoration (Lemma et al., 2017).

Moreover, we found that the plant N:P ratio varied from 4.98
to 10.00 in the first 31 years of vegetation restoration, which
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FIGURE 4 | Variable ordination diagram of PCA for the first two principal component axes. plant N:P, the ratio of plant N and plant P concentration; soil C, soil
organic carbon; soil N, soil total N; soil P, soil total P; DOC, soil dissolved organic C; TAN, NO3--N + NH4+-N; Olsen-P, soil available P; Moisture, soil moisture; BD,
bulk density.

might indicate that the growth of the plant was limited by
N at the early stage (Figure 2F) (Koerselman and Meuleman,
1996). This result was confirmed by the studies of Wang et al.
(2018) and Pang et al. (2021), reporting that there was limited
N availability in temperate forests. We also found that the plant
N:P ratio increased significantly over time with the highest
value close to 16 obtained after 50 years (Figure 2F). These
results suggested that the N limitation of the plant was alleviated
gradually and thereafter shifted to P limitation, which was also
reflected in the increased plant N concentration and decreased
plant P (Figures 2B,C). Similarly, Wang and Zheng (2021)
demonstrated the N limitation of plant growth at the early stage
of vegetation succession and thereafter a P limitation occurrence.
One of the reasons might be that the dilution effect of soil C
and N accumulation on soil P could cause or intensify the P
limitation in the later stage of vegetation restoration (Groenigen
et al., 2006). Moreover, the distinct beta diversities of the apr-
and phoD-harboring bacteria could cause a steady increase in
soil available N and a general decrease in available P, which
may further affect the plant nutrient limitation as ecosystem

restoration proceeds (Wang et al., 2020; Xu et al., 2020). In
brief, our results suggest that the nitrogen limitation of plant and
microbial communities was alleviated significantly and thereafter
began to shift to P limitation at the later stages of vegetation
restoration, supporting our first hypothesis, which is that plant
and soil microbial metabolism are more likely limited by soil P in
the late restoration stages.

In particular, we observed that TERL had a positive correlation
with the plant N:P ratio according to principal component
analysis and linear regression analysis (Figure 4, Supplementary
Figures 1, 2). These findings suggest that there was coordinated
variation between microbial metabolic limitation and plant
nutrient limitation at the community level during vegetation
restoration, which seems to support our second hypothesis.
Plant nutrient supply is mainly relied on the microbial
decomposition and mineralization of soil organic matter by
secreting exoenzymes (Kastovska et al., 2015). Thus, the nutrient
status of plants and microbes may be coupled in time. We
also found that compared with soil microorganisms, plants were
limited by N for longer (Figures 2F, 3C). One of the reasons
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FIGURE 5 | The effects of soil physical and chemical properties on plant N:P (A) and TERL (B) during vegetation restoration stages using random forest test. soil C,
soil organic carbon; soil N, soil total N; soil P, soil total P; DOC, soil dissolved organic C; TAN, NO3

--N + NH4
+-N; Olsen-P, soil available P; Moisture, soil moisture;

BD, bulk density.

might be that during vegetation restoration, the increases in
plant residues and rhizosphere exudates result in more readily
available carbon to increase the abundance, activity, and growth
of microorganisms, which could aggravate the competition for
nutrients between microorganisms and plants (Paterson et al.,
2010; Kuzyakov and Xu, 2013). In this study, analysis based
on Pearson’s correlation coefficients also showed that the N:P
ratio in plants had a negative correlation with that of the
microbial community (Supplementary Figure 2). Due to more
rapid growth rates and higher surface-area-to-volume ratios
than plant root hairs, microorganisms could outcompete the
roots for inorganic N (Rosswall, 1982). For example, Liu et al.
(2016) found that the amount of N taken up by microbes was
at least seven times that of plants in a temperate grassland.
Moreover, the relative distributions of roots and microorganisms
in the soil, mineralization pathways for elements, plant-plant
interactions, and spatiotemporal variations could regulate the
competition between plants and microorganisms for nutrients
(Zak et al., 1990; Kaye and Hart, 1997; Manzoni and Porporato,
2007; Song et al., 2007; Xu et al., 2011). Thus, microbial-plant
interactions and uncertainties regarding plant and microbial
nutrient competition may lead to a slight mismatch in the synergy
of nutrient limitations for plants and microbes.

Drivers of Plant and Microbial Nutrient
Limitation During Vegetation Restoration
The soil quality improved and the organic matter inputs
increased during vegetation restoration, which further affected
the acquisition of nutrients by plants and microbes. In this
study, we found that the nutrient limitation of plants and

soil microorganisms was strongly affected by soil total nutrient
stoichiometry, especially the soil C:N ratio (Figures 4, 5, 6C,D).
These results seem inconsistent with our third hypothesis, which
is that soil available nutrients might be the main factor affecting
the resource limitation of plant and microbial communities.
One of the potential reasons is that there is a certain C:N
threshold ratio that soil must reach to be conducive for the
growth of microorganisms (Zhong et al., 2020). The unbalance
of soil elemental stoichiometry might cause the variation of
plant nutrient stoichiometry and microbial metabolic limitation
(Deng et al., 2019; Qiu et al., 2020; Cui et al., 2021a; Xiao et al.,
2021). For example, Zhang et al. (2018) evaluated the factors
that influence leaf P stoichiometry along a chronosequence of
Metasequoia glyptostroboides forests and found that the plant N:P
ratio was impacted more by soil stoichiometry. Cui et al. (2019)
reported that soil C:N, C:P, and N:P ratios had a strong influence
on microbial nutrient acquisition in grasslands, which might
be due to the efficient influence of soil C:N:P stoichiometry on
the structure and activity of microbial communities. Moreover,
Zhang et al. (2022) found that the soil substrate C:N ratio changed
more consistently with the trend of soil microbial N limitations
than other stoichiometric ratios. We also found that the soil
substrate (soil C, soil N, soil P, TAN, and Olsen-P) and soil
physical properties (moisture and pH) had strong associations
with TERL and plant N:P ratio (Figure 4 and Supplementary
Figure 2). Thus, the soil total nutrients, soil available nutrients,
and soil physical properties significantly affected plant and
microbial nutrient limitation, as also found in previous studies
(Price and Sowers, 2004; Bowles et al., 2014; Zhan et al., 2017;
Deng et al., 2019; Liu et al., 2020; Xiao et al., 2020; Li et al., 2021).
Furthermore, PLS-PM showed that the restoration time, soil
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FIGURE 6 | Cascading relationships between plant nutrient limitation and microbial nutrient limitation with restoration time and soil physicochemical properties.
Partial least squares path modeling disentangling major pathways of the influences of restoration times, soil pH, physical properties, total nutrients, nutrient ratios,
and available nutrients on plant N:P (A,C) and TERL (B,D) during vegetation restoration stages. Black and red arrows indicate positive and negative flows of
causality (P < 0.05), respectively. Numbers on the arrow indicate significant standardized path coefficients. R2 indicates the variance of dependent variable explained
by the model. Physical properties include soil moisture and bulk density. Total nutrients include soil C, soil organic carbon; soil N, soil total N; and soil P, soil total P.
Nutrient ratios include the soil C:N ratio, soil C:P ratio, and soil N:P ratio. Available nutrients conclude DOC, soil dissolved organic C; TAN, NO3

--N + NH4
+-N; and

Olsen-P, soil available P.

physical properties, pH, and total nutrients directly determined
the soil nutrients ratios and caused the nutrient limitation of
plant and microbial communities (Figures 6A,B). Consequently,
we suggest that the soil nutrient stoichiometry, especially the
soil C:N ratio, directly determined nutrient limitation for plant
and microbial communities, and it had the greatest effect during
vegetation restoration.

CONCLUSION

Vegetation restoration may increase soil N availability whereas
decrease the P in the temperate forest. During the vegetation
restoration, the N limitation of plant communities alleviated
significantly and thereafter began to shift to P limitation at
the later stage (50 years). Meanwhile, the N limitation of soil
microorganisms also alleviated significantly and thereafter began
to shift to P limitation after 31 years. Moreover, plant N:P
ratio had a significantly positive correlation with TERL. These

results indicated that the changes in plant nutrient limitation
were consistent with those in microbial nutrient limitation, but
soil microbes were limited by P earlier than plants. Soil nutrient
stoichiometry, especially soil C:N ratio, was the key factor that
affected nutrient limitation for plant and microbial communities.
This finding confirmed that soil C:N may determine the microbial
nutrient acquirement and further mediate the variation in plant
nutrient stoichiometry. Our findings provide important insights
into the links between microbial metabolic limitation and plant
nutrient limitation during vegetation restoration to improve our
understanding of soil C turnover in temperate forest ecosystems.
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