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Cell wall polysaccharides (CWPS) of seaweeds play crucial roles in mechanical shear
resistance, cell-cell adhesion and the interactions with changeable marine environments.
They have diverse applications in food, cosmetics, agriculture, pharmaceuticals and
therapeutics. The recent boost of multi-omics sequence analysis has rapidly progressed
the mining of presumed genes encoding enzymes involved in CWPS biosynthesis
pathways. In this review, we summarize the biosynthetic pathways of alginate, fucoidan,
agar, carrageenan and ulvan in seaweeds referred to the literatures on published
genomes and biochemical characterization of encoded enzymes. Some transcriptomic
data were briefly reported to discuss the correlation between gene expression
levels and CWPS contents. Mannuronan C-5 epimerase (MC5E) and carbohydrate
sulfotransferase (CST) are crucial enzymes for alginate and sulfated CWPS, respectively.
Nonetheless, most CWPS-relevant genes were merely investigated by gene mining
and phylogenetic analysis. We offer an integrative view of CWPS biosynthesis from
a molecular perspective and discuss about the underlying regulation mechanism.
However, a clear understanding of the relationship between chemical structure and
bioactivities of CWPS is limited, and reverse genetic manipulation and effective gene
editing tools need to be developed in future.

Keywords: cell wall polysaccharide, gene mining, mannuronan C-5 epimerase, carbohydrate sulfotransferase,
biosynthesis

INTRODUCTION

Seaweeds (macroalgae) cover a wide group of algal phyla, and so far about 72,500 known species
exist in diversified habitats (Guiry, 2012). Seaweeds, a potential climate change solution, have very
important ecological roles in the ocean, serving as the base of the marine food chain and the vital
force of marine carbon fixation and sequestration (Campbell et al., 2019; Ortega et al., 2019; Yong
et al., 2022). Seaweeds contribute nearly 30% of the world aquaculture production (Cai et al., 2021).
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So far, the annual production of world aquatic algae increased
over 60 times from 0.56 million tons in 1950 to 35.82 million
tons in 2019, with 99.84% from seaweeds and 97% contributed
by cultivation (FAO, 2021). The value of the commercial
seaweed market worldwide in 2028 was estimated to exceed
24.9 billion U.S. dollars (Shahbandeh, 2021). Seaweeds produce
unsaturated fatty acids, minerals, vitamins, phycobiliproteins and
polysaccharides for diverse applications in food, animal feed,
cosmetics and pharmaceuticals (Vincent et al., 2020). These make
seaweeds attract increasing interests in science and industry
(Leandro et al., 2020).

Seaweeds are traditionally grouped into three distinct
classes based on pigmentation: brown (Ochrophyta), green
(Chlorophyta) and red (Rhodophyta) algae (Guiry and
Guiry, 2014). They can produce unique carbohydrates due
to the complexity of their evolutionary history and habitats
(Baldauf, 2008; Coelho and Cock, 2020). The average content
of polysaccharides in seaweeds is around 50% (dry weight) and
can reach up to 76% (Rioux and Turgeon, 2015). In most taxa of
seaweeds, cell walls consist of microfibrillar networks embedded
in matrices of diverse polysaccharides and proteins (Domozych,
2016). Cell wall polysaccharides (CWPS) contribute significantly
to mechanical shear resistance, cell-cell adhesion, reproduction
and morphogenesis, enhanced flexibility and interactions
with changeable marine environments. The environmental
benefits, ecosystem services and health contributions of
seaweeds are inseparable from the biosynthesis of CWPS.
Generally, CWPS constitute the largest source of annual
renewable biomass on Earth (Domozych, 2016). Specifically,
these polysaccharides designate as alginate and fucoidan
in brown, agar and carrageenan in red and ulvan in green
seaweeds. As macromolecule materials, the structure of these
polysaccharides relies on the seaweed species, growth seasons,
harvest locations and maturity and so forth. Previously, the
extraction, structural determination, activity and function were
extensively investigated (Kidgell et al., 2019; Rhein-Knudsen and
Meyer, 2021). However, the enzyme-catalyzed biosynthesis of
CWPS remains unclear, especially at the molecular level. This
actually affects the investigation of the relationships between
the structure and function. Clarifying the function of CWPS-
related genes will enrich our knowledge on high-value enzymes
for their artificial synthesis and optimization in vitro. In this
review, we summarize the biosynthesis pathways of cell wall
polysaccharides in seaweeds and provide a better understanding
of their regulatory mechanism.

ALGINATE

In brown seaweeds, cellulose only accounts for 1–8% of
total dry weight of the brown seaweeds, whereas the anionic
polysaccharides, namely alginate and fucoidan are the main
cell wall components (Cronshaw et al., 1958; Kloareg and
Quatrano, 1988). Alginate and fucoidan are predominantly
extracted from the brown seaweeds (Moradali et al., 2018).
Alginate is one linear polysaccharide composed of β-(1-4)-linked
D-mannuronic acid (M) and α-L-guluronic acid (G). The M/G

ratio and the block composition affect properties of alginate,
thus providing either rigidity or flexibility to different tissues
of the kelp. The initial investigation of enzymes involved in
alginate biosynthesis was focused on mannuronan C-5 epimerase
(MC5E), which is responsible for the conversion of M into G
residues at the polymer level (Haug and Larsen, 1969). Rødde
et al. (1993) measured MC5E activity in Laminaria digitata,
and found that the synthesis of MC5E in the kelp protoplasts
was essential for the new cell wall formation. Nyvall et al.
(2003) summarized the pathway of alginate biosynthesis in brown
algae, based on the biochemical analysis of the first five steps
in Fucus gardneri and the cloning of six MC5E full-length
coding sequences from L. digitata. Within expressed sequence
tags (ESTs) dataset, 22 different MC5Es were identified from
the cell wall biosynthesis genes (Roeder et al., 2005). The
upregulation of MC5E transcripts during protoplast regeneration
and sporophyte elicitation enabled L. digitata to rapidly modify
its cell wall in response to marine environmental variations
(Tonon et al., 2008).

So far, seven brown seaweed species had complete or draft
genome sequences released, including Ectocarpus siliculosus
(Cock et al., 2010; Cormier et al., 2017), Saccharina japonica (Ye
et al., 2015), Cladosiphon okamuranus (Nishitsuji et al., 2016,
2020), Nemacystus decipiens (Nishitsuji et al., 2019), Macrocystis
pyrifera (NCBI Bioproject: PRJNA605694), Sargassum fusiforme
(Wang et al., 2020), and Undaria pinnatifida (Shan et al.,
2020; Graf et al., 2021). The alginate- and fucoidan-relevant
genes in these genomes are listed in Supplementary Table 1.
The alginate-specific steps in Ectocarpus were proposed to
be acquired by horizontal gene transfer (HGT) from an
actinobacterium (Michel et al., 2010). Chi et al. (2018) found
that the rise of the alginate pathway had complex endosymbiotic
gene transfer (EGT) origins. Except for providing insights
into the origin and evolution of alginate-related genes, these
genomic datasets have also enabled the deeper understanding
of the regulatory mechanism of alginate biosynthesis. Fischl
et al. (2016) generated the first recombinant and active MC5E
from brown algae. Subsequently, two soluble MC5Es from
S. japonica have been proven active in the conversion of M
into G (Inoue et al., 2016; Zhang et al., 2021). Tenhaken et al.
(2011) isolated a candidate GDP-mannose dehydrogenase
(GMD) in the E. siliculosus genome and found that Na2SO4,
NaCl and KCl led to an increase in enzymatic activity. In
S. japonica, Mg2+ could activate two SjGMDs potentially
by improving the binding of substrate (Zhang et al., 2016).
Subsequently, Zhang et al. (2018) found that the maximum
activity of phosphomannomutase/phosphoglucomutase
(PMM/PGM) occurred with the presence of Mg2+. Chi
et al. (2018) reported that divalent ions of Mg2+, Mn2+, Ca2+,
and Cu2+ promoted the activity of mannose-1-phosphate
guanylyltransferase (MPG). Moreover, the transcriptomic
and metabolic analysis revealed that higher expression of
alginate biosynthetic genes in Saccharina sporophytes might
be important for the increased thallus strength and toughness
(Chi et al., 2018). Shao et al. (2019) identified candidate genes
responsible for the high content of alginate in the distal blade of
S. japonica.
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FUCOIDAN

Fucoidan is a sulfated polysaccharide containing α-(1→3) or
α-(1→4)-linked L-fucose, which mainly exists in the cell wall
matrix of brown algae and is not found in land plants.
In Laminariales species, the concentration and structure of
fucoidans vary with reproduction, tissue position, season and
environmental factors (Bruhn et al., 2017). The maximum
amount of fucoidan was accumulated during reproduction
season in S. japonica, Sargassum pallidum, and Stephanocystis
crassipes, but was not highly correlated with sea water
temperature, salinity and biogenic elements (Skriptsova, 2016).
The sulfation and molecular weight of fucoidan influenced its
biological activity (Puri et al., 2022). Due to its anticoagulant,
antimutagenic, immunostimulatory and antioxidant properties,
the fucoidan is predominantly used in pharmaceuticals and
therapeutics (Patel, 2012; Puri et al., 2022). Michel et al. (2010)
first reported the fucoidan biosynthesis pathway in E. siliculosus,
and proposed the de novo pathway catalyzed by GDP-mannose
4,6-dehydratase (GM46D) and GDP-fucose synthetase (GFS),
and the salvage pathway with the involvement of fucokinase
(FK) and GDP-fucose pyrophosphorylase (GFPP). Ye et al.
(2015) compared the carbohydrate metabolism pathways based
on S. japonica and 14 other algal genomes, and found that brown
algae and diatoms harbor the complete fucoidan biosynthesis
pathway. Unlike E. siliculosus, one fused FK-GFPP gene encoding
a bifunctional enzyme possessing both L-fucokinase and GDP-
fucose pyrophosphorylase activities was identified in the genomes
of C. okamuranus and N. decipiens (Nishitsuji et al., 2016, 2019).
Supplementary Table 1 lists the comparison of fucoidan pathway
in distinct brown algal genomes. In addition, twenty-seven
UDP-D-xylose: L-fucose-α-1,3-D-xylosyltransferases (FucXylTs)
specifically catalyzed D-xylose to fucose were identified in
brown algae (Han et al., 2019). Lu et al. (2020) screened 104
fucoidan-relevant genes from S. japonica and investigated the
structure and transcriptional profiles in response to abiotic
stress for sulfotransferase (ST) genes. However, the function
of ST remains unclear ascribing to the absence of biochemical
verification of this enzyme.

AGAR

The hydrocolloids galactan agar is a water-soluble, gel-forming
CWPS in red seaweeds and is widely used in food, pharmaceutical
and biotechnology fields. The major agarophytes are Gracilaria,
Curdiea, Hydropuntia, Gelidium, and Pterocladia (Sasuga et al.,
2017). The agar biosynthesis was poorly understood and the
hypothetical pathway was mainly deduced from chemical analysis
in land plants and red seaweeds (Collén et al., 2004). Lee
et al. (2017) proposed an agar biosynthetic pathway that starts
from fructose-6-phosphate (F6P), which is then catalyzed to
UDP-D-galactose (by galactose-1-phosphate uridylyltransferase,
GALT) and GDP-L-galactose (by GDP-mannose-3,5-epimerase,
GME) to form agar precursor chain. Figure 1 shows the
schematic diagram of agar biosynthesis. Prior to this hypothetical
pathway, GALT and GME were individually verified to have

a regulatory role on the content of agar. The cloning and
structure analysis of GALT has been reported in Gracilaria gracilis
(Lluisma and Ragan, 1998) and Gracilariopsis lemaneiformis
(Li et al., 2010). The GALT and GME transcripts and enzyme
activities were found to be highest in G. changii and lowest
in G. salicornia, corresponding to their respective agar yields
(Siow et al., 2012, 2013). The relationship between agar content
and expression levels of UDP-glucose pyrophosphorylase (UGP)
gene in G. lemaneiformis indicated that UGP was a potential
molecular marker to reflect the agar yields (Chang et al.,
2014). Recently, Yu et al. (2021) identified one GALT gene
from Neoporphyra haitanensis, and proposed that it might
be derived from primary endosymbiotic eukaryotic hosts.
Unlike GALT, GME and UGP, which are shared by many
organisms, the galactosyl transferases were unique in agarophytes
and were difficult to be identified. The G. changii genome
annotated homologous genes for chondroitin sulfate synthases
and chondroitin sulfate N-acetylgalactosaminyl transferase,
which were regarded as potential galactosyl transferases for
agar biosynthesis in Gracilaria (Ho et al., 2018). In addition,
two carbohydrate sulfotransferase (CST) genes belonging to
the sulfotransferase subfamily 2 were believed to be candidate
genes for agar sulfotransferases (Ho et al., 2018). Nonetheless,
the function of these presumed genes in Gracilaria awaits
further investigation.

CARRAGEENAN

Carrageenans are commercially extracted from Kappaphycus
and Eucheuma, and are dominantly produced in Indonesia,
the Philippines and Malaysia (Porse and Rudolph, 2017).
Usually, carrageenan can be used as additives in food,
beverage, agriculture and animal feed and so forth. Molecular
study on carrageenan biosynthesis remains very limited. To
date, the only biochemically characterized enzymes in this
pathway are galactose sulfurylases (Genicot-Joncour et al.,
2009; Lipinska et al., 2020). Within the Chondrus genome
dataset, genes encoding carrageenan-relevant enzymes, including
CST, glycosyltransferase (GT), glycoside hydrolase (GH16), and
galactose-6-sulfurylase were identified (Collén et al., 2013, 2014).
CSTs and GTs in carrageenan biosynthesis in C. crispus were
closely related to those involved in the synthesis of sulfated
animal sugars, implying an ancient eukaryotic origin for these
pathways (Ficko-Blean et al., 2015). The findings of conserved
CSTs in brown seaweeds and red seaweeds through convergent
evolution, which were not found in land plants and freshwater
algae, inferred a critical role of sulfated polysaccharides in
adapting to high-salinity environment (Brawley et al., 2017).
The differential gene expression of carrageenan-related genes
in carrageenanophytes were reported. Song et al. (2014)
identified 8 differentially expressed KEGG orthologs for sulfur
metabolism which might be related to the biosynthesis of
three types of carrageenans in Betaphycus, Kappaphycus,
and Eucheuma. Differential expression of multigenic genes
of CSTs, GTs, GH and galactose-sulfurylases supported that
carrageenan biosynthesis played a crucial role in the physiological
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FIGURE 1 | Proposed biosynthesis pathways of cell wall polysaccharides in seaweeds. CST, carbohydrate sulfotransferase; FK, fucokinase; FST, fucosyltransferase;
GalT, galactosyltransferase; GALT, galactose-1-phosphate uridylyltransferase; GC5E, glucuronyl C5-epimerase; GFS, GDP-fucose synthetase; GFPP, GDP-fucose
pyrophosphorylase; GluT, glucuronyltransferase; GM46D, GDP-mannose 4,6-dehydrogenase; GMD, GDP-mannose dehydrogenase; GME,
GDP-mannose-3′,5′-epimerase; GPI, glucose-6-phosphate isomerase; GT, glycosyltransferase; MC5E, mannuronate C5-epimerase; MPI, mannose-6-phosphate
isomerase; MPG, mannose-1-phosphate guanylyltransferase; PGM, phosphoglucomutase; PMM, phosphomannomutase; RhaT, α-1,4-rhamnosyltransferase; RHM,
rhamnose synthase; UGD, UDP-D-glucose dehydrogenase; UGP, UTP-glucose-1-phosphate uridylyltransferase. The pathways referred to diverse literatures:
(Lahaye and Robic, 2007; Collén et al., 2014; Ficko-Blean et al., 2015; Lee et al., 2017; Chi et al., 2018; Ho et al., 2018; Shao et al., 2019; Lipinska et al., 2020).

differentiation between the isomorphic life cycle stages of
C. crispus (Lipinska et al., 2020).

ULVAN

The CWPS in Ulvaceae species account for 38–54% of cell
dry weight with a majority of water-soluble ulvan (Lahaye and
Kaeffer, 1997). In green seaweeds, the genera Ulva, Monostroma,
and Gayralia synthesize the highly anionic ulvan polysaccharides
(Domozych et al., 2012). As a gelling sulfated polysaccharide,
ulvan attracts significant interest in the fields of agriculture,
human health, and biomaterials. It is a complex polyanionic
heteropolysaccharide with sugar compositions of rhamnose,
glucuronate, iduronate and xylose (Kidgell et al., 2019). Lahaye
and Robic (2007) proposed pathways for the biosynthesis of
these four nucleotide sugar precursors of ulvan. On this basis,
an enzyme-catalyzed ulvan biosynthesis pathway was proposed
but none of the enzyme activities were experimentally verified
(Ficko-Blean et al., 2015). Sea lettuce genome released potential
genes encoding cell wall-related protein, but the polysaccharide
biosynthesis was not discussed (De Clerck et al., 2018). Although
no CST homologs were found in Chara genome, these genes
conserved with those in animals, brown seaweeds and red
seaweeds were retrieved from Ulva genome (Nishiyama et al.,
2018; Kloareg et al., 2021). Phylogenetic analysis revealed that

these CSTs were lost in freshwater and land plants, which solidly
supported the hypothesis that cell wall sulfated polysaccharides
were lost in the green lineage as an adaption to sulfate-
scarce freshwater and terrestrial environments (Kloareg et al.,
2021). Based on the above research, Figure 1 displayed the
presumed ulvan biosynthesis pathway, with a disaccharide unit
of rhamnose and iduronate.

CONCLUSION AND PERSPECTIVES

The activity and function of CWPS depend on their structure
composition, and the latter is affected by catalytic enzymes at
each step of the metabolic pathway. In this review, we have
summarized the molecular evidence supporting the presence
of genes encoding enzymes responsible for the biosynthesis
of alginate, fucoidan, agar, carrageenan and ulvan. Together
with the previously proposed pathways of CWPS metabolism
in seaweeds, which were predominantly deduced from in vivo
enzyme isolation and chemistry analysis, we constructed a
schematic diagram of cell wall polysaccharide biosynthesis
pathways with F6P as a common upstream metabolite (Figure 1).
There are three important intermediate metabolites, GDP-
D-mannose, UDP-D-glucose and UDP-D-galactose. GDP-D-
mannose is the last shared metabolite for alginate, fucoidan
and agar/carrageenan, whereas UDP-D-glucose is a common
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upstream metabolite for ulvan and agar/carrageenan. From
UDP-D-galactose, agar or carrageenan is individually
synthesized in different red algal species. The corresponding
branching enzymes of GMD, GM46D, GME, UGD, and
GALT therefore play important roles in the synthesis of
specific CWPS in each seaweed. Fucoidan, agar, carrageenan
and ulvan are sulfated polysaccharides, of which CSTs are
key enzymes for their structure composition. In the last
decade, the mining of CWPS-related genes has rapidly
progressed ascribing to the completion of a series of
multicellular algal genomes. Gene origin and evolution
through phylogenetic analysis was the research focus, with
a few genes’ heterologous expression and recombinant
enzyme kinetic analysis. However, functional verification of
corresponding genes was lagging due to the lack of reverse
genetic manipulation and effective gene editing tools in
macroalgae. Intensive study and functional verification of CWPS
genes are highly needed to further clarify their biosynthesis
pathways in seaweeds.
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