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Over the last 50 years, many approaches for extracting plant key parameters from
remotely sensed data have been developed, especially in the last decade with the
spread of unmanned aerial vehicles (UAVs) in agriculture. Multispectral sensors are
very useful for the elaboration of common vegetation indices (VIs), however, the
spectral accuracy and range may not be enough. In this scenario, hyperspectral (HS)
technologies are gaining particular attention thanks to the highest spectral resolution,
which allows deep characterization of vegetative/soil response. Literature presents few
papers encompassing UAV-based HS applications in vineyard, a challenging conditions
respect to other crops due to high presence of bare soil, grass cover, shadows and
high heterogeneity canopy structure with different leaf inclination. The purpose of this
paper is to present the first contribution combining traditional and multivariate HS data
elaboration techniques, supported by strong ground truthing of vine ecophysiological,
vegetative and productive variables. Firstly the research describes the UAV image
acquisition and processing workflow to generate a 50 bands HS orthomosaic of
a study vineyard. Subsequently, the spectral data extracted from 60 sample vines
were elaborated both investigating the relationship between traditional narrowband VIs
and grapevine traits. Then, multivariate calibration models were built using a double
approach based on Partial Least Square (PLS) regression and interval-PLS (iPLS),
to evaluate the correlation performance between the biophysical parameters and HS
imagery using the whole spectral range and a selection of more relevant bands applying
a variable selection algorithm, respectively. All techniques (VIs, PLS and iPLS) provided
satisfactory correlation performances for the ecophysiological (R2 = 0.65), productive
(R2 = 0.48), and qualitative (R2 = 0.63) grape parameters. The novelty of this work is
represented by the first assessment of a UAV HS dataset with the expression of the
entire vine ecosystem, from the physiological and vegetative state to grapes production
and quality, using narrowband VIs and multivariate PLS regressions. A correct non-
destructive estimation of key parameters in vineyard, above all physiological parameters
which must be measured in a short time as they are extremely influenced by the
variability of environmental conditions during the day, represents a powerful tool to
support the winegrower in vineyard management.

Keywords: unmanned aerial vehicles (UAV), precision viticulture, hyperspectral sensing, vegetation indices,
image segmentation
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INTRODUCTION

To measure the dynamic response of plants to changing
environmental conditions, quantitative vegetation variable
extraction is essential. The spatiotemporally explicit retrieval
of plant biophysical characteristics is possible using Earth
observation sensors in the optical domain. Satellite remote
sensing has been widely employed in agriculture during the last
few decades (Immitzer et al., 2012; Pastonchi et al., 2020; Squeri
et al., 2021). Unmanned aerial vehicles (UAVs) have recently
attracted a lot of attention because of their increased mission
schedule flexibility, acquiring data with higher spatial resolution
in a precision viticulture context (Adão et al., 2017). Over the
last 50 years, many approaches for extracting biophysical and
biochemical parameters from remotely sensed data have been
developed. In this context, UAV based HS sensors (Figure 1)
are gaining particular attention due to their well-known ability
to provide deep spectral characterization of vegetation and
soil targets. HS imagery has been applied to quantify leaf area
index (Haboudanea et al., 2004; Delegido et al., 2013), plant
biomass (Cho et al., 2007; Fu et al., 2014), pigment contents
(Yi et al., 2014), plant nitrogen content (Ryu et al., 2011; Inoue
et al., 2012), and leaf nitrogen and phosphorus concentrations
(Ramoelo et al., 2013; Zhang et al., 2013), soil moisture content
(Ge et al., 2021), as well as plant water status and transpiration
(Wang and Jin, 2015; Marshall et al., 2016).

Traditionally HS imaging sensors have been manufactured
with a push-broom line scanning approach (Suomalainen et al.,
2014). Recently, hyperspectral sensing technologies that acquire
two-dimensional frame format have entered the market (Aasen
et al., 2018). Senop HSC-2 HS camera (Senop Optronics, Finland)
is characterized by a global shutter snapshot sensor, a tuneable
Fabry-Pérot interferometer, able to record data in the VNIR

FIGURE 1 | Unmanned Aerial Vehicle used in the study equipped with
hyperspectral (HS) imaging sensor.

(Visible and Near Infrared) spectral range 500–900 nm; Cubert
UHD 185-Firefly (Cubert GmbH, Germany) and the IMEC
SM5 × 5 (IMEC, Belgium) sensors provide registered bands
frames. Photogrammetric experiments using unmanned airborne
vehicles (UAVs) may also benefit from scaled-down hyperspectral
2D cameras, making for a more cost-effective mapping process.
HS imagery captured by UAVs has mostly been used for
agricultural and environmental surveillance (Aasen et al., 2018;
Oliveira et al., 2019). As a result, the collection and interpretation
of UAV-derived data has become easier, faster, and more accurate.

When operating on a UAV, the Senop camera acquires
hypercubes from various spectral ranges and bands, and emits
non-registered bands. To prevent band misalignment, co-
registration is required. The capacity of various 2D shifts in band
registration of time-consecutive camera images was tested by
Tommaselli et al. (2015). Honkavaara et al. (2013) found that in
flat agricultural scenarios, band registration of such images with
feature-based matching and 2D image transformation provided
successful registration. MEPHySTo was introduced by Jakob et al.
(2017) as a toolbox for pre-processing UAV HS data, consisting
of a pre-processing chain optimized for difficult geometric and
radiometric correction. It also includes automated mosaicking
and georeferencing algorithms that allow for quick and simple
surveying of remote areas where obtaining ground control points
(GCP) would be difficult or time-consuming.

The retrieval of biophysical parameters from HS data could
be evaluated using parametric regression with discrete band
approaches (vegetation indices—VIs) or quasi-continuous
spectral bands, or linear/non-linear non-parametric regression
with linear (partial least square regression—PLSR) or non-
linear non-parametric regression (random forest, support
vector machine—SVM, gaussian process regression—GPR)
(Matese and Di Gennaro, 2021). Many VIs depend on a
combination of near-infrared (NIR) and red reflectance,
such as the NIR-to-red ratio. While most structural indices
were built using broad-band systems, narrow-band (<10
nm) equivalents can be measured through HS imagery. On
the other hand, several biochemical/physiological indices
are simply hyperspectral requiring small bands (=10 nm)
and non-sample band centers that are not considered by
broad-band systems. Several HS-derived VIs (HVIs) based on
narrow bands have been proposed for quantifying biophysical
parameters since the advent of HS remote sensing, offering
additional information and significant advantages over large
bands (Thenkabail et al., 2000). Transformed spectrum
formats, such as transmittance and derivative spectra, have
also been shown to be useful in generating more broadly
available VIs for deriving biophysical and biochemical
parameters. Derivative techniques, for example, have the
advantage of minimizing additive constants and linear
functions, allowing for remote sensing of crop parameters
(Imanishi et al., 2004).

Traditional methods have been commonly used in post-
processing for their ease of manipulation, such as those focused
on VIs, stepwise multiple linear regression, partial least-squares
regression, and so on (Dorigo et al., 2007). Broadband VIs date
back to the 1970s and are primarily focused on multispectral
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remotely sensed data. The ratio vegetation index (RVI) (Pearson
and Miller, 1972), normalized difference vegetation index
(NDVI) (Rouse et al., 1974) and soil-adjusted vegetation index
(SAVI) (Huete, 1988) are all common broadband VIs that
were designed to eliminate the effects of environment and
soil interferences. Many hyperspectral VIs (HVIs) based on
narrow bands and very high spectral resolution have also been
described since the advent of hyperspectral remote sensing. HVIs
have long been used to estimate biophysical and biochemical
attributes (Rodríguez-Pérez et al., 2007; Marshall et al., 2016).
Despite the fact that some HVIs are closely copied or imitated
from their broadband equivalents, it has been proposed that
narrow bands may offer additional information and have
important advantages over large bands in quantifying biophysical
parameters (Thenkabail et al., 2000). Indeed, traditionally used
VIs have many intrinsic shortcomings despite their ease of
understanding and implementation (Baret and Guyot, 1991; Li
and Wang, 2011). Such flaws can only be addressed by either
increasing the dataset used to calculate VIs or enhancing the
accuracy of that data. While the recently developed hybrid
method significantly expanded the data volume and hence the
likelihood of creating a more broadly usable VI, a variety
of transformed spectra formats, such as transmittance and
derivative spectra, have also proven to be effective in determining
biophysical and biochemical parameters (Rady et al., 2014).
Derivative methods, for example, have been shown to be feasible
for estimating plant biophysical and biochemical parameters
because they minimize additive constants and linear functions
(Imanishi et al., 2004). For example, in plant condition detection,
the red-edge location (REP), which is the wavelength of the
maximum first derivative in the range of 690–750 nm, has
been successfully used. As a result, a number of derivative
hyperspectral indices (dHVIs) have been developed and are now
being used to calculate biophysical and biochemical quantities
(Demetriades-Shah et al., 1990; Imanishi et al., 2004; Wang and
Jin, 2015). Demetriades-Shah et al. (1990) and Zarco-Tejada
et al. (2003a,b) found that indices based on derivative spectra
are more efficient than reflectance-based indices. However, the
advantages of dHVIs over reflectance-based VIs, as well as
the distinctions between derivatives of different orders, have
yet to be thoroughly explored. The significant collinearity in
spectral data must be considered when using statistical models
for the retrieval of vegetative biophysical characteristics, and full
spectrum techniques like PCA and PLS are extensively employed
in chemometrics (Wold et al., 1987, 2001). These methods modify
the spectral feature space so that the resultant (latent) factors
account for the most variation in the feature space (PCA), or
in the covariance with the target variables (PLS). State-of-the-
art research presents only 7 papers encompassing UAV-based
HS applications in a vineyard (Zarco-Tejada et al., 2012, 2013;
Vanegas et al., 2018; Horstrand et al., 2019; Maimaitiyiming
et al., 2020; Suarez et al., 2021; Di Gennaro et al., 2022),
while more than 53 papers focused on HS applications in
a vineyard without the use of UAVs. Di Gennaro et al.
(2022) suggested a comparison in term of accuracy between
broadband multispectral and narrowband HS data by means
the calculation of some VIs on canopy and soil targets in

vineyard, assessing in general higher spectral accuracy of HS
camera respect to the ground truth provided by reference
spectroradiometer (Di Gennaro et al., 2022). Suarez et al.
(2021) investigated the links between grape quality parameters
such as aroma components vs. image-based spectral indices
and photosynthetic plant traits derived by physical model
inversion methods. Maimaitiyiming et al. (2020) considered
aerial hyperspectral and thermal images acquired by using a
visible and near-infrared (VNIR, 400–1,000 nm) push-broom
hyperspectral camera (Nano-Hyperspec VNIR model, Headwall
Photonics, Fitchburg, MA, United States) installed in tandem
with a thermal camera (FLIR Vue Pro R 640, FLIR Systems, Inc.,
Wilsonville, OR, United States) carried by a hexacopter (Matrice
600 Pro, DJI Technology Co., Ltd., Shenzhen, China). The
authors proposed a canopy zone-weighting (CZW) method to
estimate physiological indicators, such as stomatal conductance
(gs) and steady-state fluorescence (Fs). Horstrand et al. (2019)
used a solution based on a commercial DJI Matrice 600
and a Specim FX10 hyperspectral camera to adapt this latter
device, mainly conceived for industrial applications, into a
flying platform in which weight, power budget, and connectivity
are paramount. Vanegas et al. (2018) used an S800 EVO
Hexacopter (DJI Ltd., Shenzhen, China) combined with a
Headwall Nano-Hyperspec (Headwall Photonics Inc., Bolton,
MA, United States) for developing a predictive model aimed at
detecting phylloxera infections. Zarco-Tejada et al. (2012, 2013)
estimated leaf carotenoid content and water stress in vineyards
by considering the same HS camera using narrowband indices.
Other interesting studies focused on retrieving biophysical
parameters in vineyards even not involving the use of UAVs
are reported by Martin et al. (2007) and García-Estévez et al.
(2017) who used hyperspectral imagery to map grape quality
in “Tempranillo” vineyards, Haboudane et al. (2008) for crop
chlorophyll content using derivatives spectral indices, while
Pérez-Priego et al. (2015) investigated nutrient uptake. Although
several authors focused on the evaluation of hyperspectral
reflectance indices to detect grapevine water status (Rodríguez-
Pérez et al., 2007; Serrano et al., 2012), only Pôças et al. (2017,
2020) used machine learning methodologies to obtain more
detailed results.

Little work has been done about the benefits that might
derive from characterizing efficiency parameters pertaining to
the vineyard ecosystem from UAV platforms equipped with
HS sensors. Moreover, the study has the ambition to move
beyond traditional methodologies such as the use of VIs
while testing and validating multivariate methods such as
PLS, seeking for the significant bands in the characterization
of the variables of interest. These objectives are crucial for
the technological transfer to winegrowers, either for a better
understanding of the vineyard characteristics and as valid tools
to achieve winegrowers’ oenological objectives. In detail two
main aims were pursued: (i) describe the image acquisition
and processing workflow of HS data cubes developed in this
work; (ii) test the performance of UAV equipped with an HS
camera in grapevine ecophysiological, vegetative, productive and
grape composition traits characterization, using narrowband HS-
derived VIs and PLS models.
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MATERIALS AND METHODS

Experimental Site
The study was conducted in 2020 in a 15 rows plot placed
within a rainfed Barbera vineyard established in 2003 at Tenuta
Pernice (Castelnovo Val Tidone, Italy) (Figure 2A). Vines are
spaced 2.4 × 1 m (between- and within-row, respectively),
long-cane pruned and trained to a vertical-shoot-positioned
trellis along NS oriented rows. During the season the canopy
was trimmed twice on DOY (day of year) 162 and DOY 204,
whilst vineyard management was performed according to organic
farming protocols.

System Description
A Senop HSC-2 HS camera mounted on a DJI Matrice Pro
Hexacopter UAV platform (Figure 2B) was used for the flight on
DOY 223 (10 August). The camera has a global shutter snapshot
sensor that records data between the wavelengths of 500 and
900 nm. It has two partly reflecting surfaces that are parallel
to each other. The length of the optical path provided between
these reflecting surfaces (gap) determines the wavelengths that
can be transmitted by the interferometer (Honkavaara et al.,
2013). Various wavelengths can be obtained by adjusting this
length. If the camera platform changes during the spectral band
acquisition process, any spectral band in the same cube exposed
to a particular air gap value has a different position and attitude
(Honkavaara et al., 2013). The hyperspectral cube bands obtained
with the camera can be modified based on individual applications
and the camera’s spectral range and resolution. The image has
a resolution of 1,024 × 1,024 pixels. The Senop camera has a
beam splitting system and two CMOS sensors (without the Bayer
filter) mounted (Oliveira et al., 2016a): the first is optimized to
sense visible bands (500–636 nm), while the second is optimized
to record both visible and NIR (650–900 nm). The flights were
performed at a speed of 1.8 m/s at a height of 32 m above
ground level (AGL) providing spectral images with a ground

sampling distance (GSD) of approximately 2 cm/pixel. Front and
side overlapping were 75 and 72%, respectively. The number
and spectral sensitivities of the bands and integration time are
the key parameters to be set. Time of integration was chosen
as 1 ms in order to avoid image overexposure in relation to
bright objects. The HSC-2 camera was set with 50 spectral
bands (500–900) with a Full Width at Half Maximum (FWHM)
of about 8 nm. Two types of reference were assessed; firstly,
for reflectance conversion, five Senop targets with 2, 9, 25, 50,
and 88% reflectance with sizes 50 × 50 cm. The targets are
made of materials with nearly Lambertian reflectance properties
and calibrated in laboratory conditions. Secondly, for geometric
correction and georeferencing, white plastic targets with size
15 × 15 cm were used as ground control points (GCPs) and
placed on the boundary of the test area as well as on the right
side of 60 sample vines chosen for ground truth measurements,
as described below.

Ground Measurements
At full bloom (DOY 157) a pool of 60 vines was randomly
identified within the 15-row plot and georeferenced by using a
GPS. Per each sentinel vine, all clusters were picked, counted and
weighed at harvest on DOY 260. In parallel, three representative
basal-clusters per vine were collected and immediately taken
to the laboratory for subsequent morphological and chemical
characterization. Accordingly, from each sample, a 50-berry
subsample was randomly collected and weighed to assess the
mean berry weight. Grapes were then immediately frozen
and stored at –18◦C for subsequent determination of total
anthocyanins and phenolics concentration (Iland, 1988). The
remaining grapes were crushed for assessing total soluble solids
(TSS) concentration, must pH and titratable acidity (TA). An
aliquot of juice was diluted 1:4 with distilled water and used
for quantifying the malic acid concentration as reported in Gatti
et al. (2020). At onset of veraison (DOY 213), when full canopy
growth was reached, pre-dawn (9pd) and mid-day (9md) leaf

FIGURE 2 | Location of the experimental vineyard (A) and the Unmanned Aerial System used in the study (B).
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water potential was determined by using a Scholander pressure
chamber. Two leaves per plant were collected from a batch of
30 vines out of the 60 sentinel plants. After leaf fall, total nodes
per vine on main and lateral dormant shoots was counted. Leaf
area (LA) per vine was then calculated by multiplying the node
number and corresponding mean values of leaf area for primary
and lateral leaves as assessed at harvest (Gatti et al., 2021).
In winter, during pruning operations performed on DOY 345,
pruning weight for one-year-old canes was quantified by using
a portable field-scale.

Data Processing and Analysis
The initial step was the conversion from DN to radiance,
which was done with the use of factory calibration gains of the
HS camera. Secondly, noise signals were removed from each
image by means of the dark current measurement subtracted
from radiance values. Finally, an empirical line method (ELM)
was applied for the radiation to reflectance conversion (Matese
et al., 2019), using five reference reflectance panels to perform
radiometric correction for each band of the HS images.
The next step was the HS orthomosaic generation, which is
described in Figure 3. Agisoft Metashape software (AgiSoft
LLC., St. Petersburg, Russia) was used for the reconstruction
of each single band orthomosaic. After that a supervised
procedure of georeferencing using GCPs was performed in QGIS
software1 (2021. QGIS Geographic Information System. QGIS
Association).2 In this work 215 hypercubes were acquired to
monitor the whole study site. Once the full orthomosaic had been

1QGIS.org
2http://www.qgis.org

processed, Matlab software (MathWorks, Natick, Massachusetts,
United States) was used to perform a segmentation procedure
applying the DEM (Digital Elevation Model) method described
in Cinat et al. (2019) and a further threshold filter was applied
to avoid shaded leaves and soil. Finally, a supervised region-of-
interest (ROI) procedure based on 0.8× 0.8 m polygons was used
for the HS data extraction from each sample vine, to perform the
dataset post-processing in terms of retrieval of ground agronomic
variables sampled using HS derived VIs.

Afterward, the following narrowband VIs (Table 1) were
calculated using 50 bands hypercubes at very high spectral
resolution (10 nm intervals) in the visible (VIS), Red Edge (RE),
and near infrared (NIR) wavelengths for each polygon. Spectral
pre-treatment was done using mean centering. The average of the
VIs was calculated within each polygon.

Spectral bands were imported into Matlab and, for the
productive, qualitative and vegetative parameters, one dataset
was obtained with size {60 × 50}, composed by the average
values corresponding to the 50 wavelengths, for each one of
the 60 vine samples. As regards ecophysiological parameters,
9pd and 9md were determined on 30 vines out of the 60
plants, therefore the size of obtained dataset was equal to
{30 × 50}. Partial Least Square regression (PLSr) (Naes et al.,
2002) was used to build multivariate calibration models in
order to evaluate the correlation performance between the
biophysical parameters and hyperspectral imagery using the
whole spectral range. The calibration models were calculated
on the mean centered dataset and the statistical parameters
used to evaluate the PLS performance were the Root Mean
Square Error (RMSE) and coefficient of determination (R2); both
parameters were calculated in calibration (RMSEC, R2 Cal) and

FIGURE 3 | Hyperspectral images processing workflow.
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TABLE 1 | Narrowband vegetation indices calculated from HS dataset.

Vis Full name Spectral band group Equation

NDVI 1 Normalized difference vegetation index NIR, VIS (R850-R660)/(R850 + R660)

NDVI 2 Normalized difference vegetation index NIR, VIS (R835-R660)/(R835 + R660)

NDVI 3 Normalized difference vegetation index NIR, VIS (R850-R660)/(R850 + R660)

GNDVI 1 Green NDVI NIR, VIS (R850-R540)/(R850 + R540)

GNDVI 2 Green NDVI NIR, VIS (R780-R550)/(R780 + R550)

SAVI Soil-adjusted vegetation index NIR, VIS (1 + 0.5) × (R802-R660)/(R802 + R660 + 0.5)

RENDVI Red edge normalized difference vegetation index NIR, RE (R850-R680)/(R850 + R680)

NDRE Normalized difference nir/red edge index NIR, RE (R770-R750)/R770 + R750)

NRER Nir-re-red normalized difference vegetation index NIR, RE, VIS (R850-R695)/(R695 + R660)

TCARI Transformed chlorophyll absorption ratio NIR, RE, VIS 3×[(R695-R663) –0.2(R695-R540) × (R695/R663)]

MTVI 1 Modified triangular vegetation index NIR, RE, VIS 1.2× (1.2(R800-R540) –2.5(R660-R540)

MTVI 2 Modified triangular vegetation index NIR, RE, VIS 1.2× (1.2(R800-R550) –2.5(R670-R550)

EVI Enhanced vegetation index NIR, RE, VIS 2.5× (R850-R660)/(R850 + 6×R660-7.5×R505) + 1

NRER Nir-re-red normalized difference vegetation index NIR, RE, VIS (R850-R695)/(R695 + R660)

LCI Leaf chlorophyll index NIR, RE, VIS (R850-R710)/(R850 + R680)

MTCIvar Meris terrestrial chlorophyll index NIR, RE (R850-R680)/(R680 + R660)

NRI Nitrogen reflectance index NIR, RE (R555-R550)/(R555 + R550)

PRI Photochemical reflectance index NIR, RE (R570-R530)/(R570 + R530)

SPVI Spectral polygon vegetation index NIR, RE, VIS 0.4× [3.7× (R800-R670) –1.2 (R530-R670)]

SR710 Simple ratio 710 RE R750/R710

SR680 Simple ratio 680 RE R800/R680

RVI Ratio vegetation index NIR, VIS R810/R660

VOG1 Vogelmann index RE R745/R720

GM Gitelson and Merzlyak index RE, VIS R750/R550

MNDm Modified normalized difference NIR, RE, VIS [(R750-R705)/(R750 + R705-2× R508)]

NDRE2 Normalized difference nir/red edge index NIR, RE, VIS (R795-R720)/(R795 + R720)

MCARI2 Modified chlorophyll absorption in reflectance NIR, RE, VIS [(R750-R705) –0.2 (R750-R550) × (R750/R705)]

TVI Triangular vegetation index NIR, RE, VIS 0.5× [120× (R750-R550) –200(R670-R550)]

EVI2 Enhanced vegetation indexrep NIR, RE, VIS 2.5× (R800-R670)/(R800 + 6×R670-7.5×R508) + 1

REP Red Edge position index NIR, RE, VIS 700 + (45×R670 + R778)/2- (R850)/(R735 –R695)

maxR 1st Derivative Max RED index dHVI-VIS Max [D660, D680]

sumR 1st Derivative Sum RED index dHVI-VIS 6 [D660, D680]

maxRE 1st Derivative Max RE index dHVI-RE Max [D690, D700]

sumRE 1st Derivative Sum RE index dHVI-RE 6 [D690, D700]

maxLARE 1st Derivative Max LARE index dHVI-RE Max [D690, D710]

sumLARE 1st Derivative Sum LARE index dHVI-RE 6 [D690, D710]

maxNIR 1st Derivative Max NIR index dHVI-NIR Max [D790, D840]

sumNIR 1st Derivative Sum NIR index dHVI-NIR 6 [D790, D840]

in cross-validation (RMSECV, R2 CV). The optimal number of
Latent Variables (LVs) was chosen by minimizing the value of
RMSECV. In particular, a random cross-validation method was
used, subdividing the samples in 3 deletion groups. In order to
evaluate the possibility of reducing the number of wavelengths
and selecting the more relevant variables for each parameter,
interval-PLS (iPLS) was tested as algorithm for automatically
variable selection (Norgaard et al., 2000). Briefly, iPLS consists of
subdividing the whole signal into a certain number of intervals of
equal length which is defined by the user. Calibration models are
calculated by iteratively adding or removing intervals, according
to whether the forward or reverse search strategy is considered.
The most useful intervals for model calibration are identified by
minimizing the RMSECV value (Orlandi et al., 2018). In this

work forward iPLS was applied considering two different interval
sizes: 10 and 5 variables. PLS and iPLS calibration models were
elaborated and cross-validated by means of PLS-Toolbox ver.
8.9.1 (Eigenvector Research Inc., Manson, WA, United States).

RESULTS

Ground Measurements
Data reported in Table 2 identify a significant within-field
variability at both physiological and agronomical level. With a
CV of 24%, 9pd at veraison varied between –0.27 and –0.73 MPa
suggesting a transition from slight to severe water shortage in
the soil. 9md showed lower variability (CV = 9.8%) although
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TABLE 2 | Mean, minimum and maximum values, and coefficient of variation
(CV%) for leaf water status, canopy growth, yield components, and fruit
composition of Barbera grapevines recorded in 2020.

Variable Mean Min Max CV (%)

9pd (MPa) –0.5 –0.27 –0.73 24.2

9md (MPa) –1.34 –1.08 –1.64 9.8

Total leaf area (m2/vine) 1.85 0.65 3.43 33.8

Lateral leaf area (m2/vine) 0.17 0.00 0.53 77.6

Pruning weight (kg/vine) 0.48 0.16 1.07 48.7

Yield (kg/vine) 3.37 0.76 8.46 52.2

Cluster weight (g) 178.4 54.3 386.1 41.6

Berry weight (g) 2.0 1.3 2.8 20.2

TSS (◦Brix) 24.4 19.0 29.3 11.4

Titratable acidity (g/L) 9.66 6.58 14.41 15.8

Malate (g/L) 2.13 0.75 5.99 56.8

Total anthocyanins (mg/g) 0.75 0.18 1.43 38.3

Total phenolics (mg/g) 1.78 0.88 2.71 26.0

the calculated mean value (–1.34 MPa) highlights a likely status
of relatively severe water stress. Data describing canopy growth
and vine capacity depicted a highly variable vineyard condition.
Indeed, total leaf area per vine varied between 0.65 and 3.43 m2

with a coefficient of variation of about 34% that peaked up to
78% in the case of lateral leaf area. This variability was confirmed
in winter with pruning weight of 1-year canes varying between
0.16 and 1.07 kg/vine (CV = 49%), identifying the coexistence
of very low and high vigor vines within the 15-row plot. Yield
in high vigor vines was 11-fold higher as compared to low
cropping vines as a result of bigger clusters (386 vs. 54 g) and
berries (2.8 vs. 1.3 g). At harvest, a large variability in fruit
composition was described for TSS (CV = 11.4%), titratable
acidity (CV = 15.8%) and the variables describing phenolic
composition. The highest coefficients of variation were described
for malate (56.8%), anthocyanins (38.3%), and total phenolics
(26%) concentration.

Relationship Between Narrowband HVIs
and Grapevine Performances
The coefficients of determination (R2) for the linear regressions
between narrowband HVIs and ground measurements are
reported in Table 3.

Generally, the more performing narrowband indices were
RVI, EVIm, maxLARE, MTCIvar, and NDVI3. Conversely, poor
correlations were achieved between ground measurements and
maxNIR, sumNIR, sumR, maxR, NRI, and PRI. As regards
the ecophysiological parameters, the majority of narrowband
indices showed a good correlation with 9pd. In particular, the
closest correlations were obtained with NDVI3 (R2 = 0.65),
RVI (R2 = 0.63), and SR680 (R2 = 0.63). Conversely, weaker
relationships were found between 9md and the narrowband
indices; however, the RVI was confirmed to be the most efficient
index (R2 = 0.36). For yield components, best correlations were
achieved between berry weight (Bwt) and NDVI2, MTCIva, RVI
sharing an R2 of 0.48. Slightly worse correlations were found for
yield and cluster weight (Cwt); for both parameters the more

performing indices were NDVI1, GNDVI and MTCIvar with
an R2 from 0.35 to 0.30. Among the qualitative parameters,
satisfactory correlations were achieved between malate and the
majority of narrowband indices. In particular, the most fitting was
RVI (R2 = 0.63); however, equivalent results were also achieved
using SR680 (R2 = 0.62) and EVIm (R2 = 0.61). Conversely,
the same narrowband indices showed weaker correlations with
titratable acidity (R2 from 0.36 to 0.30). Furthermore, quite
poor relationships were found between TSS and the narrowband
indices. In regard to total anthocyanins and phenols, the
most performing indices were RVI and EVIm with an R2

from 0.48 to 0.40, respectively. Compared with the other
ground measurements, the worst performances were obtained for
vegetative parameters. Correlation between lateral leaf area (LLA)
and maxLARE yielded an R2 of 0.34, whereas total leaf area (TLA)
and pruning weight (Pwt) per vine achieved an R2 equal to 0.30
and 0.29 when regressed over sumRE and GNDVI2, respectively.

Relationship Between Partial Least
Square Models and Grapevine
Performances
For each Y variable, the results of the calibration performance are
reported in Table 4. Overall, the best correlation performances
were obtained for the parameters identifying fruit composition
and, among them, malic acid (R2 CV = 0.59), total phenols
(R2 CV = 0.41), and total anthocyanins (R2 CV = 0.36).
Conversely, the worse correlations were obtained for the
vegetative parameters and, among them, pruning weight (R2

CV = 0.27), and total leaf area (R2 CV = 0.06). The overall
best calibration performance was shown by ψpd (R2 CV = 0.65-
RMSECV = 0.07 MPa). This model was built using only 15
variables (three intervals made of 5 variables) out of 50 original
bands. The selected regions include wavelengths belonging to
549–663 nm and 761–794 nm. The measured vs. the predicted
values of ψpd are reported in Figure 4A. Conversely, it was
impossible to obtain a good correlation for ψmd (R2 CV = 0.22-
RMSECV = 0.10 MPa).

Concerning the yield and its components (Cwt and Bwt),
a satisfactory correlation was obtained for berry weight
(R2 CV = 0.46-RMSECV = 0.30 g). This model was built by means
of iPLS using one interval made of 10 bands with the selected
wavelengths belonging to 590–704 nm (Figure 4B). Among
the vegetative parameters, the best correlation performance was
achieved for LLA (R2 CV = 0.31-RMSECV = 0.11 m2/vine) by
means of iPLS. This result was obtained considering only the
wavelengths belonging to 712–753 nm, that were selected using
an interval width of 5 variables (Figure 4D). When compared
with the corresponding PLS model calculated on the whole
spectral range, the iPLS model generally resulted in equal values
or a slight reduction of the RMSECV value. However, the variable
selection also led to reducing the number of wavelengths while
selecting the more relevant variables for each Y parameter. The
best improvement was achieved for malic acid: the RMSECV
value obtained with iPLS is equal to 0.78 g/L instead of an
RMSECV value equal to 0.85 g/L obtained with PLS (Figure 4C).
The variable selection allowed a model to be built using only 10
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TABLE 3 | Coefficients of determination (R2) for linear regressions between narrowband HVIs and ground measurements.

HVIs 9pd 9md Yield Cwt Bwt TSS TA Malate Anth Phenols TLA LLA Pwt

NDVI1 0.6*** 0.23** 0.3*** 0.34*** 0.47*** 0.2*** 0.29*** 0.57*** 0.36*** 0.43*** 0.22*** 0.27*** 0.23***

NDVI2 0.6*** 0.25** 0.28*** 0.32*** 0.48*** 0.19*** 0.3*** 0.58*** 0.37*** 0.42*** 0.22*** 0.27*** 0.19***

GNDVI1 0.53*** 0.12 0.36*** 0.38*** 0.41*** 0.13** 0.24*** 0.48*** 0.25*** 0.32*** 0.17*** 0.23*** 0.23***

RENDVI 0.52*** 0.12 0.29*** 0.31*** 0.41*** 0.12** 0.21*** 0.47*** 0.28*** 0.34*** 0.15** 0.25*** 0.22***

MTCIvar 0.58*** 0.2* 0.32*** 0.35*** 0.48*** 0.18*** 0.29*** 0.58*** 0.36*** 0.43*** 0.18*** 0.26*** 0.23***

SAVI 0.6*** 0.25** 0.26*** 0.29*** 0.43*** 0.21*** 0.3*** 0.56*** 0.36*** 0.39*** 0.27*** 0.3*** 0.16**

TCARI 0.35*** 0.35*** 0.11* 0.14** 0.26*** 0.26*** 0.32*** 0.44*** 0.32*** 0.35*** 0.23*** 0.2*** 0.11**

MTVI 0.6*** 0.28** 0.23*** 0.26*** 0.41*** 0.22*** 0.32*** 0.58*** 0.38*** 0.4*** 0.27*** 0.31*** 0.16**

EVIm 0.62*** 0.28** 0.24*** 0.27*** 0.41*** 0.25*** 0.34*** 0.61*** 0.4*** 0.45*** 0.24*** 0.33*** 0.23***

GNDVI2 0.57*** 0.23** 0.26*** 0.3*** 0.32*** 0.21*** 0.15** 0.41*** 0.31*** 0.37*** 0.16** 0.29*** 0.29***

NDRE 0.27** 0.12 0.08* 0.07* 0.07* 0.11** 0.04 0.11** 0.06 0.07* 0.02 0.13** 0.11*

LCI 0.49*** 0.09 0.28*** 0.28*** 0.28*** 0.08* 0.21*** 0.39*** 0.2*** 0.25*** 0.09* 0.18*** 0.21***

MTVI2 0.63*** 0.29** 0.23*** 0.25*** 0.4*** 0.22*** 0.32*** 0.59*** 0.38*** 0.41*** 0.27*** 0.31*** 0.17**

NDVI3 0.65*** 0.26** 0.25*** 0.29*** 0.44*** 0.21*** 0.27*** 0.58*** 0.38*** 0.44*** 0.23*** 0.32*** 0.24***

NRI 0.19* 0.04 0.15** 0.17** 0.26*** 0.05 0.13** 0.23*** 0.09* 0.12** 0.1* 0.04 0.03

PRI 0.13 0.13 0.01 0.01 0.02 0.08* 0.07* 0.15** 0.11** 0.14** 0.01 0.05 0.02

SPVI 0.63*** 0.28** 0.23*** 0.26*** 0.4*** 0.21*** 0.31*** 0.58*** 0.37*** 0.39*** 0.27*** 0.32*** 0.17**

SR710 0.39*** 0.13 0.21*** 0.21*** 0.21*** 0.09* 0.15** 0.29*** 0.19*** 0.22*** 0.07* 0.16** 0.12**

SR680 0.63*** 0.24** 0.3*** 0.31*** 0.47*** 0.19*** 0.3*** 0.62*** 0.39*** 0.43*** 0.22*** 0.25*** 0.19***

RVI 0.63*** 0.36*** 0.3*** 0.33*** 0.48*** 0.25*** 0.36*** 0.63*** 0.42*** 0.48*** 0.21*** 0.28*** 0.23***

VOG1 0.12 0.03 0.13** 0.08* 0.06 0.09* 0.02 0.08* 0.11* 0.13** 0 0.05 0.17**

GM 0.53*** 0.22* 0.28*** 0.32*** 0.36*** 0.19*** 0.23*** 0.46*** 0.3*** 0.35*** 0.18*** 0.28*** 0.21***

MNDm 0.23** 0.06 0.12** 0.11* 0.13** 0.12** 0.08* 0.19*** 0.14** 0.19*** 0.01 0.14** 0.16**

NDRE2 0.3** 0.06 0.19*** 0.19*** 0.2*** 0.08* 0.06 0.15** 0.15** 0.16** 0.04 0.08* 0.13**

MCARI2 0.47*** 0.19* 0.1* 0.13** 0.23*** 0.24*** 0.23*** 0.43*** 0.3*** 0.34*** 0.2*** 0.31*** 0.16**

TVI 0.61*** 0.31** 0.19*** 0.22*** 0.37*** 0.26*** 0.31*** 0.58*** 0.39*** 0.44*** 0.25*** 0.33*** 0.19***

EVI2 0.63*** 0.3** 0.23*** 0.25*** 0.39*** 0.22*** 0.31*** 0.57*** 0.37*** 0.4*** 0.26*** 0.33*** 0.17**

REP 0.4*** 0.1 0.14** 0.17** 0.28*** 0.13** 0.08* 0.3*** 0.19*** 0.24*** 0.18*** 0.24*** 0.12**

maxR 0.08 0.09 0 0 0.03 0.1* 0.11** 0.08* 0.04 0.04 0.03 0.09* 0.01

sumR 0 0.05 0.04 0.05 0.07* 0.08* 0.1* 0.07 0.05 0.04 0.08* 0.06 0

maxRE 0.49*** 0.23** 0.15** 0.19*** 0.37*** 0.24*** 0.24*** 0.52*** 0.37*** 0.41*** 0.26*** 0.3*** 0.16**

sumRE 0.52*** 0.28** 0.14** 0.18*** 0.36*** 0.21*** 0.23*** 0.53*** 0.36*** 0.4*** 0.3*** 0.28*** 0.15**

maxLARE 0.59*** 0.26** 0.19*** 0.2*** 0.34*** 0.31*** 0.34*** 0.56*** 0.4*** 0.43*** 0.24*** 0.34*** 0.2***

sumLARE 0.59*** 0.28** 0.16** 0.2*** 0.36*** 0.25*** 0.29*** 0.57*** 0.38*** 0.43*** 0.27*** 0.32*** 0.19***

maxNIR 0.05 0 0.03 0.04 0 0 0.01 0.01 0 0 0.02 0.04 0.01

sumNIR 0 0.04 0.01 0.01 0.01 0.03 0.03 0.01 0 0.01 0.01 0 0.02

Within each column the highest R2 values are highlighted.
***, **, * and “” indicate p < 0.0001, < 0.001, < 0.01, and > 0.01, respectively.
Narrowband HVIs reported in the first column are described in Table 1. 9pd, pre-dawn leaf water potential; 9md, mid-day leaf water potential; Cwt, cluster weight; Bwt,
berry weight; TSS, total soluble solids; TA, titratable acidity; Anth, total anthocyanins; TLA, total leaf area; LLA, lateral leaf area; Pwt, pruning weight.

bands (two intervals made of 5 variables) out of 50 original bands.
The selected wavelengths belonging to 590–704 nm.

DISCUSSION

Interpretation of the R2 data reported in Table 3 vs. means,
range of variation and coefficient of variation (CV) of agronomic
and physiological variables is quite puzzling. In general terms,
for a given index, closer correlation is expected any time a
given variable, primarily due to soil heterogeneity, shows a larger
degree of variability (Trought et al., 2008; Baluja et al., 2013;
Squeri et al., 2019; Gatti et al., 2021). This concept seems to

hold, for instance, when RVI, NDVI3, SR680, and EVI2 are
correlated with 9pd and 9md. In all cases R2 calculated for
9pd is more or less halved when referred to 9md. The most
obvious reason for such a drop seems to be the lower CV (9.8%)
calculated for 9md which testifies to a fairly narrow range of
variation. As a matter of fact, there is no reason to think that
differential sensitivity of the two types of water potential are due
to different sampling methodology (both were assessed through
the pressure chamber method). This outcome is not encouraging
if HS indices are expected to be used as a replacement for the
tedious pressure chamber method for total midday or stem water
potential measurements; this is not just because R2 are rather low,
but also because given the recorded mean 9md (–1.34 MPa) and
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FIGURE 4 | Predicted values vs. ground-based measurements of the best calibration performances of multivariate models achieved for each biophysical parameter
group: 9pd for ecophysiological Y [(A), R2 CV = 0.65, RMSECV = 0.07 MPa], Bwt for productive Y [(B), R2 CV = 0.46, RMSECV = 0.30 g], Malate for qualitative Y
[(C), R2 CV = 0.59, RMSECV = 0.78 g/L], LLA for vegetative Y [(D), R2 CV = 0.31, RMSECV = 0.11 m2/vine].The dotted line indicates a regression with slope = 1.

calculated RMSECV of about –0.1 MPa the same mean values
can represent a condition of either moderate of severe stress
depending upon the concurrent evaporative demand (VPD on
DOY 213 was 4 kPa). Vice versa, Pearson correlation values
found for 9pd vs. NDVI3, SR680 and RVI reveal chances that
a quite reliable, yet otherwise slow and laborious reading such
as pre-dawn water potential, could be replaced with a fast, non-
destructive UAV-hyperspectral protocol resulting in a very high
resolution mapping of soil and plant water status. However, when
the same concept is applied to yield including two of its main
components, the hypothesis basically fails. Results concerning
yield per vine and two of its main components (i.e., berry

and cluster weight) showed that berry weight was slightly more
responsive to some indices such as NDVI2, MTCIvar, and RVI
(R2 = 0.48) although the other components (yield and Cwt) did
show higher CVs than berry weight. The hypothesis is that total
yield is largely affected by cultural and endogenous factors (e.g.,
varietal fruitfulness, bud induction, bud load, summer pruning
operations) whose description through a spectral signature is
more troublesome. For instance, floral bud induction for next
season cropping is typically decided in grapevine the season
before the image is taken and it is controlled, among several
factors, by specific growth and environmental conditions at that
time (May, 2004). As per final grape composition, the overall
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mild correlations found for all VIs vs. TSS (◦Brix) at harvest
support recent work by Suarez et al. (2021), who also reported
non-significant correlations for data taken on Shiraz. It is quite
notable from our study that a few VIs which already provided
good correlations with 9pd (EVIm, SR680, RVI), were those also
having close correlation with malic acid concentration at harvest
(R2 = 0.61–0.63) as well as with total anthocyanins and phenols
concentration (R2 = 0.40–0.48). This response is quite valuable
for at least two main reasons: (i) it is indeed not a case that malate,
color and phenolics are well known to be quite responsive to local
canopy microclimate conditions and namely those pertaining

to the fruit zone. Such high correlations demonstrate that the
proposed indices do have the potential to predict changes in
fruit composition at harvest especially for the parameters that
are highly dependent on light and thermal conditions around
the cluster which have proven to be the main drivers for either
synthesis or degradation of the above components (Downey et al.,
2004; Pereira et al., 2006; Mori et al., 2007; Sweetman et al., 2009).
Such changes might be a function of the inherent vine vigor,
type of training system, timing and extent of leaf removal or
shoot thinning (Poni et al., 2018); (ii) taking RVI as the best
example, it is viticulturally quite relevant and useful to have HS

TABLE 4 | Results of PLS and iPLS models.

Y Calibration
method

iPLS interval size Selected Bands(nm) LVs RMSEC RMSECV R2 cal R2 CV

9pd PLS – – 1 0.07 0.08 0.65 0.61

iPLS 10 590:704 3 0.06 0.08 0.76 0.61

iPLS 5 549:663 761:794 3 0.06 0.08 0.77 0.65

9md PLS – – 1 0.10 0.10 0.32 0.27

iPLS 10 590:794 1 0.10 0.11 0.33 0.18

iPLS 5 802:835 2 0.09 0.10 0.38 0.22

Yield PLS – – 3 1.25 1.46 0.42 0.21

iPLS 10 508:704 2 1.34 1.44 0.32 0.23

iPLS 5 508:541 590:663 712:753 2 1.30 1.40 0.37 0.26

Cwt PLS – – 3 0.06 0.07 0.39 0.24

iPLS 10 508:704 2 0.06 0.06 0.35 0.27

iPLS 5 508:541 671:704 3 0.06 0.07 0.39 0.23

Bwt PLS – – 3 0.28 0.32 0.53 0.38

iPLS 10 590:704 2 0.28 0.30 0.53 0.46

iPLS 5 549:753 3 0.27 0.31 0.56 0.44

TSS PLS – – 1 2.37 2.47 0.27 0.21

iPLS 10 590:794 1 2.35 2.41 0.28 0.24

iPLS 5 549:582 671:794 1 2.35 2.41 0.28 0.24

TA PLS – – 1 1.27 1.36 0.31 0.21

iPLS 10 508:794 1 1.29 1.35 0.29 0.21

iPLS 5 508:541 802:835 1 1.27 1.32 0.31 0.25

Malate PLS – – 1 0.78 0.85 0.57 0.51

iPLS 10 508:704 2 0.73 0.83 0.64 0.53

iPLS 5 590:704 2 0.74 0.78 0.63 0.59

Anth PLS – – 1 0.23 0.23 0.39 0.36

iPLS 10 712:794 1 0.23 0.24 0.39 0.32

iPLS 5 549:582 712:753 1 0.23 0.23 0.38 0.36

Phenols PLS – – 1 0.35 0.36 0.43 0.40

iPLS 10 712:794 1 0.35 0.36 0.44 0.41

iPLS 5 16:20 26:30 3 0.33 0.36 0.50 0.41

TLA PLS – – 1 0.55 0.56 0.07 0.04

iPLS 10 590:704 2 0.52 0.55 0.16 0.06

iPLS 5 671:704 1 0.52 0.56 0.15 0.05

LLA PLS – – 1 0.11 0.11 0.35 0.27

iPLS 10 712:794 2 0.11 0.11 0.37 0.29

iPLS 5 712:753 1 0.11 0.11 0.35 0.31

Pwt PLS – – 2 0.18 0.20 0.38 0.27

iPLS 10 712:794 2 0.19 0.20 0.36 0.27

iPLS 5 761:794 2 0.19 0.20 0.35 0.25

Within each Y parameter the best calibration performance is reported in bold.
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indices warranting good correlation with a range of variables
representing plant water status (e.g., 9pd), crop potential (e.g.,
fresh berry weight), and degree of maturity (e.g., TSS, malate,
anthocyanins, and phenols). We also feel that this is the first time
this achievement is reported, as in the Suarez et al. (2021) paper
the very close correlation that several HS indices show with a few
terpene compounds is not reflected in any significant correlation
with either color and phenolics.

Many approaches have been proposed to evaluate the
biophysical parameters of different plants by means of
hyperspectral data (Ismail and Mutanga, 2010; Doktor et al.,
2014; Yao et al., 2015). Among them, Atzbergera et al. (2010)
demonstrated that PLS is better performing then other methods
in order to extract the information by the whole spectral range for
evaluation of the canopy chlorophyll content in winter wheat. In
addition, the current study investigates the possibility of selecting
the most relevant feature by means of iPLS. In particular, the
results proved that the variable selection allowed the RMSECV
values to be slightly reduced or to obtain equal values compared
to the results obtained using the whole spectral range.

Pôças et al. (2017) developed an effective approach based
on hyperspectral reflectance data aimed at monitoring the
grapevine water status. However, the results obtained in this
study demonstrated the possibility of assessing other biophysical
parameters, such as productive ones. In particular, a good
performance was obtained for Bwt with a RMSECV value equal
to 0.30 g, using only 10 wavelengths belonging to 590–704 nm.

Furthermore, the results of this study showed better
performance than those obtained by Suarez et al. (2021)
when using plant traits derived from physical model inversion
of hyperspectral imagery for the evaluation of qualitative
parameters of grapevine, such as phenolic content. Considering
that the grapevine is a complex system characterized by a
dynamic balance between vegetative and productive features,
another strong point of this work is proving the potential of
a hyperspectral imaging sensor on the main key factors of the
“vine-ecosystem.” In fact, compared to other cited works, a wide
scenario has been explored, both functional aspects related to
the eco-physiological state, as well as the vegetative growth and
finally the quantitative and qualitative productive response at
the end of the cycle. To understand the real effectiveness of
a non-destructive optical techniques it is in fact necessary to
have a vision of the main traits of the “vine-ecosystem,” not
just focusing on single or few aspects. Regarding the high cost
of hyperspectral imaging technology, there are very few works
in the literature using UAV equipped with these cameras in
field conditions, especially with the wide ground truth dataset
collected here. Furthermore, another limitation of the research
on this topic is the high level of experience necessary to identify
and apply correct in-flight data acquisition and management
protocols, especially given the lack of ready-to-use software to
perform the complete processing workflow of the hypercubes.

Due to their inherent structure, vineyards pose a specific
challenge for remote sensing analysis (Singh et al., 2022). This is
due not just to a quite typical discontinuous canopy cover which
introduces the issue of “mixels” handling, rather to at least three

other peculiar features: (i) vines are extremely sensitive to any
factors causing spatial and temporal variation in growth and yield
and, on top of them, soil heterogeneity; (ii) large variability in
training systems (i.e., vigor, geometry, distance between rows)
originates complex interactions in terms of background and
shade, including also large diurnal variation, and (iii) more
than in any other orchard system, interference exerted by the
presence of portions of bare or grassed soil can be of utmost
complexity. All of this justifies why remote sensing images of
vineyards must be processed to separate canopy pixels from
the background. Moreover, considering that viticulture is one
of the most profitable agriculture sectors, digital agriculture
solutions play a key role in the decision-making processes
for grape production respect to other lower valuable crops.
Viticulture is a key socioeconomic and cultural sector in many
countries and regions worldwide, with a high economic impact
in the network of all relevant industry branches of the supply
and distribution chains. The latest report of the International
Organization of Vine and Wine (OIV, 2019), it is estimated
that the world vineyards cover an area of approximately 7.449
million ha (2018). Concerning the winemaking sector, global
wine production was 292 million hl in 2018, and wine trade in
monetary value has been growing continuously to reach a record-
breaking value of approximately EUR 30,000 million in 2018.
For these suggestions, however, studies of this type are necessary
to guide the technology transfer on solutions that have been
adequately tested (Tardaguila et al., 2021; Di Gennaro et al., 2022).
Another key issue is the challenge of climate change and the need
to describe plant processes at a very detailed level, using a large
number of inputs, may currently preclude the applicability of
simulation models as decision support tools for farmers. In fact,
models coupled with the use of new technologies such as UAV
and hyperspectral imagery may represent the most appropriate
management practices in the future.

The main limitation in this work is due to the fact that is
more reasonable to continuously measure the spectrum and use
it to estimate the dynamic changes of various attributes, and
finally analyze the yield and quality, but in our case a single flight
was used, identified as the best acquisition date in line with our
previous studies on vineyard (Matese and Di Gennaro, 2021),
to characterize the physiological and biochemical parameters
at harvest. Moreover, using this approach the aim was to
develop a more prompt predictive model for farmer and thus an
operational tool for characterizing quanti-qualitative parameters
in the vineyard.

CONCLUSION

On the agronomic side, the calculation of indices derived
from HS data cubes has shown very promising potential for:
(i) achieving high correlations with variables that are more
closely linked to local canopy microclimate conditions, such as
malic acid, total anthocyanins and phenols concentration and
(ii) identifying specific indices with the ability to concurrently
describe several vine traits including water status, cropping
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potential and ripening patterns. The novelty of this work is
represented by the first assessment of a hyperspectral UAV
dataset with grapevine parameters using several hyperspectral
narrowband indices and multivariate PLS regressions. The
strength of this research is the study of hyperspectral data
acquired by UAV in field conditions by examining the expression
of the entire vine ecosystem, from the physiological state, to
descriptors of vine vegetative development, and finally on grapes
production and quality. The results obtained by applying a wide
spectrum of VIs allow alternative solutions to the traditional and
time-consuming ground measurements to be identified, which
provide the best accuracy, but frequently lead to a limitation for
representative sampling in a large vineyard. Above all for the
monitoring of physiological parameters, which must be done in
a short time as they are extremely influenced by the variability of
environmental conditions during the day, such as air temperature
and humidity or the intensity and angle of solar radiation.
A correct non-destructive estimation of key parameters in the
vineyard represents a powerful tool to support the winegrower
in optimal vineyard management, both for agronomic input
choices and planning the best harvest date. Further work is
needed to explore the robustness of this methodology on different
phenological stages of grapevines and on the use of innovative
Machine Learning algorithms.
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