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Artificial polyploidy that brings about increase in cell size confers changes in histo-
morphology leading to altered phenotype, causing changes in physiological attributes
and enhanced concentration of secondary metabolites. The altered phenotype is
generally a manifestation of tissue hardiness reflected as robust plant type. Based on
a case study undertaken on an industrially important grass, Cymbopogon khasianus
(2n = 60) valued for its citral rich essential oil, here we report that the artificial
polyploidy not only brings about enhancement in concentration of essential oil but
also facilitates lodging tolerance. The latter is contributed by ploidy mediated changes
that occur to the cells and tissues in various plant organs by way of increased wall
thickening, tissue enhancement and epidermal depositions that enable robust features.
An exhaustive illustrated account covering various micro-/macro-morphological, skeletal
and histochemical features constituting growth and development vis-a-vis ploidy
mediated changes is presented highlighting the novelties realized on account of
induced polyploidy.

Keywords: polyploidy and lodging tolerance, ploidy mediated histological changes, polyploidy and secondary
metabolites, polyploidy breeding, aromatic grass

INTRODUCTION

It is an established fact that multiple cyclic episodes of whole-genome doubling or polyploidization
have led to evolution and speciation in flowering plants (Wendel, 2015). The wondrous cycles of
genome doubling are thought to be correlated with periods of extinction or global climate change
over the geological time scale, while polyploids often thrive in harsh or disturbed environments
(Van de Peer et al., 2021), and could colonize new habitats (Moraes et al., 2022). There are
contrasting viewpoints about polyploidy as an evolutionary force, spanning from “evolutionary
dead end” to “major player in evolution” (Lavania, 2020), but an established ecological force (Van
de Peer et al., 2021). Initial models of polyploid evolution based on studies spanned over 70 years,
considered autopolyploidy as an evolutionary dead end (Stebbins, 1999), but subsequent studies led
to believe that polyploidy per se both auto- and allo- are the source for evolutionary innovation and
species diversification (Van de Peer et al., 2021). Evidence accumulated on ecological niche vis-a-vis
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polyploid establishment underpin that polyploids evince broader
adaptability and vast ecological tolerance (teBeest et al., 2012) and
owe higher invasive potential compared to their diploid relatives
(Pandit et al., 2011), although the distribution of such polyploid
lineages may have restricted range distribution in preferred
environment (Villa et al., 2022). It is also surmised that there
is differential response to both biotic interactions and abiotic
stress on polyploids vs. non-polyploids (Van de Peer et al., 2021).
Polyploid organisms are thought to be more resilient to extreme
environments owing to increased genetic variation, bufferring
effect and adaptive potential of duplicated genes (Van de Peer
et al., 2017; Doyle and Coate, 2019). As such, stress response in
general is an important factor in the establishment of polyploidy
(Van de Peer et al., 2021).

Identification of several critical genome
replication/duplication events during the periods of major
environmental and climate change (Alix et al., 2017), have
led to propose that environmental constraints could elicit
polyploidization/genome duplication as an escape to overcome
the vagaries of harsh environment as adaptive speciation and
survival strategy (Levin, 2019).

While discussing the likely patterns of speciation in next
500 years, Levin (2019) opines that if the global climate undergoes
major changes, then this will lead to an increase in the number
of plant chromosomes, and thereby an increase in the current
proportion of polyploids in angiosperms to 35–50%, and an
overall proportion up to 50% of the Earth’s plant species as
polyploids. He further argues that such polyploidy incidences
would be more pronounced in short-statured herbaceous plants.
This is consistent with our earlier observations (Lavania and
Srivastava, 1988, 1990), where it is observed that the subcultures
of the diploid vs. autoteraploid calli when grown over a
passage of monthly subcultures under stressful environment
in vitro, exhibit differential effect to polyploidization, whereby
the diploids turn into polyploids but the tetraploids retain the
original ploidy status.

The polyploidy/genome doubling is considered a natural
consequence to overcome abiotic stress. It is known to
bring about changes in transpiration, water use efficiency,
photosynthetic rate, phenology, antioxidant response, and
morphology etc. that confer success to polyploids (Maherali
et al., 2009; Deng et al., 2012; Soltis and Soltis, 2014). A lot
has been discussed about the significance of both auto- and
allo- polyploidy in conferring novelty and value addition to
plants (Levin, 1983, 2002; Lavania and Vimala, 2022), especially
where the plant biomass is the source of economic product,
and their active metabolite components are valued in industrial
applications (Lavania, 2005). It was therefore planned to
explore whether polyploidy could lead to changes that confer
morphological robustness from cultivation perspective, targeting
a species that is cultivated through vegetative tillers under
commercial cultivation, and the sexual system is deficient.

The genus Cymbopogon Spengel comprises a group of
aromatic grasses that are either densely or loosely tufted.
Although, almost all the species produce essential oil in the
secretory cells present in the vegetative tissues of shoot, leaf
and inflorescence, but only six species are majorly used for

commercial cultivation, and the C. khasianus is one of them
(Kumar et al., 2000; Lavania et al., 2012; Yogendra et al.,
2021). Soenarko (1977) has provided detailed information on
morphological, anatomical, geographical and ecological data on
55 species from taxonomic perspective, pinpointing that most
of the species are perennial, where lateral branches/tillers are
appressed to the main axis (culm). The perennial growth habit
makes the growing tiller prone to lodging, and more so in
C. khasianus because it becomes taller than the other species in
the fast-growing season during warm and humid conditions.

The present study was undertaken to explore ploidy mediated
approach to help realize genetic enhancement of an elite clone
of an industrially important aromatic grass that suffers from
lodging, and examine histo-morphologocal, qualitative and yield
contributing characters from breeding perspective.

MATERIALS AND METHODS

Plant Material
An elite clone namely “CIM-Suwarna” of Cymbopogon
khasianus (Hack) Stapf (ex Bor), (2n = 60), developed at
the CSIR-Central Institute of Medicinal and Aromatic Plants,
Lucknow, India (Lal et al., 2010) was targeted to develop its clonal
autotetraploids. Another clone “Krishna” of a related species
Cymbopogon flexuosus said to produce highest concentration of
lemongrass essential oil and popular in cultivation was used as a
“Check.”

Realization of Clonal Polyploids
The target species is an aromatic grass that sports laterally
proliferating tiller formation, where meristem is basal and lay
deep seated beneath the leaf sheath. As such special efforts
are required for colchicine administration for induction of
polyploidy. Accordingly, the clonal polyploids were developed
following the experimental protocol standardized by Lavania
et al. (2012). The axillary buds on fast-growing slips (tillers) were
exposed to target the basal meristem, followed by immersion of
bud bearing region of such slips in 0.1% (v/w) aqueous solution
of colchicine in 2% DMSO for 7 h at 25◦C, followed by thorough
washing in running water and planting in soil. Emerging plantlets
were screened for leaf stomata size, and those with uniformly and
distinctly enlarged stomata, roughly twice the volume of source
diploids, were selected followed by cytological screening to isolate
polyploids. Both diploid and polyploid (auto-tetraploid) clones
derived from the “same source tiller” were screened out through
six passages of clonal propagation spread over 2 years for ploidy
stability, and planted in field for further observations.

Micromorphological and Productivity
Analysis
Cytologically stable autopolyploids vis-a-vis source diploids were
scored for ploidy associated changes in morpho-anatomical
features associated with plant biomass, cell geometry of vascular
and non-vascular tissue, and essential oil secretory cells by light
and fluorescence microscopy.
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(i) Tissue preparation for histological examination for
essential oil secretory cells: Hand cut sections of leaf and
culm were prepared and incubated for 30 min at room
temperature in 0.75% Schiff ’s reagent. The sections were
then washed three times (10 min) with a freshly prepared
solution of 0.5% (w/v) sodium metabisulfite in 0.1% HCl and
mounted in 1N.HCl according to Lewinsohn et al. (1998).

The stained sections were examined under microscope using
both transmitted light and epifluorescence (blue or UV
excitation). The size and frequency of essential oil glands
was recorded at 40X magnification. Size of the essential
oil secretory cells was calculated with the help of ocular
micrometer, and cell frequency estimated by counting
the number of cells/cm2 of the leaf area. Following similar

TABLE 1 | Exomorphology, anatomy and growth related patterns affected by ploidy change (± SE) in the Cymopogon khasianus.

S. No. Characters Diploid Tetraploid

1 Color (as per RHS catalog: Leaf sheath Yellow green 146C Yellow green 146C

2 Leaf (adaxial) Green group N137B Green group N137B

3 Leaf (abaxial) Green group 137A Green group 137A

4 Stem color Yellow green 146D Yellow green 146D

5 Spikelet color Grayed green Grayed green

6 Flowering time Nov-Dec September

7 Number of tillers (1 year) 97 ± 0.44 81 ± 0.65

8 Number of leaves per tiller 3–7 4–8

9 Plant height (cm) 147 ± 0.44 158 ± 0.71*

10 Culm length (cm) 228 ± 0.53 255 ± 0.63*

11 Inflorescence Length (cm) 75 ± 0.30 97 ± 0.53*

12 Number of nodes in culm 15 ± 0.41 12 ± 0.31

13 Length of internode in the middle region of culm (cm) 26.0 ± 0.48 29.5 ± 0.58*

14 Average Diameter (cm) of culm between 2nd and 3rd node 0.44 ± 0.009 0.49 ± 0.004*

15 Number of vascular bundles in the culm 115 ± 0.29 145 ± 0.88*

16 Area of the culm cross section occupied by the vascular bundles (mm2) 6.54 ± 0.12 6.35 ± 0.09*

17 Area (L X B) of single culm vascular bundle of the 3rd concentric ring (µm2) 22,500 ± 687 31,500 ± 814*

18 Area of Meta-xylem vessel (L × B) culm Vascular Bundle of the 3rd concentric ring (µm2) 1,524 ± 54 1,857 ± 24*

19 Leaf mesophyll thickness/vascular thickness (µm) 165 ± 6.03/90 ± 0.0 195 ± 5.48*/115 ± 1.38*

20 Average thickness of leaf cuticle: adaxial/abaxial (µm) 3.7 ± 00/1.85 ± 0.01 5.55 ± 0.02*/3.7 ± 00*

21 Root Stele diameter (mm) 0.936 ± 0.038 1.051 ± 0.014*

22 Thickness of root vascular tissue (mm) 0.202 ± 0.005 0.244 ± 0.003*

23 Number of vascular bundles in root 18.8 ± 0.38 16.3 ± 0.21

24 Percentage of leaf vascular tissue 54.54% 58.97%

25 Average Leaf length × width (cm) 100 ± 2.0 × 1.24 ± 0.07 92 ± 1.8 × 1.31 ± 0.3

26 Average number of leaf major vein 16 ± 0.21 13 ± 0.21

27 Average distance between major veins (mm) 2.042 ± 0.026 2.210 ± 0.044*

28 Average leaf area (cm2) 87.18 ± 0.31 49.38 ± 0.29*

29 Lumen size of essential oil containing cell (µm2) 947 ± 21 1,747 ± 32*

30 Essential oil concentration in fresh herb (%) 0.52 ± 0.03
Citral = 82.0%

Geraniol = 3.9%

0.66 ± 0.05*
Citral = 85.9%

Geraniol = 2.7%

31 Area of Leaf midrib in vertical section (µm2) 742,500 ± 3,163 1,026,000 ± 1,391*

32 Average number of oil cells in leaf sheath 205 ± 0.683 178.7 ± 1.21

33 Area occupied by bulliform cell/cm2 of leaf vertical section 0.3145 ± 0.016 0.3093 ± 0.006*

34 Area of stomatal complex (µm2) 804.96 ± 27.9 1260.84 ± 34.8*

35 Stomatal index 27.65 ± 1.29 24.9 ± 0.802*

36 Stomatal guard cell area (µm2) 174.1 ± 12.2 254.8 ± 35.8*

37 Size of leaf epidermal cell (µm2) 1,911 ± 119.7 2,249 ± 90.8*

38 Phytolith size (µm2) on leaf abaxial surface 261.07 ± 22.74 374.11 ± 21.17*

39 Phytolith frequency/mm2 of leaf abaxial surface 106 ± 9.24 80 ± 13.3

40 Macrohair frequency/mm2 of leaf abaxial surface 45.61 ± 1.49 31.45 ± 3.86

41 Size of macrohair (µm2) 530.22 ± 24.73 850.97 ± 34.45*

42 Wax frequency/10µm2 (on epidermal surface) 10.42 ± 0.11 7.63 ± 0.32

*Values significantly different with respect to diploid by Student’s t-test at P = 0.05.
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staining procedures, the essential oil cells could also be seen in
the surface view.

(ii) Tissue preparation for epicuticular depositions, cell
geometry: To examine phytoliths on leaf surface, cleaned leaf
pieces were boiled for 1–2 h by gradually raising the temperature
of the waterbath from 80 to 100◦C to digest the soft tissues
according to Parry and Smithson (1958). Thereafter the leaf
pieces were carefully washed and stained in 1% safranin in
70% glycerol, and observed under microscope for recording
quantitative measurements. For recording data on cell geometry
fresh leaves were scratched to clear the adaxial epidermal surface
to record observations on abaxial surface.

To scan epicuticular wax deposition on leaf, the third mature
leaf from a well grown tiller was excised, washed thoroughly in
dH2O distilled water, rinse dried and fixed in 5% Glutaraldehyde
overnight and then transferred to phosphate buffer (pH 7.5),
followed by dehydration through alcohol series. Air dried
samples cut into 2–3 mm2 pieces were loaded on SEM Aluminum
stubs using double sided adhesive tape. Samples were coated in
POLARON SC-7640 Sputter coater at 18 mA current for 160 s
in which Gold-Palladium alloy was used as coating material.
The samples were then scanned using a conventional scanning
electron microscope LEO-430. The leaf abaxial surface ultra-
structural details were examined and exposures were captured at
desired magnifications.

To record the width of leaf mid-vein, middle region of the leaf
was selected (Wilkinson, 1979). The glycerine mounts of hand-
cut vertical sections (V.S.) stained in 1% safranin were examined
under Nikon Eclipse Ni (Japan) microscope for anatomical
characters. The measurements were recorded with a calibrated
eyepiece at 100×.

(iii) Biomass and essential oil yield: For recording observations
on biomass and essential oil yield, both progenitor diploid and
its corresponding autopolyploid clones, along with a standard
“Check” (clone Krishna of C. flexuosus) were grown in 10-m2 plot
with 36 hills per plot and plant to row distance 50 cm at the
experimental field of the CSIR-Central Institute of Medicinal
and Aromatic Plants, Lucknow, India. Data on herbage yield
were taken at 4-monthly harvests over 1 year. Essential oil
concentration in the leaves harvested at a similar growth stage
was estimated by hydrodistillation in Clevenger’s equipment
adjusted to 60◦C and run for 2 h, and qualitative analysis of
essential oil was done by GLC.

RESULTS

Both the diploid and its corresponding autopolyploid grown
under similar conditions were examined for recording the
data on morphological, histological and metric traits and
productivity analysis. A general account of observations recorded
for morphologial and histological features is provided in Table 1,
and the key features related to realization of sturdiness are given
in Table 2. The data related to yield contributing characters and
breeding potential of the developed polyploid clone are provided
in Table 3. All the qualitative features related to the theme of the
study are depicted in Figures 1–5. TA
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It is observed that there is an overall increase in body
size of the developed polyploid. This is consummated through
increased cell size at all the organizational levels, including
tissues, organs, and micromorphological constituents, and their
associated developmental changes in cell wall thickening, and
metabolic changes related to photosynthetic efficiency and
secretion of secondary metabolites in the form of the essential oil.
Whereas, tissue thickening enables plant sturdiness, an increased
cell size adds to biomass and physiological efficiency for enhanced
essential oil concentration, leading to overall lodging tolerance
and enhanced productivity of the economic product. Specific
details based on these observations are dealt in discussion section.

DISCUSSION

Vast data accumulated on the biology of polyploids for over
more than 100 years suggest that polyploids are sturdier than
diploids owing to the thicker stem and leaves and associated
corresponding changes (Ramsey and Ramsey, 2014), sporting
enhanced efficiency in stressed environment (Pandit et al., 2011;
teBeest et al., 2012; Levin, 2019), as also offering the advantage
of evolutionary novelty (Levin, 2002), and profound amenability
in diverse habitats, albeit having restricted distribution (Villa
et al., 2022). It is with this background that the present study
was undertaken on a supposedly paleo-hexaploid (2n = 60)
species of the Cymbopogon species complex (base number
× = 10, Soenarko, 1977; Lavania, 1988) to further enhance its
biological potential by ploidy elevation for wider adaptability and
enhanced productivity.

The results presented here demonstrate successful realization
of genetically stable clonal autopolyploids in a commercially
important aromatic grass valued for its citral rich essential oil
used for its multifarious applications in aroma industry. Whereas,
the target species used in this study is known to produce
high biomass compared to other species of the genus, but the
high biomass producing canopy per se is fraught with danger
of lodging when challenged by intense air velocity and rains
encountered in the fast-growing season. The instant induced
polyploid reported here has been found to overcome such lodging
challenge on account of stout stem, thicker and broader leaves
realized in the polyploid owing to enhanced sclerenchyma in
the vascular and epidermal regions and waxy coating/siliceous
phytolith in the cuticular surface. At the same time the induced
polyploid offers commercial advantage of enhanced biomass and
increased concentration of essential oil, thus a dual advantage
from cultivation perspective.

Comparative assay of micromorphological characters in
diploids and autotetraploids reveal a clear-cut increase in the
cell size reflected at all levels, including epidermal cells, vascular
tissue, stomatal guard cells, essential oil secretory cells, phytolith
size, cuticle thickness, and even epicuticular waxy deposition,
albeit there is decrease in frequency of all such cells in per unit
area. Nevertheless, there is an overall enhancement in the area
occupied by the cells constituting larger tissues and organs. In
particular, for the tissues contributing to economically important
part, i.e., essential oil secreting cells in the source biomass, there
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FIGURE 1 | Development of lodging tolerant autotetraploid Cymbopogon khasianus. (A) One month old plant of the tetraploid (4n = 120) and (B) corresponding
source diploid (2n = 60). (C–E) Field view of fully grown plants, (C) check clone “Krishna”, (D) lodging tolerant autotetraploid, and (E) lodging diploid
progenitor.

is an overall increase in the area occupied by the essential oil
secreting cells by 26.7%, and biomass yield by 20.3%, essential oil
concentration by 26.9%, enabling an overall increase in essential
oil productivity by 34%. At the same time the instant polyploid
clone could withstand lodging pressure challenged by strong
air currents and heavy rains encountered during the growing
season (Figure 1D). Further, when compared with an elite clone
“Krishna” of a related species Cymbopogon flexuosus—taken as
“Check” (Figure 1C), the polyploid clone of C. khasaianus is
superior by 237% in terms of the productivity of the economic
product, i.e., citral rich essential oil.

The exhaustive data presented amply suggest that there is
an overall increase in body size of the developed polyploid
consummated through increased cell size at organizational levels,
including tissues, organs and micromorphological constituents,
and their associated developmental and metabolic changes. The
major constituent components that deserve particular attention
are highlighted below:-

Vascular Thickening Adds to Robustness
and Lodging Tolerance
The findings presented in this study provide an exhaustive
account of cell size associated comparisons between the diploid
and the derived isogenic clonal polyploid (Tables 1, 2). Such an
elaborated account on ploidy associated changes has not been
presented before. It is observed that with the increase in cell size
in the tetraploid there are associated changes in the constituting
tissues and organs, including cell wall thickening, secretions and

waxy/siliceous phytolith depositions, and more particularly the
hypodermal sclerenchyma thickness in the culm and leaf by a
factor of > 50% (Table 2). It would be obvious that such enhanced
thickening in the vascular tissues and depositions in the cuticular
regions would impart physical robustness. The relative ratio
toward thick walled sclerenchymatous regions would further
add to robusticity, and in turn tolerance to physical pressures.
Such a manifestation is in tune with the ecological behavior
of neopolyploids known to demonstrate larger phenotypic and
ecological ranges (Barker et al., 2012), through avoidance of
competition with their established diploid parents (Hegarty et al.,
2008).

The extracellular matrix constituting the cell wall is mainly
composed of polysaccharides and structural proteins (Burton
et al., 2010). The cell types appear to have a typical size range
closely associated with function (Amodeo and Skotheim,
2016), characteristically optimized for cell fitness (Miettinen
and Björklund, 2016; Vargas-Garcia et al., 2018). This is
achieved through constant adjustment of cell wall composition
and rearrangement of wall polysaccharides (Cosgrove, 2018;
Zhang et al., 2021). Baker et al. (2017) have hypothesized
that tetraploidy results in trait disintegration allowing
for transgressive phenotypes emanating from changs in
morphological, anatomical and physiological traits. A balanced
ratio of structural components in the cell wall rearrangement
facilitates wall rigidity, flexibility for cell dynamics, and enhanced
potential for growth and development (Westermann, 2021), that
could enable wider adaptability and robusticity to the polyploids.
All this fits well in present set of things.
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FIGURE 2 | Somatic chromosomes and pollen grains of C. khasianus: somatic chromosomes (A) source diploid (2n = 60) and (B) autotetraploid (4n = 120); pollen
grains – (C) diploid, (D) tetraploid.

FIGURE 3 | SEM images of leaf surface features in Cymbopogon khasianus in the diploid (upper column) vs. autotetraploid (lower column) showing: (A–D). Stomata
with cuticuler wax deposition, (B–E). Wax crystals, and (C–F). Phytolith (small arrow) and macro-hair (large arrow).
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FIGURE 4 | Leaf epidermal features in Cymbopogon khasianus in the diploid (upper column) vs. autotetraploid (lower column) showing: (A–D). Phytolith (arrow
marked)/stomata, (B–E) secretory channels filled with essential oil (stained magenta), (C–F) cuticle thickness.

FIGURE 5 | VS of leaf (mid rib section) and TS of culm (partial) in the diploid (left) and tetraploid (right). Note, enhanced thickening/sclerenchymatus regions in the
hypodermal and vascular bundle region in the tetraploid. Sclae bar = 200 µ.
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Cell Size Contributes to Enhanced
Physiological Efficiency and Increased
Productivity
The key observation made out in this study is that there is an
increase in cell size/wall thickening of the constituent cells of
different tissues and organs on account of ploidy change. Such
an effect is global and is observable in the overall organization
of the polyploid clone (Tables 1, 2). This is more clearly
discerned in the size of stomatal guard cells, epidermal cells and
essential oil secretory cells, and physiological activity in terms
of chlorophyll content and waxy secretion/phytolith deposition.
The increase in lumen size of the secretory cell is approximately
double the volume compared to the source diploids, but in
terms of overall area occupied by such cells this is accounted
to ∼25%, which is also reflected in terms of essential oil
concentration and yield of biomass and productivity of the
economic product (Table 3).

A clear instance of increase in cell size as measured at
the level of stomatal guard cells with ploidy change across
the species has earlier been observed in Coffea spp. (Mishra,
1997), and in relation to essential concentration in Cymbopogon
spp. (Janaki-Ammal and Gupta, 1966), and at autopolyploid
level in different species of Cympopogon (Lavania et al., 2012).
Extensive study undertaken by Soenarko (1977) on systematics
and Lavania (1988) on cytology, lists the occurrence of natural
ploidy series across the species with 2n = 20, 40, 60, wherein
C. khasianus belongs to 2n = 60 series. A comparison of
stomatal guard cells and essential oil secretory cells shows
corresponding increase in cell size with ploidy series. Obviously,
the stomata/essential oil secretory cells in C. khasianus are
distinctly larger compared to natural diploids, and the same
is reflected in the derived autopolyploids sporting further
enlargement (Lavania et al., 2012), and is commensurate to
ploidy elevation.

Doyle and Coate (2019) provide an elaborated account on
the impact of genome doubling on the biology of cell vis-a-vis
physiological and morphological novely. Trojak-Goluch et al.
(2021) have discussed the prospective applications of artificial
polyploidy in plant breeding of industrial crops. Whereas,
manifestation of “gigas” effect in the phenotype is a common
feature reflected in the neopolyploids but decrease in the ratio
of nuclear membrane to chromatin brings more surface area to
come in contact to genetic activity enabling higher physiological
activity and developmental changes (Lavania et al., 2012; Doyle
and Coate, 2019) in general, and secondary plant products in
particular (Lavania, 2005). Since stomata are associated with
various physiological activities in cell like water and CO2
exchange, therefore, ploidy level may influence physiological
activities too (Lea et al., 1977). Of course, manifestation of such

effect could be genotype and species dependent (Lavania, 2005;
Lavania et al., 2012).

CONCLUDING REMARKS

Artificial polyploidy is known to increase cell size in plants;
axiomatically it is likely to enhance cell size of organs and
tissues involved in metabolite production. However, effect of
such polyploidy mediated changes could be species specific that
could be inferred from micro-morphological examination of key
components. Cymbopogon is a perennial C4 aromatic grass with
numerous stiff stems arising from a short, rhizomatous root
stock, indigenous to tropical and sub-tropical parts of the world.
In these aromatic grasses the essential oil is stored in secretory
channels that run parallel to the leaf mesophyll on the abaxial
side embedded in between the vascular cylinders. The essential oil
synthesis is at its maximum secretion with the onset of blooming.
However, the fast growing tillers reaching the blooming stage are
prone to lodging when challenged by strong winds and heavy
showers. Therefore, realizing plant hardiness is considered an
important requirement for optimum harvest. The present study
on the development of lodging tolerant plants is an important
step that could be achieved through induced polyploidy, vis-a-
vis adding to enhanced productivity without causing any adverse
effect (related to seed-based cultivation posed on account of
autopolyploidy) on cultivation since the cultivation of this grass
is done through vegetative plantation as the standard practice.
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