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Over the past years, CRISPR/Cas-mediated genome editing has revolutionized plant

genetic studies and crop breeding. Specifically, due to its ability to simultaneously

target multiple genes, the multiplex CRISPR/Cas system has emerged as a powerful

technology for functional analysis of genetic pathways. As such, it holds great potential

for application in plant systems to discover genetic interactions and to improve polygenic

agronomic traits in crop breeding. However, optimal experimental design regarding

coverage of the combinatorial design space in multiplex CRISPR/Cas screens remains

largely unexplored. To contribute to well-informed experimental design of such screens

in plants, we first establish a representation of the design space at different stages

of a multiplex CRISPR/Cas experiment. We provide two independent computational

approaches yielding insights into the plant library size guaranteeing full coverage of all

relevant multiplex combinations of gene knockouts in a specific multiplex CRISPR/Cas

screen. These frameworks take into account several design parameters (e.g., the

number of target genes, the number of gRNAs designed per gene, and the number

of elements in the combinatorial array) and efficiencies at subsequent stages of a

multiplex CRISPR/Cas experiment (e.g., the distribution of gRNA/Cas delivery, gRNA-

specific mutation efficiency, and knockout efficiency). With this work, we intend to

raise awareness about the limitations regarding the number of target genes and

order of genetic interaction that can be realistically analyzed in multiplex CRISPR/Cas

experiments with a given number of plants. Finally, we establish guidelines for designing

multiplex CRISPR/Cas experiments with an optimal coverage of the combinatorial design

space at minimal plant library size.

Keywords: multiplex CRISPR/Cas screens, combinatorial gene knockout libraries, experimental design, plant

genetic studies, crop breeding

1. INTRODUCTION

Genetic mutagenesis is a widespread and powerful strategy for the functional characterization
of genes in various biological processes. It provides a complementary approach to the
mapping of genotype-phenotype relationships based on quantitative genetic analyses [such as
genome-wide association studies (Brachi et al., 2011) and quantitative trait locus mapping
(Mauricio, 2001)], gene regulatory network analyses through differential expression (Clifton
et al., 2006), and gene expression perturbation through RNA interference (Travella et al., 2006).
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Further, genetic mutagenesis may be used to test hypotheses
of gene functional redundancy based on phylogenetic analyses
of gene families (Zhang et al., 2018). Within this context,
the Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR)/Cas system has paved the way for targeted
genome editing in many different organisms, including plant
species (Brooks et al., 2014; Zhang et al., 2014, 2016; Ma et al.,
2016; Fellmann et al., 2017; De Bruyn et al., 2020; Liu Z. et al.,
2020). The CRISPR/Cas system relies on the delivery of a
specific guide RNA (gRNA) and the Cas nuclease into a target
cell. After formation of the gRNA/Cas complex, the gRNA
directs Cas to induce DNA cleavage in the genomic sequence
homologous to the gRNA. In case the target sequence is located
inside a conserved region, e.g., in highly homologous paralogous
genes, multiple sites in the genome can be cleaved in parallel.
Subsequently, each cleaved site can undergo error-prone DNA
repair via the non-homologous end-joining pathway, creating
a mutation. Mutations in the coding region of a gene might
disrupt the open reading frame or one of the mRNA splice sites,
leading to the formation of a mutated, truncated, or out-of-frame
protein sequence that, in turn, can result in the knockout (KO)
of gene function (Mali et al., 2013). If the gRNA was designed to
target regulatory sequences of the gene, gene expression levels
may be disrupted. Ultimately, examining the impact of these
genetic perturbations on the plant phenotype can contribute to
unraveling gene function and genetically improving agronomic
traits in breeding materials.

The multiplex CRISPR/Cas system forms a relatively novel
extension to the standard CRISPR/Cas system (Shen J. P. et al.,
2017; Zhou et al., 2020), allowing for the simultaneous editing
of multiple unique targets in a single plant cell (Zhang et al.,
2016). The latter enables to identify genetic redundancy as
well as genetic interactions, which contributes to elucidating
the complex interplay of genes in metabolic and/or regulatory
pathways. Thus, multiplex CRISPR/Cas genome editing speeds
up the functional analysis of genetic pathways thanks to its
ability to specifically target multiple genes simultaneously. To
accomplish simultaneous editing activity, multiple gRNA/Cas
complexes are co-expressed in each target cell. A first strategy to
deliver multiple gRNA sequences per cell is to assemble multiplex
gRNA/Cas constructs by cloning methods such as Golden Gate
ligation (Engler et al., 2008; Ma et al., 2015) and Gibson
Assembly (Jacobs et al., 2017), yielding binary vectors with
arrays of gRNA expression cassettes for stable Agrobacterium
transformation. Second, multiple vectors transiently expressing
Cas and/or one or more gRNAs can be co-transfected into
protoplasts via electroporation or polyethylene glycol-mediated
transfection, followed by whole plant regeneration (Toda
et al., 2019). Third, preassembled gRNA/Cas ribonucleoprotein
complexes with mixtures of gRNAs can be delivered into plant
cells via particle bombardment (Liang et al., 2018), polyethylene
glycol-mediated transfection, or nanoparticles (Cunningham
et al., 2018).

Each of the aforementioned gRNA delivery methods can be
designed to introduce a specific number of gRNAs per target
cell, hence enabling the study of a particular order of interaction
among a set of target genes in a multiplex CRISPR/Cas system.

For simplicity, we focus on one prototypical delivery method,
namely the stable transformation of multiplex gRNA/Cas
constructs containing an array of gRNA expression cassettes
into target cells. This approach starts with the design of a pool
of gRNA sequences targeting a set of target genes (Figure 1A),
after which these gRNA sequences are randomly assembled
into combinatorial gRNA/Cas constructs with a specific number
of gRNA sequences per vector (Figure 1B). For instance, to
study pairwise interactions of genes, combinatorial gRNA/Cas
constructs with two gRNAs per vector can be produced, such that,
after transformation, two gRNA/Cas complexes are generated
per plant cell. Likewise, for investigating up to k-order genetic
interactions, combinatorial gRNA/Cas constructs are designed
so that k gRNA/Cas complexes are expressed in each target cell.
Throughout this paper, the term construct library will refer to
the collection of all combinatorial gRNA/Cas constructs that
can be generated from the initial gRNA pool by randomly
sampling k gRNAs (with replacement) into an expression array.
After transformation of the combinatorial gRNA/Cas construct
library into the target cells (one construct per independent cell),
the corresponding combinatorial gRNA/Cas activity results in
a collection of cells containing different combinations of gene
knockouts. Following plant regeneration of a random selection
of these mutated cells, a genetically diverse collection of mutated
plants is obtained, which is referred to as the plant library
(Figure 1C). All genotypes that can theoretically be present in
the plant library, i.e., all possible combinations of k (or fewer)
target gene knockouts, constitute the plant design space. We
gradually build up and visualize this design space in Section 2.1.
By subjecting the plant library to a phenotypic screen (e.g., one
that examines variations in traits such as flowering time, leaf
density, internode length, number of root nodules, maturity
time, metabolic profile, plant height or drought tolerance), one
can assess the effect of many combinations of gene knockouts
on the plant phenotype in parallel. In this manner, a deeper
understanding of the genetic interactions in a specific metabolic
or regulatory pathway can be acquired. Recent studies illustrate
how insights gained from these assays have contributed to
improving several agronomic traits in crop breeding (Li et al.,
2018; Zhang Y. et al., 2020).

As a multiplex CRISPR/Cas experiment is designed to
examine a larger number of target genes (x) and order of genetic
interaction (k), the number of possible k-combinations of gene
knockouts that occur in the plant design space, denoted by

(x
k

)

,
expands quickly. Accordingly, there is a combinatorial explosion
of the number of plants that need to be screened in order
to study all k-order genetic interactions. The (combinatorial)
coverage (γx,k) of a plant library is defined as the fraction of
all

(x
k

)

gene knockout combinations that is contained at least
once in this plant library. The plant library size required for full
coverage refers to the minimal number of plants that needs to
be included into a plant library to completely cover all

(x
k

)

gene
knockout combinations in a multiplex CRISPR/Cas experiment
(reaching γx,k = 1) and is denoted by Nx,k. Note that in our
model representation the plant library is obtained by random
selection and regeneration of mutated cells. Due to the stochastic
nature of this sampling process, Nx,k is a stochastic variable as
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FIGURE 1 | Schematic representation of a multiplex CRISPR/Cas experiment. (A) First, x target genes are selected for CRISPR/Cas editing. A number of g gRNAs

are designed for each target gene, forming an initial gRNA library. (B) During vector assembly, gRNA sequences from the gRNA pool are randomly combined into a

combinatorial gRNA/Cas construct library with k gRNA sequences per vector to study the effects of k-combinations of gene knockouts, i.e., k-order genetic

interactions among the set of x target genes. After transformation of the combinatorial gRNA/Cas constructs into the target cells, the gRNA/Cas complexes can be

expressed, leading to genome editing of the associated target loci. (C) After plant regeneration, a diverse mutant plant collection is obtained with at most k gene

knockouts per plant, forming the plant library.

well, its value varying with every execution of a specific multiplex
CRISPR/Cas experiment. Quantification of the expected value
and the standard deviation of Nx,k for a given experiment is a
main objective of this study. The central parameters and variables
in our study are summarized in Table 1.

Gaining insight in Nx,k for a multiplex CRISPR/Cas
experiment is vital. Consider performing such an experiment
to investigate all k-combinations of gene knockouts for a set
of x target genes. Assume that the final plant library size N
is too small to contain all

(x
k

)

gene knockout combinations
(N < Nx,k), hence not reaching full coverage (γx,k < 1).
Performing a phenotypic screen on this plant library might
give rise to misleading conclusions in two ways. First, effective
combinations of gene knockouts might be misclassified as not
associated with the desired phenotype as a result of not being
represented in the plant library, leading to false-negative results.
Second, one cannot evaluate whether the absence of a particular
combination of gene knockouts in the plant library is due to
lethal effects or rather the result of an inadequate plant library
size. Therefore, a main consideration when determining the
sizeN of the plant library resulting from amultiplex CRISPR/Cas
experiment is to account for coverage of all

(x
k

)

gene knockout
combinations. However, optimal design of such experiments in
plants has remained largely unexplored in this regard. Existing
tools that assist in determining an appropriate sample size
for multiplex CRISPR/Cas screens in mammalian cells are not
applicable to screens in plants due to different experimental
protocols. Additionally, focus on the exploration of the complete
combinatorial design space is lacking in these studies (Nagy and
Kampmann, 2017; Shen J. P. et al., 2017; Imkeller et al., 2020;
Diehl et al., 2021).

In this study, first and foremost, we suggest two independent
approaches for determining Nx,k for multiplex CRISPR/Cas
experiments in plants. The first approach makes use of
computational simulations, reproducing subsequent stages of a
multiplex CRISPR/Cas experiment in silico, to gain insight into
Nx,k. The second approach employs the BioCCP framework,
which was presented in our previous work (Van Huffel et al.,
2022), to provide a quick approximation of Nx,k and related
statistics. BioCCP is a general framework based on the Coupon
Collector Problem (CCP) studied in probability theory and
statistics. The CCP allows one to determine minimal sample
sizes for screening experiments in combinatorial biotechnology
that guarantee full coverage of the design space. Apart from
establishing the computation of Nx,k using these frameworks, we
illustrate howNx,k is impacted by some critical design parameters
of a multiplex CRISPR/Cas experiment (e.g., the number of
target genes, the number of elements in the combinatorial gRNA
array, the relative abundances of gRNAs in the combinatorial
gRNA/Cas construct library, the guide-specific genome editing
efficiency and the global knockout efficiency). By means of a
quantitative analysis, we demonstrate that a naive approach
for experimental design might become prohibitively expensive,
and that the maximal number of plants that can be genotyped
and phenotyped in a multiplex CRISPR/Cas screen imposes
limitations on the number of target genes and order of genetic
interaction that can be investigated. Finally, we propose two
main strategies (named the Split–Select–Combine strategy and
the Overshoot–Select–Purify strategy) for designing multiplex
CRISPR/Cas experiments with a minimal Nx,k, and establish
additional guidelines for experimental design to optimize design
space coverage at minimal plant library size.
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TABLE 1 | Central design parameters and stochastic variables of this study.

Symbol Short description

Design parameters

x The number of target genes in a multiplex CRISPR/Cas experiment

k The order of genetic interaction among the target genes to be investigated

N The number of plants in a plant library, also called the plant library size
(

x
k

)

The number of possible k-combinations of gene knockouts for x target genes

Stochastic variables

γx,k The fraction of all
(

x
k

)

gene knockout combinations that is contained by a plant library, also called

the (combinatorial) coverage of a plant library

Nx,k The minimal plant library size required for full coverage (γx,k = 1)

2. RESULTS

2.1. Representation of the Design Space
and Stochastic Sampling in a Multiplex
CRISPR/Cas Experiment
In the following, we discuss the representation of the design
space at different stages of a multiplex CRISPR/Cas experiment.
Additionally, we clarify how experimental materials created in
such an experiment can be interpreted as physical samples from
a virtual design space. These ideas are depicted in Figure 2.

Consider a multiplex CRISPR/Cas experiment that aims to
investigate pairwise interactions among a set of five target genes.
Such an experiment departs from an initial pool of gRNA
sequences that are specifically designed to target this set of
genes (three gRNAs per gene). At this stage, the design space
encompasses all possible gRNA sequences (Figure 2A). In the
following, we regard a library as the collection of experimental
units that represent material samples from the design space. Here,
the gRNA library is the collection of gRNA sequences that are
generated in the laboratory, as a physical equivalent of the virtual
gRNA design space.

The combinatorial aspect of the multiplex CRISPR/Cas
experiment arises as these gRNA sequences are randomly
combined into gRNA/Cas constructs through vector assembly.
In Figure 2B, each construct contains a random combination
of two gRNA sequences. All possible combinations of two
gRNAs that can occur in these constructs form the design
space at the construct level, called the construct design space
(Figure 2B). During a multiplex CRISPR/Cas experiment,
gRNA/Cas constructs containing random combinations of
gRNAs are randomly collected, forming a construct library.
Importantly, not all constructs (i.e., gRNA combinations) are
equally likely to be sampled, but occur with different relative
abundances (due to biases during synthesis of gRNA sequences,
quantification, and non-equal pooling during assembly of
the constructs). Therefore, the sampling process takes place
according to a sampling distribution, shaped by the probability
of sampling each gRNA combination from the construct design
space. We assume that the probability of encountering a specific
pairwise combination of gRNA sequences in a gRNA/Cas
construct equals the product of the probabilities of the individual

gRNA sequences occurring in a construct, i.e., these occurrences
are independent.

Continuing to the next stage of the experiment, the construct
library is delivered into target plant cells by Agrobacterium
transformation, assuming the integration of one construct per
cell. In these target cells, expression of the gRNA/Cas complexes
leads to genome editing with a gRNA-specific efficiency. A
specific fraction of the induced mutations will lead to an effective
knockout of gene function. The design space at this stage is the
collection of all plant genotypes that can occur, referred to as the
plant design space (Figure 2C). In the example of Figure 2C, we
distinguish three classes of genotypes: those characterized by a
pairwise combination of gene knockouts, a single knockout, or
the absence of knockouts. Not every combination of knockouts
has the same probability of being sampled from the design
space, hence does not occur with the same frequency in the
mutated plant library. The latter is caused by three factors:
(1) the unequal relative abundances of gRNAs in the construct
library, (2) the varying levels of genome editing activity across
the set of gRNAs, and (3) the varying impact of a given
mutation at a given location of the gene on the function and
activity of the encoded protein (not every mutation results in
an effective gene knockout). Random selection of mutated cells
for plant regeneration in order to construct a plant library
implies sampling combinations of gene knockouts according to
a sampling distribution that integrates these three inefficiencies
at the gRNA level for every target gene combination. Here,
once more we apply an independence assumption, considering
the probability of a pairwise combination of gene knockouts
appearing in a plant cell to be equal to the product of the
probabilities of occurrence of the individual gene knockouts in
a plant cell.

In the remainder of this paper, we will focus on the exploration
of the plant design space. The multiplex CRISPR/Cas experiment
depicted in Figure 2 aims to study all pairwise combinations of
gene knockouts for five target genes. Here, the total number of
possible pairwise combinations is denoted by

(5
2

)

. The central
study aim here is to quantify the number of plants that is to be
randomly collected to encounter all

(5
2

)

possible combinations
of gene knockouts in the plant library; this number is denoted
by N5,2. This way, the phenotypic effect of all 2-order genetic
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FIGURE 2 | Design space representation and parallel experimental materials at different stages in a multiplex CRISPR/Cas experiment. A design space at a certain

point in the experiment is considered as a virtual space encompassing all possible designs, whereas a library represents a collection of physical samples from the

design space. These material experimental units are obtained by random sampling of the design space according to a sampling distribution, which describes the

probability of sampling each design and is determined by inefficiencies at different stages of the multiplex CRISPR/Cas protocol. (A) Here, an experiment targeting

pairwise combinations of five target genes is considered. Three gRNAs are designed per gene. (B) In the construct library, two gRNAs are included per gRNA/Cas

construct. (C) The resulting plant library contains up to two gene knockouts per plant.
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interactions among the set of five target genes can be assessed.
Recall that the coverage γ5,2 is defined as the fraction of all
(5
2

)

pairwise gene knockout combinations that is included in a
plant library of a given size. For the CRISPR/Cas experiment
visualized in Figure 2, the gene knockout combinations present
in the plant library are mapped back to the plant design space
(Figure 2C). It can be seen that by randomly sampling six plants,
in this case three out of the 10 possible pairwise combinations
of gene knockouts are present, resulting in a coverage γ5,2 of 0.3.
The other three plants are not counted as they, by chance, only
contain a single knockout and are considered a by-product in the
plant library.

2.2. Computing the Plant Library Size That
Guarantees Full Combinatorial Coverage
During Screening
First, we outline a simulation-based approach for computingNx,k

of a multiplex CRISPR/Cas screen in plants. More specifically, we
describe how to statistically sample the design spaces described
in Section 2.1, taking into account the efficiencies at subsequent
stages of the experiment. Recall that Nx,k of a multiplex
CRISPR/Cas screen is defined as the minimal size of the plant
library or number of plants to be screened in order to encounter
all

(x
k

)

combinations of gene knockouts in the set of genotypes at
least once, such that the effect of all relevant genetic interactions
on the phenotype can be explored. As a basis for comparison,
we also compute the minimal plant library size for full coverage
of single gene knockouts in a (non-multiplex) CRISPR/Cas
experiment, denoted by Nx,1, before considering coverage of
pairwise and triple gene knockout combinations in multiplex
CRISPR/Cas experiments. Secondly, an alternative approach of
computing Nx,k and some related statistics is presented through
the use of our BioCCP.jl package (Van Huffel et al., 2022). Both
approaches are available on GitHub (https://github.com/kirstvh/
MultiplexCrisprDOE), enabling researchers to compute Nx,k and
related statistics for custom multiplex CRISPR/Cas experiments.

2.2.1. A Simulation-Based Approach to Compute the

Expected Value and Standard Deviation
In the following paragraphs, we describe a simulation experiment
to determine Nx,k of a multiplex CRISPR/Cas screen that aims
to study the k-order genetic interactions among a set of x target
genes. In this simulation, we generate plant genotypes in silico
by modeling the subsequent stages of a multiplex CRISPR/Cas
experiment (Jacobs et al., 2017). The genotype of each plant is
represented by its set of gene knockouts. We virtually collect a set
of these plants by random sampling, while storing the relevant
combinations of gene knockouts observed in each plant. The
process of collecting plants is halted as all

(x
k

)

combinations of
gene knockouts are represented, guaranteeing the study of all
k-order genetic interactions. This experiment is repeated 500
times to obtain an estimate of the expected value (E[Nx,k]) and
associated standard deviation (σ [Nx,k]) of the number of plants
required for full coverage.

Consider a multiplex CRISPR/Cas experiment targeting
x = 20 genes. For each target gene, g = 6 different gRNAs are

designed, which results in a pooled library with a total number
of 120 gRNAs, reflecting the typical diversity feasible to clone in
parallel via Golden Gate ligation and Gibson Assembly (Jacobs
et al., 2017; Bai et al., 2020). Each gRNA is assumed to target only
one locus in the genome. From this initial gRNA pool, multiplex
gRNA/Cas constructs are assembled, sampling r gRNA sequences
per construct. In this case, r equals k, since the goal is to study k-
order genetic interactions among the target genes (Table 2). In an
ideal gRNA/Cas construct library, all gRNAs are represented with
the same frequencies. However, due to inaccuracies and technical
constraints during gRNA synthesis, quantification and vector
assembly steps, the abundance of gRNAs over the constructs
is not uniform. We describe the gRNA abundance distribution
in the construct library by the ratio of the frequency of the
most abundant gRNA to the frequency of the least abundant
gRNA, symbolized by ρ. More information on the construction
of this distribution can be found in Section 4.1.1. The relative
frequencies of the gRNAs are taken into account when generating
the construct library in silico. Figure 3A depicts the gRNA
abundance distribution (also called the frequency distribution)
used for illustration throughout this study.

Following the simulation of vector assembly, the gRNA/Cas
constructs are virtually transformed into plant cells, assuming
one construct per plant cell. The corresponding k gRNA/Cas
complexes are assumed to induce mutations in the associated
target loci, potentially resulting in a successful gene knockout.
Importantly, not every gRNA/Cas complex brings about a
mutation and not every mutation results in a loss-of-function
gene knockout. Hence, at most k gene knockouts per plant
genotype can be achieved. In this context, a genome editing
efficiency ǫedit specific to each gRNA and a global knockout
efficiency ǫKO is introduced. The genome editing efficiency ǫedit
of a gRNA indicates the relative frequency by which a gRNA
accomplishes a genome edit in the target sequence. A distinction
is made between a group of active gRNAs with a high average
genome editing efficiency ǫedit,act = 0.95 and a group of
inactive gRNAs with a low average genome editing efficiency
ǫedit,inact = 0.1. The fraction fact of all gRNAs that is assumed
to be active, i.e., the fraction of gRNAs following a distribution
with a high average genome editing efficiency, was set at 0.9
(Table 2). Given the fraction of active gRNAs and the average
editing efficiency of active and inactive gRNAs, a probability
distribution for the genome editing efficiency is constructed from
which a genome editing efficiency is sampled for each gRNA.
More information on the construction of this distribution can be
found in Section 4.1.2. An example distribution is represented
in Figure 3B. The global knockout efficiency ǫKO indicates the
fraction of genome edits leading to a loss-of-function gene
knockout. By default, the value of ǫKO is set to 0.8.

After executing the aforementioned stages, a plant genotype
with a specific combination of (at most k) gene knockouts is
obtained. Plants are collected until all

(x
k

)

combinations of gene
knockouts are seen, i.e., N20,k is reached. Note that during
this simulation, several (in)efficiencies are taken into account
at subsequent steps of the experiment: (1) the imbalance in
the abundances of gRNAs in the gRNA/Cas construct library,
(2) the genome editing efficiency of each gRNA when inducing
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TABLE 2 | Input parameters and outcome variables of the multiplex CRISPR/Cas simulation experiment.

Symbol Short description Default value

Input parameters

x The number of target genes 20

g The number of gRNAs designed per target gene 6

k The order of genetic interaction to investigate

Single gene knockouts 1

Pairwise combinations of gene knockouts 2

Triple combinations of gene knockouts 3

r The number of gRNAs per gRNA/Cas construct k

ρ The ratio of the frequency of the most abundant gRNA to the frequency of the least abundant gRNA

in the gRNA/Cas construct library 2

fact The fraction of total number of gRNAs that are active 0.9

ǫedit,act The average genome editing efficiency for active gRNAs 0.95

ǫedit,inact The average genome editing efficiency for inactive gRNAs 0.1

ǫKO The global knockout efficiency 0.8

Outcome variables

E[Nx,k ] The expected value of the plant library size for full coverage of all k-combinations

of gene knockouts for a set of x target genes

σ [Nx,k ] The standard deviation of the plant library size for full coverage of all k-combinations

of gene knockouts for a set of x target genes

FIGURE 3 | Example of default distributions. (A) The gRNA frequency distribution in the construct library. Parameter ρ denotes the ratio of the frequency of the most

abundant gRNA to the frequency of the least abundant gRNA, and is by default set at the value of 2. (B) The gRNA genome editing efficiency distribution. By default,

90% of the gRNAs are active, having an average genome editing efficiency ǫedit,act of 0.95, and 10% of the gRNAs are inactive, characterized by an average genome

editing efficiency ǫedit,inact of 0.1. Information on the construction of these distributions and the sampling process can be found in Sections 4.1.1 and 4.1.2.

mutations in the plant genomes, and (3) the global knockout
efficiency indicating the fraction of mutations leading to loss-of-
function of the gene product. Section 2.2.3 explains how these
efficiency parameters can be inferred from real experimental data.

Multiplex CRISPR/Cas simulation experiments were executed
following the procedure described above in order to compute the
expected value and standard deviation of N20,1, N20,2, and N20,3.

In these simulations, default settings of the input parameters were
employed as specified in Table 2. The results are summarized
in Table 3. Next, the influence of experimental parameters on
Nx,1 and Nx,2 was investigated (Figures 4, 5). For this purpose,
we perform CRISPR/Cas simulation experiments, employing the
default settings in Table 2 for all parameters, except for the
parameter under investigation.
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TABLE 3 | Statistics of N20,1, N20,2, and N20,3 resulting from the simulation- and BioCCP-based approaches for the multiplex CRISPR/Cas experiments as specified by

the default parameters in Table 2.

Simulation BioCCP

k E[N20,k] σ [N20,k] Runtime E[N20,k] σ [N20,k] Runtime

1 103 plants 35 plants 0.2752 s 104 plants 37 plants 0.0015 s

2 2,518 plants 581 plants 6.503 s 2,453 plants 580 plants 0.0272 s

3 32,154 plants 5,825 plants 302.9 s 31,348 plants 5,979 plants 1.839 s

Each simulation experiment is repeated 500 times.

FIGURE 4 | Relation between the expected value of the minimal plant library size for full coverage of all single gene knockouts and design parameters of a multiplex

CRISPR/Cas experiment. (A) Effect of an increasing number of x target genes on E[Nx,1]. (B) Effect of the global knockout efficiency ǫKO on E[N20,1]. The blue curve

indicates the simulation-based results, while the red curve indicates the BioCCP-based results. The width of the shaded area around these curves represents σ [N20,1].

In each of the graphs, the parameter under investigation is varied while the values of the other parameters are fixed at the default values of the CRISPR/Cas

experiment as specified in Table 2. (C) Effect of parameter ρ, a measure for the width of the gRNA frequency distribution, for an increasing number of g gRNAs per

gene on E[N20,1]. (D) Effect of the fraction fact of active gRNAs for an increasing number of g gRNAs per gene on E[N20,1].

(i) Firstly, we vary the number of target genes x in the
CRISPR/Cas experiment in the range [10, 50]. Figure 4A
illustrates that, for this specific range of values for x, the
expected value of Nx,1 increases in an approximately linear
way. Figure 5A visualizes how Nx,2 escalates quickly with
an increasing number of x target genes, due to the total
number of

(x
2

)

pairwise combinations and the corresponding

combinatorial plant design space expanding combinatorially
with a larger x.

(ii) Figures 4, 5B demonstrate the impact of the global knockout
efficiency ǫKO on Nx,k. As expected, less effective gene editing
inevitably demands a larger plant library size to completely
cover all single gene knockouts (N20,1) as well as pairwise
combinations of gene knockouts (N20,2).
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FIGURE 5 | Relation between the expected value of the plant library size for full coverage of pairwise combinations of gene knockouts and design parameters of a

multiplex CRISPR/Cas experiment. (A) Effect of an increasing number of x target genes on E[Nx,2]. (B) Effect of the global knockout efficiency ǫKO on E[N20,2]. The

blue curve indicates the simulation-based results, while the red curve indicates the BioCCP-based results. The width of the shaded area around these curves

represents σ [N20,2]. In each of the graphs, the parameter under investigation is varied while the values of the other parameters are fixed at the default values of the

CRISPR/Cas experiment as specified in Table 2. (C) Combined effect of parameter ρ of the gRNA frequency distribution for an increasing number of g gRNAs per

gene on E[N20,2]. (D) Effect of the fraction fact of active gRNAs for an increasing number of g gRNAs per gene on E[N20,2].

(iii) In Figures 4, 5C, the combined effect of the parameter
ρ of the gRNA frequency distribution and the number
of gRNAs per gene on N20,1 and N20,2 is illustrated. For
a fixed number of g gRNAs per gene, it is clear that a
more uneven gRNA frequency distribution, indicated by a
larger ratio ρ, substantially increases the plant library size
Nx,k for full coverage. Importantly, when more gRNAs are
designed per gene, the increase of E[N20,k] caused by a
higher ρ gradually diminishes. The latter suggests that, in
the case of a construct library with highly underrepresented
gRNA sequences, the plant library size for full coverage
might be reduced by including more gRNAs per gene
in the experiment. In Figures 4, 5C, the genome editing
efficiency of all gRNAs is set at the ideal value of 1
(instead of sampling them from the genome editing efficiency
distribution) in order to isolate the effect of sampling the
gRNA relative frequencies from distributions with different
ρ. Note that for each value of ρ, the set of gRNA relative

frequencies was sampled multiple times from the same
distribution, resulting in a variable outcome for E[N20,k]
at a specific ρ (represented by different data points in
the graph).

(iv) In Figures 4, 5D, the fraction fact of active gRNAs is
demonstrated to exhibit a similar type of relation to Nx,k.
Here, several series of genome editing efficiencies were
drawn from genome editing distributions characterized by
a specific value of fact. The expected value of N20,k of
each corresponding multiplex CRISPR/Cas experiment is
represented by a different data point in the graph. Clearly,
at a fixed number of g gRNAs per gene, CRISPR/Cas
experiments with a lower fact require a higher number of
plants for full coverage. Yet, this increasing effect on Nx,k

can again be mitigated by including a greater number of
gRNAs per gene. Note that the experiments visualized in
Figures 4, 5D are executed by applying a uniform gRNA
frequency distribution.
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Figures 4, 5 demonstrate thatN20,2 is in general more sensitive
to changes of the values of design parameters as compared to
N20,1. For graphs visualizing the impact of experimental design
parameters on N20,3, we refer to the Supplementary Figure 1.

2.2.2. BioCCP-Based Approach to Compute the

Expected Value and Standard Deviation and Other

Relevant Statistics
In previous work, we designed the BioCCP.jl package in the
Julia Programming Language (Bezanson et al., 2017), providing
tools for computing a minimal sample size that adequately covers
the design space of combinatorial screening experiments in
biotechnology (available at https://github.com/kirstvh/BioCCP.
jl). This package reformulates the computation of a minimal
sample size for covering the design space of a combinatorial
library as a variant of the Coupon Collector Problem (CCP), a
well-known problem in probability theory and statistics (Flajolet
et al., 1992; Doumas and Papanicolaou, 2016). The standard
formulation of the CCP describes a situation where there
are n different types of “coupons” of which a collector tries
to obtain a complete set (e.g., a set of stickers). Therefore,
(s)he samples repeatedly with replacement one coupon at a
time from a population (e.g., cereal boxes that each contain
one random sticker). The goal then is to compute how
many coupons should be drawn on average to complete the
collection. This abstraction renders BioCCP fit for answering
questions concerning minimal sample sizes for a wide range
of combinatorial biotechnology experiments. Extrapolating to
multiplex CRISPR/Cas experiments in plants, the relevant
combinations of gene knockouts can be regarded as coupons,
and the collector sampling from the population is the researcher
performing a randomized screening experiment on a mutated
plant library. For elaborate information about BioCCP, we
refer to our recent paper (Van Huffel et al., 2022) and the
accompanying tutorials.

2.2.2.1. Plant Library Size for Full Coverage
Here, we apply BioCCP to compute E[Nx,k] for a multiplex
CRISPR/Cas experiment configured by the same experimental
design settings as specified in Table 2. Figures 4, 5 demonstrate
that the simulation-based results are closely approximated by
the computations of BioCCP. Based on these results, we regard
BioCCP as a suitable framework for gaining insight into Nx,k

for multiplex CRISPR/Cas screens in plants. Table 3 compares
the execution time to compute E[Nx,k] for the simulation-
based and BioCCP-based approaches, demonstrating a speed-
up by more than two orders of magnitude when using the
BioCCP-based approach. In the following, we apply other
functionalities of the BioCCP package to answer additional
questions related to coverage of multiplex CRISPR/Cas screens.
For more information about the relevant BioCCP functions and
usage, please consult Section 4.

2.2.2.2. Probability of Full Coverage w.r.t. Plant Library Size
BioCCP provides the functionality to compute a so-called success
probability of full coverage w.r.t. the sample size of a screening
experiment. In the case of multiplex CRISPR/Cas screens, this

measure indicates the probability of achieving full coverage of all
k-combinations of gene knockouts for x target genes w.r.t. the
number of plants analyzed in a randomized screening assay,
and will be further denoted by Px,k. More specifically, Px,1
and Px,2, respectively, represent the probability that all single
gene knockouts and all pairwise combinations of knockouts
are represented at least once in a CRISPR/Cas screen with a
specified plant library size N. Figure 6A illustrates that, for a
multiplex CRISPR/Cas screen targeting double gene knockouts
described by the experimental design settings in Table 2, P20,2
amounts to 0.95 when N is approximately equal to 3,560 plants.
For an analogous screen targeting single gene knockouts, 170
plants need to be screened to obtain a probability P20,1 of
0.95. Supplementary Figure 2A visualizes the probability of full
combinatorial coverage w.r.t. plant library size for a multiplex
CRISPR/Cas experiment targeting triple combinations of gene
knockouts.

One can also bring forward a different interpretation of
Px,k in the context of screens for lethal (combinations of)
gene knockouts. In particular, when a specific gene knockout
or combination of gene knockouts is not represented in a
CRISPR/Cas screen with a plant library size corresponding to
a probability Px,k of 0.95, one can conclude that there is a
probability of 0.95 that its absence is caused by lethality rather
than non-saturation of the plant design space. Regarding the
multiplex CRISPR/Cas screen targeting double gene knockouts
considered in Figure 6A, one can conclude with 0.95 confidence
that a pairwise combination of knockouts is not present in a
mutated plant collection consisting of 3,560 randomly selected
plants due to a lethal effect, and not as a result of an insufficient
plant library size. By all means, this statement is only valid
given that all parameter values of the multiplex CRISPR/Cas
experiment used to compute Px,k are properly calibrated (see
Section 2.2.3).

2.2.2.3. Expected Combinatorial Coverage w.r.t. Plant

Library Size
We can apply BioCCP to determine the fraction of the total
number of

(x
k

)

gene knockout combinations in the plant design
space that is expected to be covered w.r.t. the plant library
size N of a (multiplex) CRISPR/Cas experiment. This way, one
can get insight into the expected coverage (E[γx,k]) obtained
with a given number of plants. The curve E[γ20,2] in Figure 6B

represents the expected coverage of pairwise combinations of
gene knockouts w.r.t. the plant library size of an experiment
described by the parameters in Table 2. The plant library size at
an expected coverage E[γ20,2] of 0.95 can be considered as the
number of plants guaranteeing that on average 95% of all

(20
2

)

pairwise combinations of knockouts will be observed at least once
(Figure 6B). By way of comparison, Figure 6B also visualizes the
relation between the expected value of the fraction of single gene
knockouts that is observed in a CRISPR/Cas screen targeting
single gene knockouts and the plant library size of the screen.
Here, one can expect to cover on average 95% of all 20 single
gene knockouts when including 80 plants by random selection in
a plant library. For graphs visualizing the expected coverage w.r.t.
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FIGURE 6 | Additional functionalities provided by BioCCP to gain insight into the coverage of multiplex CRISPR/Cas screens. (A) The probability of full coverage P20,k

w.r.t. the plant library size N of a (multiplex) CRISPR/Cas screen. The graph P20,1 indicates the probability of full coverage of all single gene knockouts for an increasing

number of plants in the plant library. Parameter settings of the CRISPR/Cas screen are specified by Table 2 (k = 1). The graph P20,2 quantifies the probability of full

coverage of all
(20
2

)

pairwise combinations of gene knockouts w.r.t. the plant library size. A multiplex CRISPR/Cas screen as specified by the parameter settings in

Table 2 is considered (k = 2). (B) Expected coverage of all single gene knockouts (E[γ20,1]) and pairwise combinations of gene knockouts (E[γ20,2]) w.r.t. the plant

library size of a (multiplex) CRISPR/Cas screen. Parameters of the experiments correspond to the default settings as specified in Table 2.

plant library size for experiments targeting triple combinations of
gene knockouts, please consult Supplementary Figure 2B.

2.2.3. Model Calibration
In previous sections, computingNx,k by means of the simulation-
and BioCCP-based approaches was demonstrated for virtual
CRISPR/Cas experiments. Hence, we adopted a hypothetical set
of sensible parameter values in order to define the efficiency
of processes at several stages of the experiment, such as the
relative abundances of gRNAs in the construct library, the
genome editing efficiencies of the gRNAs and the global knockout
efficiency (Table 2). However, to effectively model the relation
between the coverage and the plant library size of a concrete
multiplex CRISPR/Cas experiment performed in the wet lab,
one should calibrate the models with parameter values that
approximate reality as closely as possible. For this purpose, a

calibration round prior to carrying out a full-scale multiplex
CRISPR/Cas experiment can be conducted. In this calibration
stage, experimental data is gathered at different stages of the
experiment to obtain more accurate estimates of experimental
parameters.

The first type of calibration data can be generated at the
level of the gRNA/Cas construct library, which is produced by
vector assembly of the initial gRNA pool. At this stage, the gRNA
expression cassettes in the bulk construct library can be amplified
by PCR followed by next-generation sequencing, obtaining a
number of reads per gRNA. As such, the relative abundances of
gRNAs in the library or the empirical frequency distribution of
gRNAs can be precisely determined and fed into the model. After
delivery of the constructs into the target cells for the creation of
the mutated plant library, a second data collection process can
be executed to retrieve information about the genome editing
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efficiencies of the individual gRNAs. More specifically, both the
gRNAs stably integrated in the genome of the mutated lines and
the mutations at the associated target sites can be detected by
next-generation deep sequencing (Jacobs et al., 2017; Gaillochet
et al., 2021; Schaumont et al., 2022). The rate at which a specific
gRNA has successfully induced a mutation at the target site
determines the genome editing efficiency of the gRNA (ǫedit).
Lastly, the global knockout efficiency is the remaining parameter
that needs to be assessed to improve the accuracy of the model. It
would be of interest to develop a model that can in silico predict
the disruption of protein function based on an observed mutated
gene sequence. Such predictions could assist in identifying the
fraction of mutations leading to an effective gene knockout,
i.e., the empirically calibrated global knockout efficiency for a
given set of gRNAs (ǫKO). Schaumont et al. (2022) are currently
working toward implementing a method for high-throughput
multiplex gRNA design, molecular characterization of induced
mutations at hundreds of loci in parallel, and automated
interpretation of functional consequences of mutations, all as
part of the Stack Mapping Anchor Points (SMAP) package.

After executing this calibration round, the simulation-based
and BioCCP-based approaches for computing Nx,k can be
updated by injecting the empirically measured efficiencies. As a
result, one can obtain a more precise estimation of the expected
minimal number of plants needed for full coverage, allowing
for well-informed design of the final multiplex CRISPR/Cas
experiment. For instance, it may require less effort to recalibrate a
suboptimal gRNA frequency distribution in the laboratory, or to
enrich the gRNA library for empirically proven active gRNAs (or
to eliminate the inactive gRNAs), and repeat the construct library
assembly rather than to scale up plant transformation to finally
obtain a desired combinatorial coverage within a practically
feasible plant library size.

2.3. Strategies for Increasing Coverage of
Multiplex CRISPR/Cas Screens in Plants
As demonstrated by Figures 4, 5, the design parameters of a
multiplex CRISPR/Cas experiment greatly impact the minimal
plant library size to achieve full coverage when exploring all k-
combinations of knockouts for x target genes. By means of these
findings, we define two experimental design strategies that reduce
the number of plants that needs to be screened for studying all
relevant genetic interactions: the Split–Select–Combine strategy
and the Overshoot–Select–Purify strategy.

2.3.1. The Split–Select–Combine Strategy
The Split–Select–Combine strategy studies interactions among a
set of target genes in multiple distinct subsets, hence shrinking
the number of possible gene knockout combinations in the
plant design space and in its turn the plant library size for
full coverage. Figure 7 gives a schematic overview of this
approach. The Split–Select–Combine strategy starts with dividing
a multiplex CRISPR/Cas experiment with a large number of x
target genes into multiple screening experiments, each targeting
a distinct gene subset of size xsubset, addressed as the Split phase
(Figure 7A). Grouping genes is meaningful considering that
prior knowledge indicates that genes within a subset aremembers

of the same gene family or contribute to the same metabolic or
regulatory pathway, and minimally interact with genes belonging
to other groups. In this regard, insights from gene family protein
sequence alignments and phylogenetic analyses, genome-wide
association studies, quantitative trait locus analysis and/or co-
expression networks can be valuable to guide the construction of
effective gene subsets (Gaillochet et al., 2021). After grouping of
the genes, gRNA sequences specifically targeting each gene subset
are designed. Subsequently, for each gene subset a construct
library is generated, with each construct containing k gRNA
sequences in case of exploring k-order genetic interactions.
After transformation of these construct libraries into target cells,
plant libraries exhibiting genetic perturbations in a specific gene
subset are obtained. During the Select phase, plants with an
advantageous phenotype or genotype are collected. Subsequently,
further supertransformations and/or crossings between these
lines can be performed to stack mutations and explore genetic
interactions between different gene groups (Combine).

The rationale behind the Split–Select–Combine strategy is
to search for genetic interactions in multiple, distinct design
spaces with reduced combinatorial complexity (Split), after which
valuable genotypes (Select) can be crossed in a more focused
design space (Combine). Figure 7B illustrates the impact of the
Split phase on the plant design space of a multiplex CRISPR/Cas
screen. Consider a multiplex CRISPR/Cas screen targeting a total
number of x = 20 genes for studying pairwise interactions
(k = 2). In this case, the plant design space contains all possible
(20
2

)

pairwise combinations of gene knockouts. On the contrary,
the Split–Select–Combine strategy visualized in Figure 7B divides
the target genes into two smaller subsets of size xsubset = 10
based on prior knowledge, and investigates pairwise interactions
in these gene subsets separately. The plant design space now only
comprises two smaller subspaces of the original design space,
each containing a significantly smaller number

(10
2

)

of possible
gene knockout combinations. It is intuitive that this will require
a smaller number of plants to achieve full saturation. As such,
this strategy can contribute to optimally exploiting a limited
availability of plants in multiplex CRISPR/Cas screens.

We can quantify the reduction in the plant library size for
full coverage by using the Split – Select – Combine strategy,
in particular for the default multiplex CRISPR/Cas experiment
described in Table 2. Consider a total number of 20 target genes
that is split into two subsets of 10 genes. The minimal number
of plants for reaching full coverage γ10,2 in each subset of size
xsubset = 10 is denoted by N10,2. The variable N(10,10),2 represents
the minimal plant library size for full coverage of both subsets.
For this Split scenario, Figure 7C demonstrates that the

(10
2

)

gene
knockout combinations in one gene subset can be saturated by
screening on average less than E[N10,2] ≈ 400 plants, resulting
in a total minimal plant library size of E[N(10,10),2] ≈ 800 plants
for entirely covering the plant design space in the Split scenario.
When splitting the 20 target genes into four subsets of 5
genes, the minimal plant library size for full coverage of all
pairwise interactions in all gene subsets even further decreases
to E[N(5,5,5,5),2] ≈ 300 plants. In contrast, a pooled screen
examining all the pairwise combinations of the 20 target genes
requires on average more than E[N20,2] ≈ 2, 700 plants to
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FIGURE 7 | The Split–Select–Combine strategy. (A) The Split–Select–Combine strategy starts with dividing a set of target genes into meaningful subgroups. Here, a

total number of x = 20 genes is divided into two subsets, each of size xsubset = 10 genes (Split). To study genetic interactions within these subsets separately, a

construct library is created for each subset. Each construct contains two random gRNAs to explore pairwise genetic interactions (r = k = 2). Performing a phenotypic

screen on the corresponding plant libraries allows to select plants with an interesting phenotype (Select), which can be crossed to investigate genetic interactions

between the gene subsets (Combine). (B) Studying 20 target genes in two subgroups of 10 genes (Split) creates a plant design space that consists of two subspaces

of the original design space. (C) Impact on the plant library size for full coverage as a total set of x = 20 genes is grouped into subsets of size xsubset = 10 or size

xsubset = 5 (Split). The fraction of the total number of genes that is present in the subset is denoted by fsubset. The plant library size for full coverage of all pairwise

combinations of gene knockouts within the subsets separately is indicated as N10,2 and N5,2 (orange squares), respectively. The plant library size for full coverage of

the entire gene set, is given by N(10,10),2 and N(5,5,5,5),2 (black dots). (D) Impact on the expected coverage w.r.t. plant library size as a total set of x = 20 genes is

grouped into subsets of size xsubset = 10 or size xsubset = 5 (Split). Note that all parameters of the experiment (except for the number of target genes that is varied on

the x-axis) are configured with the default settings in Table 2.

saturate all
(20
2

)

gene knockout combinations. Hence, the total
plant library size that covers all genetic interactions in the gene
subsets is substantially lower than the plant library size that
saturates a single screen examining the pairwise combinations
of all target genes. As previously illustrated in Figure 5A, this is
due to the number of gene knockout combinations in the plant

design space as well as the plant library size for full coverage
increasing exponentially with a larger number of x target genes.
Figure 7D illustrates that full coverage is reached at lower plant
library size when genes are split in smaller subsets. For graphs
visualizing the impact of the Split–Select–Combine strategy on the
plant library size for full coverage and the expected coverage w.r.t.
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plant library size for experiments targeting triple combinations of
gene knockouts, we refer to Supplementary Figure 3.

2.3.2. The Overshoot–Select–Purify Strategy
Consider a multiplex CRISPR/Cas experiment investigating all k-
order genetic interactions among a set of x target genes, hence
all

(x
k

)

gene knockout combinations need to be observed at least
once in the plant library. The Overshoot–Select–Purify strategy
intends to explore more than one k-order genetic interaction
per plant in the plant library, requiring a lower plant library
size for full coverage of all

(x
k

)

gene knockout combinations.
For this purpose, Overshoot–Select–Purify proposes to design a
multiplex CRISPR/Cas experiment as illustrated in Figure 8A.
After designing a collection of gRNAs specifically for the set
of target genes, a construct library is generated by assembling
more than k gRNAs per vector, which is addressed here as
Overshoot. The generated plant library will contain plants with
more gene knockouts than the order of genetic interaction
under investigation (k). Therefore, from a geneticist’s perspective,
Overshoot implies studying multiple k-combinations of gene
knockouts in a background of other knockouts. The latter is
only valid assuming that perturbation of most target genes does
not affect the phenotype of interest, rendering most background
mutations neutral, and genetic interactions with an order higher
than k are rare. For example, in Figure 8A, pairwise genetic
interactions (k = 2) among a set of x = 20 target genes
are investigated, and r = 3 gRNA sequences are assembled
per gRNA/Cas construct in the construct library. The plants
in the corresponding mutated library can contain up to three
gene knockouts, which is considered equivalent to three specific
pairwise combinations of gene knockouts in the Overshoot
scenario. Upon detecting a plant with beneficial traits during
the screening phase (Select), its genotype can be decomposed
from higher-order combinations of gene knockouts through
Mendelian segregation (Purify). In this manner, a genotype with
the minimal combination of gene knockouts that is responsible
for the phenotypic change can be isolated.

Figure 8B depicts the Overshoot–Select–Purify strategy at the
level of the design space. Consider a multiplex CRISPR/Cas
experiment in which up to three gene knockouts are induced
per plant when investigating all pairwise genetic interactions
among 20 target genes. Hence, each plant genotype in the
plant library, indicated by a single point in the plant design
space, is characterized by up to three gene knockouts. Here,
a set of three knockouts in a plant is regarded as a “bag of
three pairwise combinations” rather than a “single third-order
genetic interaction.” Note that we are ignoring that each pairwise
combination of gene knockouts occurs in a background of one
other knockout. This illustrates that each plant with three gene
knockouts allows to study up to three pairwise gene knockout
combinations. In this example, six plants comprise 18 pairwise
gene knockout combinations as a result of Overshoot. Intuitively,
since a given number of plants is able to cover multiple pairwise
gene knockout combinations, the plant library size for full
coverage Nx,k is reduced.

The effect of Overshoot on the expected value of the plant
library size for full coverage (E[Nx,k]) is quantified in Figure 8C.

As an example, consider an experiment to investigate all pairwise
gene knockout combinations (k = 2) for a set of 20 target genes.
Figure 8C visualizes the relation between the number of gRNAs
per vector in the construct library (i.e., the degree of Overshoot)
and the plant library size for full coverage (N20,2). Suppose we
create a construct library with three gRNAs per vector, then the
expected value of the plant library size for full coverage (E[N20,2])
is∼850 plants. In contrast, if only at most two genes per plant are
knocked out, then the expected value of N20,2 amounts to more
than 2,500 plants. When knocking out over three genes per plant,
N20,2 decreases even more drastically (Figure 8C). Figure 8D
illustrates that full coverage of all pairwise combinations of gene
knockouts is reached at lower plant library size as a result of
Overshoot. For graphs visualizing the impact of the Overshoot–
Select–Purify strategy on the plant library size for full coverage
and the expected coverage w.r.t. plant library size for experiments
targeting triple combinations of gene knockouts, we refer to
Supplementary Figure 4.

Lastly, Figure 9 visualizes the impact of Overshoot on the
distribution of the number of knockouts per plant in a library.
Multiplex CRISPR/Cas experiments targeting double gene
knockouts (k = 2) with varying global knockout efficiency ǫKO
are considered. Figure 9A depicts the distribution of the number
of knockouts per plant resulting from multiplex CRISPR/Cas
experiments employing a standard approach, involving the
generation of a construct library with the number of gRNAs per
vector equal to the order of genetic interaction to investigate
(r = k = 2). However, due to inefficiencies during CRISPR/Cas-
mediated genome editing, a large fraction of the plants in
the resulting plant library will carry a knockout in only one
target gene, or might not possess a gene knockout at all. As
these lower-order mutated lines do not enable the study of any
pairwise combinations of gene knockouts, they do not contribute
to covering relevant k-combinations of gene knockouts in the
combinatorial design space. Figure 9A illustrates that these
plants occupy a larger part of the plant library as the global
knockout efficiency ǫKO decreases. On the contrary, in Figure 9B,
an Overshoot scenario is depicted, in which six gRNAs are
included per gRNA/Cas construct (r = 6), while targeting
pairwise combinations of gene knockouts (k = 2). Here, all
plants in the library that hold a number of gene knockouts that is
equal to or greater than k, i.e., all double to sextuple knockout
lines, are valuable for covering k-combinations of knockouts
(possibly in a background of other knockouts, in this case
providing multiple k-combinations per plant). This way, on the
one hand,Overshoot is able to optimally exploit a set of plants for
combinatorial coverage, compensating for inefficiencies during
CRISPR/Cas-mediated gene perturbation. On the other hand,
note that Overshoot is also able to leverage these inefficiencies as
a tool to create diverse orders of combinations of gene knockouts
in a single plant library.

Importantly, a large fraction of the mutated lines resulting
from Overshoot contains combinations of gene knockouts of
an order higher than the order of genetic interaction under
investigation. These higher-order combinations potentially hold
mutations additional to the minimal set of gene knockouts
that is causative for the phenotype of interest. Therefore, after
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FIGURE 8 | The Overshoot–Select–Purify strategy. (A) For a multiplex CRISPR/Cas experiment investigating all k-combinations of gene knockouts for x target genes,

Overshoot–Select–Purify starts with designing a construct library with more than k gRNA sequences per vector (Overshoot). Here, pairwise interactions (k = 2) are

investigated among x = 20 target genes, and r = 3 gRNA sequences are included per vector. The resulting plant library will contain plants with up to three gene

knockouts. Interesting plant phenotypes can be collected (Select), after which the minimal causative genotype can be purified by Mendelian segregation (Purify). (B)

Impact of Overshoot on the plant design space. In this example, the plant library includes six plants with each three gene knockouts, which are mapped onto the plant

design space (red dots). The bag of three gene knockouts in each of the six plants can be decomposed in three pairwise combinations of gene knockouts (gray dots),

resulting in a total of 18 pairwise combinations of gene knockouts. A higher coverage γ20,2 is reached per plant compared to a standard approach where r = k

(yielding at most one pairwise combination per plant). (C) Reduction of Nx,k as a result of Overshoot. N20,2 decreases as a higher number of r gRNAs are included per

construct, exploring a larger fraction of all possible pairwise combinations of gene knockouts per plant. (D) Increased coverage γ20,2 at fixed plant library size N as a

result of Overshoot. In these graphs, r is varied, while the other parameters were configured with the default settings in Table 2.

the selection of individuals with relevant phenotypes from the
mutated collection (Select), the Purify step involves the isolation
of the effective combinations of gene knockouts through several
backcrosses. Backcrossing implies subjecting lines to crossings
with plants from a different genetic background in order to

achieve a progeny in which the higher-order combinations of
gene knockouts segregate into lower-order combinations. Then,
individuals with interesting phenotypes are once again selected
from the progeny, whereafter genotyping through massively
parallel sequencing serves to identify the set of mutations that
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FIGURE 9 | Impact of the Overshoot–Select–Purify strategy on the distribution of the number of knockouts per plant. A multiplex CRISPR/Cas experiment

investigating pairwise combinations (k = 2) of gene knockouts for a set of 20 target genes was considered (see default settings in Table 2). The probability of the

number of gene knockouts per plant is dependent on the global gene knockout efficiency ǫKO. (A) The standard multiplex CRISPR/Cas approach incorporates r = k

gRNAs per vector in the construct library, producing a plant library containing wildtypes, single and double knockout lines, as a result of inefficiencies related to

CRISPR/Cas-mediated genome editing. (B) Applying Overshoot (r > k) yields a diverse library of plants containing relevant combinations of gene knockouts of an

order that ranges from k to r.

is associated with the observed phenotype. An iterative process
of estimating genotype-phenotype associations and Mendelian
segregation through several backcrosses may be necessary to
arrive at the minimal causative set of gene knockouts. The total
number of plants that needs to be generated, phenotyped, and
genotyped during the Purify phase depends on the order of
genetic interaction that is responsible for the desired phenotype.
In fact, isolating a lower-order combination of gene knockouts
from a higher-order mutational background implies substantially
shrinking the initial search space, requiring an increased number
of backcrosses. Therefore, the trade-off between the advantage
of minimizing the scale of the initial CRISPR/Cas screen by
Overshoot on the one hand, and the substantial amount of
resources and efforts for purifying the genotypes afterwards on
the other hand, is decisive for the ideal number of knockouts
per plant. Note that the quantification of the number of
plants that needs to be generated, phenotyped, and genotyped
during Purify is left for future work. In addition, it should be
emphasized that an increasing number of gRNAs per gRNA/Cas
construct (more than six gRNAs per gRNA/Cas construct) may
result in competition among the individual gRNAs for the
common Cas nuclease core and hence reduced genome editing
efficiencies (Stuttmann et al., 2021). This reduced efficiency
imposes additional constraints on the degree of Overshoot that
can be applied in a multiplex CRISPR/Cas experiment.

3. DISCUSSION

The development of multiplex CRISPR/Cas systems has
advanced the study of genetic interplay in biological processes,
by allowing for the targeted mutation of multiple genes
simultaneously in a single cell or plant line. This technology has

the potential to improve understanding about how synergistic,
additive, and/or redundant gene function impacts complex
agronomic traits in various plant species, and hence facilitate
the development of optimal plant phenotypes. In this study,
we focused on the application of the multiplex CRISPR/Cas
system in plants to investigate all k-order genetic interactions
among x target genes. To that end, it is of primary importance
that the plant library contains all possible k-combinations of
gene knockouts in the plant design space. Otherwise, one cannot
distinguish whether a particular gene knockout combination is
missing in the set of plants with a relevant phenotype due to an
insufficient plant library size or whether a particular combination
of gene knockouts is lethal. Moreover, when only a fraction of
all relevant combinations of gene knockouts is represented in
the multiplex CRISPR/Cas screen, effective genetic interactions
and complex genotype-phenotype associations are discovered
merely by chance. To avoid misleading conclusions, the
design of such experiments must correct for full coverage of
all

(x
k

)

combinations of gene knockouts in the design space. For
this purpose, a sufficient number of plants needs to be included
in the plant library by random sampling. Notably, current
protocols for multiplex CRISPR/Cas screens in plants lack
guidelines in this regard. In this study, the plant library size of
a multiplex CRISPR/Cas experiment that achieves full coverage
was referred to as Nx,k. The central objective of this study was
to develop tools for quantifying the expected value and standard
deviation of Nx,k. Note that we focus on a minimal plant library
size guaranteeing the representation of all relevant knockout
combinations at least once in the plant library. However, the
latter forms a theoretical lower bound to the actual number of
plants that is required for a researcher to effectively link gene
knockout combinations to qualitative or quantitative phenotypic
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effects. In practice, an even larger plant library size will have
to be considered to distinguish true effects from phenotypic
noise resulting from biological variation and false positive results
due to off-target CRISPR/Cas editing activity or spontaneous
mutations. In particular, to ensure a minimal level of statistical
power, the plant library size for the reliable detection of effects
will increase with a higher phenotypic variation among biological
replicates.

To contribute to well-informed experimental design
of multiplex CRISPR/Cas screens in plants, we provided
two approaches to gain insights into the plant library size
guaranteeing full coverage of all k-combinations of gene
knockouts for x target genes. First, a simulation-based approach
was presented, which repeatedly generates mutated plant
lines in silico until all

(x
k

)

gene knockout combinations in
the plant design space are fully covered. These simulations
reflect subsequent stages throughout a multiplex CRISPR/Cas
experiment, modeling several sampling processes starting from
the assembly of gRNA/Cas constructs to the CRISPR/Cas-
mediated genome editing of plant cells and the collection of a
library of mutated plants. In order to closely resemble a realistic
scenario, imbalances in the relative abundance of gRNAs and
inefficiencies on the level of genome editing and the induction
of loss-of-function mutations were taken into account. These
parameters can be varied to assess their impact on the expected
value and the standard deviation of the plant library size for
full coverage. An advantage of the simulation-based approach is
its transparency, providing a clear overview of the subsequent
stages and associated efficiencies of a multiplex CRISPR/Cas
experiment. As a consequence, information regarding the
separate stages can be extracted for deeper understanding of,
e.g., the composition of the construct library, the distribution
of mutations after genome editing and the distribution of
gene knockouts in the plant library for a specified set of
experimental design parameters. Alternatively, we provided
the comprehensive BioCCP-based approach, translating the
computation of an adequate plant library size for multiplex
CRISPR experiments into a variant of the Coupon Collector
Problem (CCP). This higher level of abstraction allows for a
quick estimate of the expected value and standard deviation of
the minimal number of plants needed for full coverage, yielding
immediate insights into the practical feasibility and potential
cost and effort of genotyping and phenotyping of a specific
multiplex CRISPR/Cas experiment. Both the simulation- and
BioCCP-based approach can be easily repurposed for multiplex
CRISPR/Cas experiments based on other gRNA delivery
methods than Agrobacterium transformation of multiplex
gRNA/Cas constructs, such as protoplast transfection or particle
bombardment (Cunningham et al., 2018; Liang et al., 2018;
Toda et al., 2019). Furthermore, they may be extended to
account for additional processes and efficiencies associated
with a CRISPR/Cas experiment (e.g., vector propagation in a
bacterial host, plant cell transformation, and plant regeneration).
It should be noted that the BioCCP-based approach offers an
approximate solution, as a result of abstracting combinations
of gene knockouts into independent modules and neglecting
their dependence when multiple gene knockouts are present per

plant. The simulation-based approach will deliver an accurate
solution, given that the efficiency parameters are well-calibrated
and that a sufficient number of repetitions is performed during
the simulation. Notwithstanding, the BioCCP-based approach
offers a more computationally friendly way for computing
Nx,k, demonstrating speed improvements of more than two
orders of magnitude. Therefore, the BioCCP package was
employed to develop complementary tools for studying the
coverage γx,k of a plant library. As such, the BioCCP-based
approach allows to compute the probability of full coverage Px,k
w.r.t. the plant library size N for a specific experiment. Further,
insights regarding the expected coverage E[γx,k] w.r.t. a given
plant library size can be gained. This precise quantification
of the representation of gene knockout combinations in
function of plant library size has not yet been systematically
addressed in published studies. Both measures facilitate a deeper
understanding of adequate plant library sizes for multiplex
CRISPR/Cas experiments.

Moreover, we illustrated the impact of several experimental
design parameters on the expected value of Nx,k, improving
understanding of how adjustments of design settings can
contribute to minimizing the number of plants that should
result from a multiplex CRISPR/Cas experiment to achieve full
coverage. Importantly, an increasing number of target genes
results in an explosion of the combinatorial plant design space
and hence also brings about a rapid increase in the associated
plant library size guaranteeing its full coverage (Figure 5).
Equally important is the order of genetic interaction (k) one
intends to study, since a combinatorial explosion of the design
space occurs as higher-order interactions are to be investigated
(Table 3). The latter clearly indicates that the number of
target genes and order of genetic interaction investigated in an
experiment when imposing full coverage is strongly constrained
by the manageable number of plants for genotyping and
phenotyping. Hence, designing a CRISPR/Cas experiment in a
naive way might lead to an unfeasible plant library size for
covering the combinatorial design space. Most current studies on
multiplex CRISPR/experiments investigate genetic interactions
among a relatively small pool of 5 to 15 target genes (Ma
et al., 2015; Zhang et al., 2016; Jacobs et al., 2017; Shen L.
et al., 2017; Miao et al., 2018; Li et al., 2019; Bai et al.,
2020; Lin et al., 2020; Rojas-Murcia et al., 2020; Trogu et al.,
2021), or intend to assess the individual phenotypic effects of
a large number of 50–13,000 genes (Meng et al., 2017; Liu
H.J. et al., 2020; Zhang N. et al., 2020; Chen et al., 2022). In
these papers, a thorough assessment regarding the coverage of
(combinations of) gene knockouts in the CRISPR/Cas screen
to determine an adequate plant library size is lacking. We
highlight that although the emergence of efficient multiplex
CRISPR/Cas systems is rendering the generation of high-order
mutant plant libraries technologically realizable (Shen L. et al.,
2017; Miao et al., 2018; Stuttmann et al., 2021; Trogu et al.,
2021), typical plant library sizes only allow for a limited number
of gene knockout combinations to be properly investigated.
Additionally, inefficiencies at different stages of the multiplex
CRISPR/Cas protocol play a major role, as Nx,k increases
significantly with: (1) an unequal abundance distribution of
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gRNA sequences in the gRNA/Cas construct library, (2) inferior
genome editing efficiencies of gRNAs, and (3) a lower fraction of
mutations leading to loss-of-function of the gene product, i.e., a
reduced global knockout efficiency. These factors form potential
bottlenecks in achieving full coverage (γx,k = 1) in multiplex
CRISPR/Cas screens. It was shown that the effect of unequal
abundances and inferior genome editing efficiencies of gRNAs on
Nx,k can be mitigated by designing more gRNAs per target gene.
For the sake of future work in the multiplex CRISPR/Cas field,
the quantitative analysis presented in this paper raises awareness
about the limitations on the order of genetic interaction that
can be investigated among a number of target genes, given
that the feasible number of plants in a screening assay is
confined and that inefficiencies at several stages of the multiplex
CRISPR/Cas protocol are inevitable. Our model provides the
opportunity to calibrate all stages of the experiment “on the
fly” by injecting the empirically observed gRNA abundances
and efficiency distributions into the model and updating all
estimates accordingly. It should be acknowledged that there
exist additional inefficiencies and bottlenecks in the multiplex
CRISPR/Cas protocol that are not included in our models, which
might further magnify Nx,k. For example, if heterozygous and
homozygous mutations are considered as separate genotypic
states, the combinatorial design space that is to be covered inflates
even further.

An additional goal of this work was to suggest experimental
design strategies to construct multiplex CRISPR/Cas screens in
plants with a lower Nx,k. First, we proposed the Split–Select–
Combine strategy, which groups target genes into meaningful
subsets based on prior knowledge, resulting in multiple screens
with a lower total combinatorial complexity compared to a single
screen encompassing all target genes. As a result, full coverage
can be reached at a reduced Nx,k. Second, the Overshoot–Select–
Purify strategy was presented. Here, the number of knockouts
induced per plant is larger than the order of genetic interaction
under investigation (k) in order to study multiple k-order
genetic interactions per plant. In this manner, one intends to
initially span as much as possible relevant combinations of
gene knockouts with a limited number of plants. Afterwards,
relevant areas in the combinatorial design space can be more
thoroughly explored by Mendelian segregation and the minimal
causative genotype can be purified. Furthermore, it should
be highlighted that, without altering the experimental design
strategy, coverage of a multiplex CRISPR/Cas screen can be
enhanced by minimizing inefficiencies at several stages of the
experiment. For instance, as seen from Figure 5C, a more
equal distribution of the relative frequencies of the gRNAs in
the construct library might substantially lower Nx,k. Hence,
there is a need for approaches to mitigate biases during the
synthesis, quantification, and cloning of gRNA sequences that
result in specific gRNAs to be over- or underrepresented
in a construct library (Wegner et al., 2019; Imkeller et al.,
2020). Further, Nx,k can be reduced by optimizing the genome
editing activities of gRNAs. The latter implies improvements
in gRNA design to maximize the genome editing rate and
minimize off-target activity, diminishing the occurrence of false
negatives and false positives, respectively. Various web-based

tools for gRNA design have been developed (Gerashchenkov
et al., 2020). Furthermore, the gRNA pool may be enriched
for biologically active gRNAs after initial in vitro or in
planta high-throughput screens, and inactive gRNAs may
be removed before construct library assembly. In addition,
testing multiple nuclease orthologs of the Cas protein to
identify highly efficient variants and the use of alternative
promotors driving the expression of the Cas nuclease can
boost genome editing efficiency (Bortesi et al., 2016; Najm
et al., 2018; Hassan et al., 2021). Moreover, it is critical
that the gRNAs are designed to specifically target functional
protein domains and that the editing outcome results in loss-
of-function of the protein, improving the global knockout
efficiency. We anticipate that implementing these guidelines will
greatly increase effective coverage of relevant gene knockout
combinations in multiplex CRISPR/Cas screens in plants as
well as contribute to the correct interpretation of these
screening experiments.

4. MATERIALS AND METHODS

All code accompanying the simulation- and BioCCP-based
approaches was run in Julia-Jupyter Notebook and is available
at https://github.com/kirstvh/MultiplexCrisprDOE. Runtime
experiments were performed on an Intel core i7 2.60 GHz
processor machine with 32 Gbytes of RAM and a 64-bit
operating system.

4.1. Simulation-Based Approach
4.1.1. gRNA Relative Frequency Distribution and

in silico Vector Assembly
During the simulation procedure, each gRNA in the library is
assigned a read number by random sampling from the gRNA
frequency distribution. This distribution is characterized by a
fixed ratio ρ of the frequency of the most abundant gRNA to
the frequency of the least abundant gRNA. More specifically, the
gRNA frequency distribution is defined as a double truncated
normal distribution, with a lower bound of truncation (l) and
upper bound of truncation (u) such that ρ =

l
u . Note that only

the ratio l
u , and not the exact value of l and u, is crucial, since

downstream in the simulation a normalization step is performed
on the gRNA reads in order to obtain a series of probabilities
that add up to 1 (determining the sampling probability of each
gRNA to be included in a vector of the construct library). The

expectation of the normal distribution (µ) is set to l+u
2 and the

standard deviation (σ ) is set to u−l
2 . In the default scenario, the

following settings are applied: l = 50, u = 100, µ = 75, σ = 25,
resulting in ρ = 2. The histogram of the gRNA abundances
is depicted in Figure 3A. Relative frequencies are calculated by
normalizing the abundances to add up to 1. Each gRNA/Cas
construct is assembled in silico by sampling k gRNAs according to
a multinomial distribution with the probability of sampling each
gRNA being equal to its relative frequency in the gRNA library.
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4.1.2. gRNA Genome Editing Efficiency Distribution,

Global Knockout Efficiency, and in silico Genome

Editing
After generating a gRNA/Cas construct in silico, this vector is
assumed to be transformed and consequently expressed in a
target cell with 100% efficiency. The genome editing process is
simulated as follows. A genome editing efficiency is attributed
to each gRNA. By default, fact = 90% of the gRNAs is assumed
to be highly active. For these active gRNAs, the genome editing
efficiency is obtained by sampling from a normal distribution
with µ = 0.95 (denoted as ǫedit,act) and σ = 0.01. The remaining
(1− fact) = 10% of all gRNAs is assigned a low activity, drawing a
genome editing efficiency from a normal distribution withµ = 0.1
(denoted as ǫedit,inact) and σ = 0.01. This sampling procedure is
equivalent to drawing genome editing efficiencies from a bimodal
distribution (see also the CRISPR/Cas simulation study of Nagy
and Kampmann, 2017). To model the induction of mutations
in the target cell, for each gRNA present in the construct a
value is drawn from a Bernoulli distribution with p equal to the
genome editing efficiency ǫedit of the gRNA. This sample takes
the value 1 with probability p = ǫedit, simulating the effective
induction of a mutation, and takes the value 0 with probability
1 − ǫedit, representing the absence of a mutation. After deciding
on whether a gRNA has effectively induced a mutation, another
Bernoulli distribution is used to model whether a mutation
results in a loss-of-function gene knockout. Here, the Bernoulli
parameter p is equal to global gene knockout efficiency ǫKO,
which describes the fraction of gene edits resulting in a loss-of-
function mutation and which is equal for all gRNAs. By default,
ǫKO is set at a value of 0.8. The foregoing sampling process is
executed for each gRNA of a virtually transformed construct in
order to determine whether the gRNA has effectively knocked out
the target gene in the plant cell. At the end, the corresponding
plant is characterized by a specific set of gene knockouts.

4.1.3. Computation of the Expected Value and the

Standard Deviation of the Plant Library Size for Full

Coverage
Plants are virtually collected and the observed combinations
of gene knockouts are stored. The repeated sampling of plant
genotypes ends when all genetic interactions of interest have been
targeted, i.e., full coverage of all

(x
k

)

gene knockout combinations
in the combinatorial design space is achieved. The plant library
size at which this goal is realized, is stored as the Nx,k of the
current trial of the multiplex CRISPR/Cas experiment. To obtain
an expected value and standard deviation of the plant library size
for full coverage, each specific multiplex CRISPR/Cas experiment
is simulated 500 times.

Note that the relative abundances in the construct library
and genome editing efficiencies of the gRNAs are randomly
sampled from a distribution. The outcome of this stochastic
process is dependent on the seed value that is used to initialize
the pseudo-random number generator. Therefore, the series
of relative abundances and genome editing efficiencies of the
gRNAs, and hence the value of E[Nx,k] and σ [Nx,k], will vary with
the chosen seed. Therefore, when investigating the influence of ρ
of the gRNA frequency distribution and fact of the genome editing

efficiency distribution on E[Nx,k] and σ [Nx,k] in Figures 4, 5C,D,
E[Nx,k] and σ [Nx,k] are computed for several series of gRNA
frequencies and genome editing efficiencies corresponding to
a specific ρ and fact, respectively. The different outcomes for
E[Nx,k] and σ [Nx,k] are averaged.

4.2. BioCCP-Based Approach
BioCCP is a general framework focusing on determining sample
sizes for screening experiments in combinatorial biotechnology
that guarantee full coverage of the design space (Van Huffel et al.,
2022). BioCCP requires the input of the total number of distinct
modules in a design space, the number of modules per design
and the probability distribution of the modules, describing the
probability of being included in a design, in order to define
the design space and compute its statistical properties (e.g.,
how many designs should be sampled on average to observe
each module at least once, or what the expected coverage of
all modules is w.r.t. a given sample size). In the following, we
describe the translation of a CRISPR/Cas experiment into the
BioCCP framework.

4.2.1. Definition of Inputs
The problem setting of calculating the expected value of the
minimal plant library size for full coverage of all single gene
knockouts (E[Nx,1]) in a CRISPR/Cas screen is translated into
BioCCP terms as follows. Each plant design is regarded as an
assembly of single gene knockouts, and the specific goal is to
collect a set of plants that spans each possible gene knockout
at least once. Therefore, the number of possible single gene
knockouts (which is equal to the number of target genes) is fed
into the BioCCP model as the number of distinct modules in
the design space that needs to observed at least once. For an
experiment targeting single gene knockouts, by default one gRNA
is included per gRNA/Cas construct. Accordingly, the number
of modules per design is set to the value of 1. The probability
to encounter a knockout in a gene (module) is calculated by
summing up the probabilities of the relevant gRNAs (the gRNAs
specifically designed to target this gene) to induce a knockout
in this gene, taking into account the relative frequencies of the
relevant gRNAs in the construct library, the genome editing
efficiencies of the gRNAs and the global gene knockout efficiency.
The relative frequencies and genome editing efficiencies of the
gRNAs are sampled according to the distributions described in
Sections 4.1.1 and 4.1.2.

For examining the expected plant library size for full coverage
of all k-combinations of gene knockouts (E[Nx,k]) in multiplex
CRISPR/Cas screens (k > 1), abstraction into BioCCP terms
implies the following. First, the number of k-combinations of
gene knockouts is considered as the total number of modules
to be collected. Secondly, the number of modules per design
is set as the number of gRNA combinations per vector in the
gRNA/Cas construct library. For instance, a construct library
with six gRNA sequences per vector contains 15 pairwise
combinations, corresponding to 15 modules per design. The
probability to encounter a gene knockout combination (module)
in a plant (design) is computed as follows. For each gene
knockout combination, the corresponding combinations of
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gRNAs are listed. The probability of encountering a combination
of gRNAs in the construct library is calculated by multiplying
the relative frequency of the individual gRNAs in the construct
library and subsequent normalization of all probabilities to
add up to one. Thereafter, the genome editing efficiency for
each gRNA in the combination and the global knockout
efficiency are incorporated to obtain the probability of all
gRNA combinations to induce an effective combination of gene
knockouts. Finally, the probability of encountering a specific
k-combination of gene knockouts is obtained by summing
up the probabilities of all corresponding gRNA combinations
to induce this particular k-combination of gene knockouts in
a plant.

4.2.2. Computation of the Expected Value and

Standard Deviation of the Plant Library Size for Full

Coverage and Other Relevant Statistics
After definition of the above-mentioned inputs, the BioCCP
functions are employed to compute statistics related
to the plant library size for full coverage (Nx,k). The
functions BioCCP.expectation_minsamplesize
and BioCCP.std_minsamplesize are used to compute
respectively E[Nx,k] and σ [Nx,k] of a givenmultiplex CRISPR/Cas
experiment. Computation of the expected coverage (E[γx,k])
w.r.t. the plant library size is carried out by applying the
BioCCP.expectation_fraction_collected
function. Finally, the computation of the probability
of full coverage (Px,k) involves employing the function
BioCCP.success_probability.

Documentation describing the precise computation of
these statistics is available at https://github.com/kirstvh/
MultiplexCrisprDOE. This GitHub repository also provides
customized functions for automatically converting the
characteristics of a multiplex CRISPR/Cas experiment into
BioCCP terms/inputs.
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