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In recent years, technological innovations have allowed significant advances in the
diagnosis of seed quality. Seeds with superior physiological quality are those with the
highest level of physiological maturity and the integration of rapid and precise methods
to separate them contributes to better performance in the field. Autofluorescence-
spectral imaging is an innovative technique based on fluorescence signals from
fluorophores present in seed tissues, which have biological implications for seed
quality. Thus, through this technique, it would be possible to classify seeds in different
maturation stages. To test this, we produced plants of a commercial cultivar (MG/BR
46 “Conquista”) and collected the seeds at five reproductive (R) stages: R7.1 (beginning
of maturity), R7.2 (mass maturity), R7.3 (seed disconnected from the mother plant),
R8 (harvest point), and R9 (final maturity). Autofluorescence signals were extracted
from images captured at different excitation/emission combinations. In parallel, we
investigated physical parameters, germination, vigor and the dynamics of pigments
in seeds from different maturation stages. To verify the accuracy in predicting the
seed maturation stages based on autofluorescence-spectral imaging, we created
machine learning models based on three algorithms: (i) random forest, (ii) neural
network, and (iii) support vector machine. Here, we reported the unprecedented
use of the autofluorescence-spectral technique to classify the maturation stages of
soybean seeds, especially using the excitation/emission combination of chlorophyll a
(660/700 nm) and b (405/600 nm). Taken together, the machine learning algorithms
showed high performance segmenting the different stages of seed maturation. In
summary, our results demonstrated that the maturation stages of soybean seeds have
their autofluorescence-spectral identity in the wavelengths of chlorophylls, which allows
the use of this technique as a marker of seed maturity and superior physiological quality.
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INTRODUCTION

Soybean [Glycine max (L) Merrill] seeds with superior
physiological quality (i.e., standard germination, greater vigor,
and longevity) ensure adequate plant stand in the field, which
significantly contributes to increased production (Finch-Savage
and Bassel, 2016; Ebone et al., 2020). The stage of maturity at
harvest is the primary factor that influences seed vigor (Finch-
Savage and Bassel, 2016) because along the development, the
physiological quality is built up to an ideal point of maturity,
which is the point of greater vigor and longevity. In soybean
seeds, germination, vigor and longevity begin to be acquired at
maturation and are fully installed at late maturation (Lima et al.,
2017; Basso et al., 2018).

In this legume, the reproductive (R) growth stages are
characterized by flowering (R1 and R2), pod development (R3
and R4), seed development (R5 and R6), maturity and defoliation
(R7, R8, and R9). Seeds begin to show germination and vigor
in the dry stage from the R7 stage which is subdivided into
three phases from R7.1 to R7.3. The R7.1 phase is marked
by rapid accumulation of seed reserves and the beginning
of physiological maturity (i.e., the acquisition of physiological
quality starts), but most seeds at this stage are not able to tolerate
desiccation, which negatively influences their germination (Lima
et al., 2017). At the R7.2 stage, seeds reach mass maturity
(time at which reserve deposition ceases), and they begin to
disconnect from the mother plant. At this stage, seeds are
more tolerant to desiccation compared to the R7.1 stage. The
R7.1 and R7.2 stages belong to the maturation phase. When
the seeds are completely disconnected from the mother plant,
they reach the R7.3 stage, which is characterized by an intense
degradation of chlorophylls and a progressive increase in the
life span (longevity). From this stage, the late seed maturation
phase begins. This increase continues through the stages of
harvest point (R8) and final maturity (R9) (Leprince et al.,
2017; Lima et al., 2017; Basso et al., 2018). Longevity is the
physiological quality attribute that plays an important role in
keeping the seeds viable during storage and preserving their
vigor (Basso et al., 2018). Thus, mature soybean seeds from
the last stages present greater basic properties, i.e., germination
capacity, vigor, and longevity, insuring seed lots with superior
physiological quality.

In this context, the development of markers to assess seed
maturation stages is particularly important for seed companies
in their internal seed quality control. This information may
be used to detect the presence of immature seeds in the seed
lots. Nowadays, visual inspection is the most applied method
to diagnose immature soybean seeds. Visual inspection is based
on morphological descriptors such as the common greening
in the R7.1 and R7.2 stages. Another possibility to diagnose
immature seeds is using the tetrazolium test (França-Neto and
Krzyzanowski, 2020). In general, these tests are time-consuming
and subjective, as they rely on the interpretation of different seed
analysts, which reduces the reliability of the analysis.

A reliable and rapid alternative to classify soybean seeds
at different stages of maturation would be through the
development of image-based markers. New methodologies

have been explored to monitor the physiological quality of
seeds using images obtained through robust optical sensors
(Galletti et al., 2020) to obtain more accurate results. For
instance, the use of autofluorescence-spectral imaging technology
has emerged as a strong tool for rapid diagnosis of seeds
with superior physiological quality (Barboza da Silva et al.,
2021a). This technique allows obtaining a high-resolution
optical spectrum for each image pixel and produces a set
of images of the same object for specific wavelengths. The
spectral autofluorescence is emitted by different fluorophores
that are naturally present in plant tissues (García-Plazaola
et al., 2015). When these compounds are excited by ultraviolet-
visible radiation of suitable wavelengths, they emit fluorescence,
which is called autofluorescence, an intrinsic property of cells
(Talamond et al., 2015).

Fluorophores have important biological implications for
seed maturation and physiological quality. For instance, the
high chlorophyll content (greenish seeds) reduces the seed
lifespan (Zinsmeister et al., 2016). Galletti et al. (2020)
demonstrated that immature carrot and tomato seeds emit high
chlorophyll fluorescence, and these seeds had lower physiological
quality compared to seeds with lower fluorescence. Brassica
oleracea seeds with high chlorophyll fluorescence show a low
germination rate (Jalink et al., 1998). These reports corroborate
the negative effect of high chlorophyll accumulation on seed
physiological quality. Nevertheless, lignin is another fluorophore
with positive implications for physiological quality, as reported
by Barboza da Silva et al. (2021a) in soybean seeds. Hence,
the association of these compounds with their respective
wavelengths using autofluorescence-spectral images makes it
possible to categorize numerous phenomena related to the
physiological quality of seeds and simplify the obtaining of
analyses and information.

The information generated from multispectral images can be
interpreted with artificial intelligence (Fonseca de Oliveiran et al.,
2022). This is possible using machine learning algorithms [e.g.,
random forest (RF), neural network (NN), and support vector
machine (SVM)] on the data extracted from the multispectral
images. These algorithms allows verify the accuracy of the
method used and have enabled a better characterization of the
physical and physiological quality of soybean seeds (Momin et al.,
2017; Mahajan et al., 2018; Lin et al., 2019; Barboza da Silva
et al., 2021a). Beside this, the use of machine learning algorithms
on data extracted from multispectral images demonstrates that,
through artificial intelligence, it is possible to interpret the results
in real time, and thus provide a future automation of the analysis
process in the seed industry. With these technologies, most of the
limitations now faced by traditional methods based on visual seed
inspection can be overcome (Medeiros et al., 2020).

The autofluorescence-spectral imaging technique combined
with machine learning algorithms can be interesting to classify
the maturation stages of soybean seeds, as this method is based
on the detection of fluorophore signals present in the seeds,
which change during maturation (Teixeira et al., 2016; Lima et al.,
2017). Here, we investigated autofluorescence-spectral identity
patterns in the final stages of soybean seeds (i.e., R7.1, R7.2,
R7.3, R8, and R9) together with machine learning models. From
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this knowledge, we developed a reliable method that could be
potentially used by the seed industry to screen the maturation
stages and associate them with the physiological quality of
commercial seed lots.

MATERIALS AND METHODS

Seed Material
Seeds of the commercial cultivar MG/BR 46 “Conquista” were
propagated in a greenhouse in 11 L pots filled with sandy
textured soil (778 g.kg−1 of sand). Five seeds were sown per
pot (n = 95), and after seedling emergence, two plants per pot
were kept, and the others were eliminated (i.e., 190 plants were
produced). The humidity of the pots was kept close to the field
capacity (previously determined) and was obtained by means
of a humidity sensor, positioned at a depth of 10 cm, twice a
day (10:00 a.m. and 16:00 p.m). If a difference was detected
during reading, the corresponding volume of water was added
to return the soil to field capacity. The air temperature average
during the experiment was maintained at 24.2◦C and the relative
humidity at 65%.

During the maturation phase, the pods were manually
collected according to the descriptions in Table 1, and the seeds
classified according to their respective stage, i.e., R7.1, R7.2, R7.3,
R8, and R9, as initially described by Fehr and Caviness (1977)
with the adaptations proposed by Lima et al. (2017) and Basso
et al. (2018) (Table 1).

Immediately after fruit collection, the seeds were extracted
manually, and immature seeds were subjected to rapid drying
to prevent stage advancement. For this, they were distributed in
single layers on a metallic screen suspended inside a plastic box
containing silica gel at the bottom (relative humidity at 15%)
and incubated at 20◦C. Successive weighing of the samples was
carried out until they reached 10% of moisture content on a
wet basis, monitored through a drying curve. The drying period
depended on the initial moisture content of the seeds in each
developing stage. However, this time did not exceed 60 h for
each seed sample. The moisture content was measured by the
oven method (ISTA, 2020), before and after drying. The silica
gel was constantly changed to guarantee a constant 15% relative
humidity inside the drying environment. The dried seeds were
stored at 10◦C and 55% relative humidity until the beginning of
the experiment, a period not exceeding 30 days.

Autofluorescence-Spectral Imaging and
Data Extraction
Multispectral images were captured from four replicates of 25
seeds using a VideometerLab4TM instrument (Videometer A/S,
Herlev, Denmark). This system can capture high resolution
autofluorescence-spectral images (2192 × 2192 pixels) using
light-emitting diodes at different excitation wavelengths
combined with optical filters (long-pass filters). The seeds were
placed on an acetate sheet (5.0 cm × 8.5 cm) in the same
position (hilum to the left) using double-sided adhesive tape.
Before image acquisition, the light setting was adjusted to
optimize the strobe time of each illumination type, resulting

in a better signal-to-noise ratio such that the captured images
could be directly comparable. Light setup was calibrated
using a representative sample and saved for all subsequent
images. Autofluorescence-spectral images of each sample
were generated in one sequence during 1 min using different
excitation/emission combinations: 365/400, 405/500, 430/500,
450/500, 470/500, 405/600, 515/600, 540/600, 570/600, 630/700,
645/700, and 660/700 nm. Autofluorescence data were extracted
using VideometerLabTM software (version 3.14.9). For this,
a segmentation image technique based on thresholding was
applied to separate the seeds from the background, which was
represented by zero. In the segmented seeds, a normalized
canonical discriminant analysis (nCDA) algorithm was applied
to highlight the autofluorescence signals pixel-to-pixel for each
excitation/emission combination. The nCDA algorithm uses
a 10% trimmed mean, eliminating the influence of outliers
(the lowest 10% and the highest 10% of the data) (Barboza
da Silva et al., 2021b), transforming grayscale images into
score images with red-green-blue color codes (Bianchini et al.,
2021). The pixel values in the autofluorescence images depend
on the concentration of fluorophores. RGB images were also
acquired using the same sensor. They were captured to compare
seed characteristics that are not visible to the naked eye with
autofluorescence-spectral images.

Dry Weight and Seed Area
Four replicates of 15 seeds from each maturation stage were
dried in an oven with forced air circulation at 60◦C for
72 h, and then the samples were weighed with an analytical
scale. Seed area measurement was performed by using the
autofluorescence images captured as previously described. Data
were extracted using the binary large object (blob) toolbox of
the VideometerLabTM software (version 3.14.9); each blob was
represented as a soybean seed.

Germination Test
Four replicates of 25 seeds were germinated on paper towels
moistened with deionized water 2.5 times the mass of the
dry paper. The rolled paper towels were kept at 25◦C in
the dark (ISTA, 2020). The percentage of normal seedlings
according to the ISTA (2020) was recorded on the 3rd and 5th
days after sowing.

Vigor Tests
The accelerated aging test was performed using four replicates
of 25 seeds arranged in a single layer on a wire mesh screen
suspended inside a plastic box (3.5 cm × 11.0 cm × 11.0 cm)
containing 40 mL of water. The boxes were sealed and kept at
41◦C for 48 h. After this period, the seeds were sown as described
for the germination test, and normal seedlings were recorded
at 3 days after sowing. To evaluate the seedling growth, the
seeds were artificially aged for 48 h as described above, and then
10 seeds were distributed alternately on the upper third of the
surface of the moistened paper towels. The towels were rolled up
and incubated at 25◦C in the dark for 7 days. The hypocotyl, root,
and total seedling length were measured in the normal seedlings.
The seedling vigor index (SVI) was calculated as proposed by
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TABLE 1 | Description of soybean seed maturation stages, and the corresponding seed moisture content and morphological characteristics of pods and seeds
used in this study.

Phase Stage Description Seed moisture content
(gH2O per g.DW)

Morphology

Pod Seeds

Maturation R7.1 Beginning of maturity *1.56 ± 0.002 Completely green Green with prominent yellow
embryo

R7.2 Mass maturity 1.26 ± 0.01 Yellow with green spots Yellow with greenish spots in
the central region

Late maturation R7.3 Seed disconnected from mother plant 1.17 ± 0.01 Completely yellow Completely yellow

R8 Harvest point 0.46 ± 0.02 Yellow with brow spots Yellow with opaque tegument
and rubbery consistency

R9 Final maturity 0.11 ± 0.004 Completely brow Yellow with opaque seed coat
and dry

*Mean of two replicates of five seeds ± standard deviation. DW, Dry weight.

Egli and TeKrony (1979) and adapted by Ribeiro-Oliveira et al.
(2021) using the algebraic expression: SVI = AA

NS 100, where: SVI
is expressed in percentage, AA is the number of normal seedlings
counted from the aged seeds and NS is the number of normal
seedlings counted in the germination test on the 5th day.

Chlorophyll a, b and Total Carotenoids
Four samples of 10 g of seeds were ground until obtaining
a fine homogeneous powder. 10 mL of 80% acetone was
added to four replicates of 2 g of each sample (collected from
the macerate mentioned earlier). Following this, the solution
was mixed using a vortex, and after 30 min, the aqueous
suspension was filtered. Total carotenoids, chlorophyll a and
chlorophyll b were determined by the absorbance at 470, 645,
and 663 nm, respectively (Arnon, 1949; Reis et al., 2019). All
steps were performed in the dark and with the use of green
light, when necessary.

Classification of Maturation Stages
Using Machine Learning Algorithms
We created machine learning models using autofluorescence-
spectral data extracted from each individual seed from R7.1, R7.2,
R7.3, R8, and R9 stages (n = 500 seeds). The models used on these
data were based on NN (solver: Stochastic Gradient Descent;
hidden layer sizes: two layers with 25 neurons in each; Activation
function: Tanh; Learning rate: adaptive; maximum number of
interactions: 5000), SVM and RF algorithms. Data from 350
seeds were used for internal validation in supervised training
(K-fold = 5) and 150 seeds were used for external validation.

Statistical Design
Figure 1 shows the main procedures for obtaining and
analyzing the data. Autofluorescence-spectral data, physical and
physiological properties, and pigment content were analyzed
using analysis of variance (ANOVA). When significant, the
means (n = 20) were compared by Tukey’s test (P < 0.05).
The RF algorithm using autofluorescence-spectral data was
performed to select the most import bands to segment the
stages. We created machine learning models based on the

NN, RF, and SVM algorithms, and the performance of the
models was evaluated using four metrics: accuracy, Cohen’s
Kappa coefficient, precision, and recall. All metrics were
calculated using a confusion matrix. The Pearson’s correlation
coefficient was measured to investigate the relationship between
excitation/emission combination and physical and physiological
properties, and pigment content. All analyzes were performed
using the R 4.0.0 software (R Core Team, 2021).

RESULTS

Changes During Seed Maturation
The highest mass accumulation was achieved in the R7.2 stage
(Figure 2A). Seed area was maximum in the R7.2 stage and
decreased as maturation progressed (Figure 2B). Seeds showed
maximum germination potential (> 97%) in the R7.2 stage,
maintaining it until final late maturation (R9) (Figures 2C,D).
However, when seeds were artificially aged, they only reached
the highest germination and SVI in the R8 and R9 stages
(Figures 2E,F). Regarding seedling growth, two results were
important: (i) greater elongation of the hypocotyl in seedlings
produced from seeds in the R8 stage in contrast to R7.2; and (ii)
greater root length and total seedling elongation for the R8 stage
(Figures 2G–I).

The contents of chlorophyll a, chlorophyll b and total
carotenoids progressively reduced along maturation, with the
lowest values verified in seeds in the R9 stage (final maturity).
The content of these pigments did not change from R7.3 to R8
stage (Figure 3).

Segmentation of Maturation Stages
Using Autofluorescence-Spectral
Imaging
The 365/400 nm excitation/emission combination was not
capable of separating all the seeds in the late maturation
phase from those that had recently reached the point of
mass maturity, i.e., R7.2 stage; however, this combination
efficiently segmented the R7.1 stage due to its lower fluorescence
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FIGURE 1 | Flowchart of the main steps to classify the maturation stages of soybean seeds based on autofluorescence-spectral imaging combined with machine
learning algorithms.

(Figure 4A). The combinations of 405/500, 430/500, 450/500,
515/600, 540/600, and 570/600 nm successfully segmented the
R9 stage from the others (Figures 4B–E,G–I). Finally, the
combinations of 405/600 and 660/700 nm perfectly segmented
the five maturation stages in descending order from R7.1
to R9 stage (i.e., beginning of maturation to final late
maturation) (Figures 4F,L). Using the combination of 630/700
and 645/700 nm there was a separation of the late maturation
(R8 and R9) from the early maturation phases (R7.1 and R7.2)
(Figures 4J,K).

The RF algorithm based on Gini coefficient was applied to
test the importance of each excitation/emission combination
in the segmentation of the maturation stages (i.e., R7.1, R7.2,
R7.3, R8, and R9) using the autofluorescence-spectral data. From
this, it was noted that the combination of 405/600 nm has
greater importance in the separation of the groups according
to their maturation level; followed by the combination of
660/700 nm (Figure 5).

We constructed a maturation progress framework using
RGB and autofluorescence-spectral images acquired at 405/600
and 660/700 nm (Figure 6), as these combinations perfectly
separated the seeds of each maturation stage (Figures 4F,L).
These combinations were identified as the most important
for this identification (Figure 5). The grayscale images were
transformed by the nCDA algorithm, and autofluorescence
signals were displayed using a color scale ranging from zero (red)
to 256 (blue) with pixel-to-pixel mapping, wherein increasing
intensity indicates greater autofluorescence. It was noticed that

after the R7.2 stage, the RGB images were similar between
maturation stages, which would lead to subjective analysis if
purely visual. At the same time, the autofluorescence images
in the combinations of 405/600 and 660/700 nm exhibited
a progressive reduction in fluorescence signals (reduction in
pixel values) as maturation progressed (Figure 6), in agreement
with the previous description (Figures 4F,L). Additionally, we
illustrated that as autofluorescence signals decreased throughout
maturation, the ability of seedlings to establish increased,
especially in late maturation (Figure 6).

Maturation Stage Classification Based
on Different Machine Learning
Algorithms
The RF, NN, and SVM algorithms showed considerable
performance in the separation of soybean maturation stages
based on the autofluorescence-spectral data (Figure 7). The
NN and SVM algorithms showed higher accuracy (≥ 86%) for
training and external test validation, but the SVM algorithm
showed slightly greater performance for all metrics on external
test validation sets: accuracy (89%), Cohen’s Kappa (87%),
precision (90%), and recall (89%) (Figure 7C). The confusion
matrix demonstrates the recognition of the maturation stages
by each algorithm, with a higher hit rate achieved by NN and
SVM in relation to RF algorithm (Figure 7). Nevertheless, all
algorithms achieved excellent performance in classifying seeds
in the R7.1 stage (100% for all algorithms). In addition, SVM
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FIGURE 2 | Physical and physiological properties of soybean seeds from different maturation stages. Each bar represents the mean of four replicates of 25
seeds ± standard deviation. Different letters indicate significant difference (α = 0.05) by Tukey test (n = 20).

FIGURE 3 | Chlorophyll a, chlorophyll b and total carotenoids in soybean seeds from different maturation stages. Each bar represents the mean of four
replicates ± standard deviation. Different letters indicate significant difference (α = 0.05) by Tukey test (n = 20).
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FIGURE 4 | Autofluorescence-spectral data from different excitation/emission combinations in soybean seeds at different seed maturation stages. Each bar
represents the mean of four replicates of 25 seeds ± standard deviation. Different letters indicate significant difference (α = 0.05) by Tukey test (n = 20).

can perfectly distinguish the R9 stage (final maturity) from the
others (Figure 7C).

Correlations Between Physical and
Physiological Parameters, Pigment
Content, and Autofluorescence-Spectral
Markers During Seed Maturation
The highest coefficient correlations (Figure 8) were obtained
between 630/700 nm (or 645/700 or 660/700 nm) and the
accelerated aging test (−0.99), and between 645/700 nm (or
660/700 nm) and the SVI (−0.99). Other high coefficient
correlations should be highlighted: 630/700 nm vs. either
germination 5 days (−0.98), SVI (−0.98), hypocotyl length

(−0.97), chlorophyll a content (0.97); 645/700 nm vs. either
chlorophyll a content (0.98), germination 5 days (−0.97),
hypocotyl length (−0.97); 660/700 nm vs. either chlorophyll
a content (0.98), total carotenoids (0.97). For seed physical
properties, the highest coefficients were obtained between
405/500 nm (or 430/500 nm) vs. seed area (0.88) (Figure 8).

DISCUSSION

The use of seeds with superior physiological quality has
contributed to the adequate establishment of the seedlings under
field conditions. Mature seeds have better properties to achieve
this aim. However, recognizing the identity of seed maturation
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FIGURE 5 | Gini-based importance for each excitation/emission combinations in the random forest analysis to segment soybean seeds of different maturation
stages: R7.1, R7.2, R7.3, R8, and R9 (n = 500 seeds).

stages using the current techniques is a time-consuming and
subjective task. In this sense, here we present a robust way to
classify soybean seeds at different stages of maturation using
autofluorescence-spectral of the seeds combined with machine
learning algorithms.

Firstly, we found that the physiological changes during
maturation (Figure 2) were similar to those previously reported
by Lima et al. (2017) and Basso et al. (2018) for soybean seeds,
which allowed us to explain some important results. First, seeds
from the R7.1 stage are unable to tolerate desiccation (Lima et al.,
2017), which results in their low germination, stress resistance,
and seedling organ elongation capacity (Figure 2). Desiccation
tolerance is acquired between R7.1 and R7.2 stages (Basso et al.,
2018), and explains the abrupt increase in germination at the
mass maturity stage (R7.2), which remains until the end of
seed development (late maturation) (Figures 2C,D). Although
soybean seeds are able to germinate upon reaching mass maturity
(Figure 2A), they still need to go through the late maturation
phase, which starts at the R7.3 stage. This is necessary for
increasing storage capacity (Lima et al., 2017), as demonstrated
here by its analogous test (i.e., the accelerated aging test) (Batista
et al., 2021), and for the elongation of seedling organs (Basso et al.,
2018), as shown in our results (Figures 2E–I).

As late maturation progresses, the seeds gain greater
physiological dissimilarity from those in the mass maturity stage,

i.e., R7.2 (Figure 2). However, the R7.3 stage, which delimits the
beginning of late maturation, is difficult to separate from R7.2,
which is due to the overlap of events that define the transition
from maturation to late maturation (Lima et al., 2017). This
difficulty was supported by our results (Figure 2).

From the use of the autofluorescence-spectral imaging,
we found a marked reduction in autofluorescence along
the maturation process by using the excitation/emission
combinations of 405/600, 630/700, 645/700, and 660/700 nm
(Figures 4F,J–L). These combinations allowed us to measure
chlorophyll fluorescence signals (Galletti et al., 2020; Barboza da
Silva et al., 2021a; Oliveira et al., 2021). These pigments degrade
intensely in the late maturation stages of leguminous seeds
(Leprince et al., 2017); however, the chlorophyll degradation
starts earlier as corroborated by our results of chlorophyll a
and b content throughout maturation (Figures 3A,B). These
results were determined after we found that the wavelengths
for segmentation of maturation stages coincided with the
chlorophyll excitation bands.

Thus, in parallel with the reduction of chlorophylls as
maturation progressed, the autofluorescence intensity at
405/600, 630/700, 645/700, and 660/700 nm decreased
(Figures 4F,J–L). It was obtained better results at 405/600
and 660/700 nm (Figures 4F,L), which are bandwidths
directly related to excitation/emission of chlorophyll b and
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FIGURE 6 | Framework of soybean seeds at different maturation stages assisted by RGB images (each individual pixel is represented by red, green and blue
channels) and corresponding autofluorescence-spectral images captured in the excitation/emission combinations of 405/600 nm (chlorophyll b) and 660/700 nm
(chlorophyll a), after image transformation by the nCDA algorithm. The seedling images were captured at 7 days after sowing using a representative seedling of each
maturation stage.

a, respectively; the visualization of this process is clear in
the autofluorescence images (Figure 6). We would also
like to emphasize that the results of the RF analysis made
it clear that these excitation/emission combinations are
the most important for the separation of the stages based
on their autofluorescence-spectral in relation to the other
combinations (Figure 5). Prominently, these bandwidths
allowed us to segregate the R7.3 stage from the others in
the late maturation phase (Figures 4F,L), unlike the direct
analysis of chlorophylls based on conventional methods
(Figures 3A,B). In addition, they separated the R8 and R9
stages (Figures 4F,L), which have a similar physiological identity
(Figure 2). These results highlight the advantage of using
chlorophyll autofluorescence signals to separate soybean seeds at
different stages of maturation.

According to García-Plazaola et al. (2015), chlorophylls are
fluorophores that have their fluorescence used as a non-invasive
tool in the evaluation of plant photosynthesis. The technique
is primarily used to monitor sensitivity to the various types of
abiotic stresses that plants face as they develop (Shin et al., 2021).
Recently, due to its sensitivity, speed and non-invasiveness, this
technique has also been applied to control the physiological
quality of seeds. However, contrary to the principle used in plants,
chlorophyll fluorescence has generally negative implications in
seeds as previously reported for immature carrot and tomato
seeds (Galletti et al., 2020) and Brassica oleracea seeds (Jalink
et al., 1998). These results agree with our findings (Figures 2, 4F,
J–L). Therefore, extending this knowledge, we present the use
of this technique as a sensitive and non-invasive tool to classify
soybean seeds according to their degree of maturity, as it is
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FIGURE 7 | Comparison of the random forest (RF), neural network (NN), and support vector machine (SVM) algorithms discriminating soybean seed maturation
stages using autofluorescence-spectral data, and performance of the models based on accuracy, kappa, precision and recall (presented in percentage). The models
were created using autofluorescence-spectral data extracted from seeds in the R7.1, R7.2, R7.3, R8, and R9 stages (n = 500 seeds).

associated with the process of chlorophyll degradation during
maturation, while seeds acquire physiological quality. These new
findings contribute to the use of chlorophyll fluorescence to solve
applied problems, benefiting the seed industry in classifying seeds
according to the stage of maturity.

As a consequence of our findings, it is possible to state
that the excitation/emission combinations related to chlorophyll
fluorescence (405/600, 630/700, 645/700, and 660/700 nm)
demarcate the spectral identity of seed maturity in soybean
(Figures 4F,J–L, 5). This knowledge has two important
implications: (i) lower autofluorescence-spectral signals at these
excitation/emission wavelengths may be associated with higher
maturity seed lots; and (ii) the opposite, the high intensity

of autofluorescence-spectral in these bandwidths indicates the
presence of seeds with low physiological quality (i.e., those
belonging to early maturity stages), which compromises their
commercialization.

It is important to highlight that the reduction of fluorescence
signals at the bandwidths of chlorophylls in parallel with
the increase in seed vigor throughout maturation obtained
strong negative correlations (> −0.9) between different
excitation/emission combinations (405/600, 630/700, 645/700,
and 660/700 nm) and physiological parameters related to seed
vigor, such as the accelerated aging test, SVI and total seedling
length (Figure 8). The artificial aging test is a reliable method
to test the physiological quality of the seed lot and to predict
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FIGURE 8 | Pearson’s correlation coefficients between physical properties, physiological quality, pigment content and autofluorescence-spectral markers (nm) in
soybean seeds of different maturation stages (R7.1, R7.2, R7.3, R8, and R9).

when the seeds can reach the limit of viability (Fenollosa
et al., 2020; Batista et al., 2021), which provides additional
information for the conservation of the species’ germplasm
(Hay and Whitehouse, 2017). Thus, this test is a strong tool
for the seed industry and the germplasm banks management.
The high correlation between the accelerated aging test and
autofluorescence-spectral data reported in this study indicates
that the use of this new technology offers, in relation to the
artificial aging method, agility and greater reliability in the
analysis of the degree of seed maturity. Furthermore, it is a
non-invasive way to perform the analysis, which is important for
germplasm banks.

We created machine learning models for verify the accuracy
and automatic classification of maturation stages using RF,
NN, and SVM algorithms. The models achieved high accuracy
(≥ 80%) using the autofluorescence-spectral signals based on
different excitation/emission combinations (Figure 7). These
results demonstrate the potential to automate the process
of classifying maturation stages of soybean seeds, providing
information about the maturity of the lots in a robust way
(Figure 7). Machine learning algorithms have been successfully
used to improve the diagnosis of the physiological quality of
soybean seeds (Medeiros et al., 2020; Barboza da Silva et al.,
2021a), and now we advanced in this field demonstrating
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their predictive effectiveness in classifying seeds at different
maturation stages.

We emphasize that the chlorophylls which fluoresce at the
excitation/emission combinations of 405/600, 630/700, 645/700,
and 660/700 nm are not associated with an increase in seed
mass or a decrease in seed area (Figure 8). This highlights that
the dynamics of these fluorophores is more pronounced than
the morphological changes. Therefore, this technique provides
greater reliability to classify soybean maturation stages.

We should highlight the separation of the R9 stage (i.e.,
final maturity) from the others by low fluorophore signals
measured at the combinations of 405/500, 430/500, 450/500,
470/500, 515/600, 540/600, and 570/600 nm (Figures 4B–E,G–I).
Fluorophore such as lignin, ferulic acid, coumarins, flavonoids,
and phenols, among others, emit fluorescence in these bands
(Donaldson, 2020). So far, these compounds do not have a
clear role in the physiological quality of seeds. Despite this,
Barboza da Silva et al. (2021a) associated superior physiological
quality of soybean seeds with lower accumulation of phenols
in the seed embryo. In part, this information helps us to
explain the reasons for detecting low fluorescence signals at these
bands in the final stage of maturity (the R9 stage), as these
seeds had superior physiological quality (Figure 2) and possibly
lower phenol content.

Regarding the other compounds that change in parallel
to chlorophylls throughout maturation, such as lignin and
phenolic compounds, we would like to point out that, as verified
by Barboza da Silva et al. (2021a), they have no significant
fluorescence in the same wavelength as the chlorophylls. Such
information allows us to exclude possible interferences from the
tegument lignification process and the presence of phenols in our
results. Although some amount of these compounds can fluoresce
in the excitation/emission combinations of chlorophylls, their
value is negligible since these combinations do not provide their
peak detection in soybean seeds.

Finally, based on the high predictive accuracy of the
autofluorescence-spectral imaging in the discrimination of the
soybean seed maturation stages (Figure 7) and strong coefficient
correlations between certain excitation/emission combinations
and the physiological quality of the seeds (Figure 8), we confirm
the validity of our initial idea. This is especially true when we
see the results of the chlorophyll fluorescence signals from the
405/600 nm and 660/700 nm excitation/emission combinations
(Figures 4F,L, 5, 6).

Perspectives
With the knowledge generated in this research, we expect
that autofluorescence-spectral imaging technology will become
a potential tool in the seed industry. It offers a much more
reliable way to classify the maturation stages in a non-invasive
way. This is important since a higher degree of maturation
positively impacts the establishment of seedlings in the field and
seed production.

Here, we found that this emerging methodology (i.e.,
autofluorescence-spectral) provides rapid and accurate results
in identifying seed maturity using the excitation/emission
combinations of 405/600, and 660/700 nm that are highly

correlated with physiological parameters and pigment content,
particularly chlorophylls. Therefore, this can open new research
possibilities toward finding chlorophyll fluorescence markers
using different genotypes. There may be some divergence in the
chlorophyll content inherent in each material that may result in
specific fluorescence patterns.

The insights gained from this research can also contribute
to easily detect the “green seed problem” that occurs due to
climate changes (high temperatures and drought stress). This is
characterized by chlorophyll retention in mature seeds, and is
associated with lower seed quality. The possibility of detecting
this problem using chlorophyll fluorescence deserves to be
validated in future research.

Another interesting point is related to the strong coefficient
correlations (r > 0.8) between the excitation/emission
combination of 365/400 nm and the physiological quality
acquired by seeds during maturation (Figure 8), although
this combination had low specificity in separating the seed
maturation stages (Figure 4A). Considering that the combination
of 365/400 nm has already been recommended to classify soybean
seeds with superior physiological quality (Barboza da Silva et al.,
2021a), our results add the information that low fluorescence
signals in this combination are associated with the presence of
immature seeds (low viability), which are unsuitable to seed lots.

Finally, the assertiveness of the machine learning models offers
an opportunity to automate different phases of seed production.
For instance, the incorporation of the autofluorescence-spectral
imaging technique into the soybean seed processing phase
can be useful to anticipate the diagnosis of seeds with high
chlorophyll content (i.e., seeds with low physiological potential).
This automation would reduce the subjective measurements from
tests that rely on the human eye.

CONCLUSION

The use of machine learning models based on the
autofluorescence-spectral imaging of soybean seeds allows
the selection of seeds according to their maturation stage,
especially using the excitation/emission combinations of
405/600 and 660/700 nm.
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