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Understanding the evolutionary and ecological processes driving population 

differentiation and speciation can provide critical insights into the formation 

of biodiversity. Here, we  examine the link between population genetic 

processes and biogeographic history underlying the generation of diversity in 

the Hengduan Mountains (HM), a region harboring a rich and dynamic flora. 

We used restriction site-associated DNA sequencing to generate 1,907 single-

nucleotide polymorphisms (SNPs) and four-kb of plastid sequence in species 

of the Gentiana hexaphylla complex (Gentianaceae). We performed genetic 

clustering with spatial and non-spatial models, phylogenetic reconstructions, 

and ancestral range estimation, with the aim of addressing the processes 

influencing diversification of G. hexaphylla in the HM. We  find the G. 

hexaphylla complex is characterized by geographic genetic structure with 

clusters corresponding to the South, North and the central HM. Phylogenetic 

reconstruction and pairwise FST analyses showed deep differentiation between 

Southern and Northern populations in the HM. The population in Mount Taibai 

exhibited the highest genetic similarity to the North HM. Ancestral range 

estimation indicated that the G. hexaphylla complex originated in the central 

HM and then diverged in the Pliocene and the Early Pleistocene, before 

dispersing widely, resulting in the current distinct lineages. Overall, we found 

deep genomic differentiation in the G. hexaphylla complex corresponds to 

geographic barriers to dispersal in the HM and highlights a critical role of the 

uplift of the Daxue Mountains and subsequent climatic fluctuations underlying 

diversification. The colonization of G. hexaphylla in the Mount Taibai region 

suggests directional dispersal between the alpine flora of the Qinling 

Mountains and the HM.
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Introduction

Alpine floras, those that grow above the tree line, are 
particularly species-rich communities enriched with endemic taxa 
adapted to challenging environments with a short growing seasons 
and harsh winters. These communities have been profoundly 
shaped by recurrent cycles of historical climatic change, and 
continue to be  affected by climate as conditions warm. 
Understanding the evolution of these diverse communities must 
consider not only past climatic changes, but the full range of 
processes promoting population divergence, range shifts, and 
speciation (Antonelli et  al., 2018; Muellner-Riehl et  al., 2019; 
Kirschner et  al., 2020). In particular, in-depth biogeographic 
studies must consider cryptic species diversity, which may either 
be a consequence of in situ speciation, colonization by lowland 
taxa followed by allopatric divergence (local recruitment), or the 
recurrent immigration of novel and pre-adapted lineages via long-
distance dispersal (Muellner-Riehl et al., 2019; Ding et al., 2020). 
Although relevant in all mountain systems of the world, research 
on these aspects has primarily focused on a few mountainous 
regions, such as the Hengduan Mountains (HM).

The Mountains of Southwest China, a global hotspot of 
biodiversity including the HM (Myers et  al., 2000; Marchese, 
2015), is an ideal area for exploring the spatial–temporal evolution 
of alpine communities and the drivers underlying speciation and 
diversification. This region harbors a rich flora with a high 
proportion of endemics (Wu, 1988; Boufford, 2014) and is 
characterized by a high rate of in situ speciation (Xing and Ree, 
2017; Ding et al., 2020). There are estimated to be up to 16,550 
species in the HM, accounting for approximately 62% of the total 
number of seed plant species in China, of which at least 3,300 are 
endemic (Sun et al., 2017). Moreover, the HM hosts a particularly 
rich alpine flora with an estimated 3,030 species of alpine seed 
plants (Sun et al., 2017). Furthermore, the complex topography of 
the HM, characterized by high ruggedness and deeply dissected 
landscapes, creates fine-scale environmental heterogeneity that 
may limit dispersal and subdivide distribution ranges, therefore 
creating complex population genetic structure and promoting 
divergence and incipient speciation (Scherrer and Körner, 2011; 
Li et al., 2021).

Major progress has been made in understanding the general 
processes shaping the evolutionary history of plants across the 
HM (Liu et al., 2014; Wen et al., 2014; Favre et al., 2015; Sun et al., 
2017; Xing and Ree, 2017; Ding et al., 2020). The diversity of plant 
species is largely a product of vicariance and postglacial 
recolonization of alpine plants found in this region (Qiu et al., 
2011; Liu et al., 2012; Sun et al., 2017; Muellner-Riehl, 2019), with 
recent in situ diversification in response to local uplift in the HM 
during the Late Miocene to the Pliocene (Favre et al., 2015; Ding 
et al., 2020). However, recent comparative analyses of plant species 
distributions across the region have shown that the HM is not a 
cohesive entity, but a diverse mosaic of floristic elements shaped 
by geography, elevation and climate (Li et al., 2021; Muellner-
Riehl and Favre, 2021). As such, it is currently unclear how 

topological changes and changes of connectivity through time 
within and among each of the seven mountain subranges 
composing the HM have contributed to species-richness and 
endemism. The respective role of each of these subranges as 
regional refugia or sinks is also largely unknown, as case studies 
often consider the HM as a single entity (Liu et al., 2012; Muellner-
Riehl, 2019). Finally, the alpine flora of the HM has not evolved in 
complete isolation, and adjacent regions such as the Qinling 
Mountains (QM, 400 km away), which includes Mount Taibai, the 
highest peak (3,500 m a.s.l.) in Central and East China, may have 
also been a source for speciation and floristic exchange of species 
now found in the HM.

The use of high-throughput sequencing is an extremely 
promising route to elucidate fine-scale genetic structure and the 
processes underlying speciation among the dynamic flora of the 
HM (Liu et al., 2014). Of particular value would be to use a large 
number of nuclear markers, which often provide high-levels of 
resolution for studying recent species divergence. Recent studies 
in Europe have emphasized the complex evolutionary history that 
has shaped the present genetic diversity of refugial populations, 
and stressed the need to revisit their phylogeographic history with 
genomic approaches (Dufresnes et al., 2020; Marková et al., 2020). 
However, genomic data needs to be  matched with suitable 
analytical tools, to account for confounding factors that may 
obscure evolutionary inference. For example, one challenge is 
detecting clearly defined genetic units that have evolved 
independently in different geographic regions, against the 
background of clinal population structure arising as a result of 
isolation by distance (IBD) that is a common confounding factor 
that can obscure the genetic signature of biogeographic barriers 
(Meirmans, 2012; Perez et al., 2018; Twyford et al., 2020). Such 
issues can increasingly be  accounted for and modelled using 
appropriate genomic datasets and analytical tools.

Gentiana L. (Gentianaceae), a worldwide alpine genus of 
about 360 species (Ho and Liu, 2001), is a group where general 
phylogenetic relationships (Favre et al., 2020) and biogeographic 
history (Favre et al., 2016) are relatively well understood. It was 
previously shown that the Qinghai-Tibetan Plateau region, 
including the HM, is the centre of biodiversity for the genus and 
the primary source area for colonization to other regions (Favre 
et al., 2016). The HM is home to 135 Gentiana species of which 66 
are endemics (Yu et  al., 2020). Phylogenetic and population 
genetic analyses indicate that climatic changes and mountain 
uplift are correlated with recent divergence, speciation and 
diversification in most clades of Gentiana (Zhang et al., 2007, 
2009b; Lu et al., 2015; Fu et al., 2018, 2020a, 2021b). However, 
these previous studies treated the HM as a single geographic 
entity, and thus our knowledge of the phylogeographic history of 
the genus in the HM is not well understood at a finer scale.

In this study, we performed population genomic analysis of 
the gentian species G. hexaphylla Maximowicz ex Kusnezow, 
which belongs to G. series Verticillatae Marquand, with the aim 
of investigating fine-scale phylogeographic structure across the 
topologically complex HM. Previous phylogenetic studies 
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including G. series Verticillatae indicate very young speciation 
events and recent radiations (Favre et al., 2016; Fu et al., 2021a), 
making this an ideal study group for investigating the recent 
biogeographic history of the region. Using genomic data, 
we address: (1) whether geographical features (e.g., one or more 
mountain ranges) in the HM acted as barriers to gene flow, and 
lead to discrete genetic structure and cryptic lineages; (2) 
whether changes in distribution range during climate 
oscillations lead to genetic differentiation and possibly 
speciation; (3) whether migration occurred between the HM 
and the nearby but disjunct mountain ranges such as the 
Qinling Mts.

Materials and methods

Study species and sampling

Gentiana hexaphylla is a widespread species with phenotypic 
variation in some characters [e.g., growth habit, leaf number per 
whorl and corolla colour (Ho and Liu, 2001)], but has only minor 
morphological differences from some closely related species in 
series Verticillatae (8 species in total, Ho and Liu, 2001), including 
G. ternifolia Franchet, G. tetraphylla Maximowicz ex Kusnezow 
and G. viatrix Harry Smith. Thus, we considered these closely 
related species, often co-occurring with G. hexaphylla, to 
collectively be part of the G. hexaphylla complex in this study. The 
G. hexaphylla complex occurs widely across the HM (Ho and 
Pringle, 1995; Ho and Liu, 2001), tends to reproduce sexually via 
outcrossing in open sunny habitats (Xue et al., 2018), and some 
species have horticultural value. Despite this interest, taxonomic 
confusion remains problematic for this group of species. For 
example, individuals from Mount Taibai have been recognized as 
G. hexaphylla in the Flora of China (Ho and Pringle, 1995) but 
treated as G. arethusae by Ho and Liu (2001). These species are 
very similar, and supposedly differ only by the linear and 
acuminate upper stem leaves and calyx lobes. Based on numerous 
field observations, these purported diagnostic traits appear to 
be highly variable (personal observations) and thus the population 
from Mount Taibai is treated as G. hexaphylla in this study.

We sampled 15 populations of the G. hexaphylla complex 
from 10 localities throughout its range, collecting a total of 95 
individuals (Table 1; Figure 1). Our sampling aimed to maximize 
the number of sampling sites across the mountain ranges in the 
HM, in order to test for the presence of geographic barriers. 
Within sites, we  collected multiple individuals to test for 
taxonomic clustering when two or more species co-occurred. For 
sequencing, we selected typical individuals characterized by leaf 
number per whorl ranging from three to six (Fu et al., 2020b). A 
total of 10 populations of G. hexaphylla, two populations of 
G. ternifolia, one population of G. tetraphylla and two populations 
of G. viatrix were sampled. Young leaves of each individual were 
dried in silica gel. Voucher specimens were deposited in the 
herbarium of Luoyang Normal University.

Library construction, sequencing, and 
SNP calling

Our genomic sequencing approach aimed to generate many 
unlinked nuclear SNPs to infer fine-scale population clustering 
and to estimate  genetic divergence, as well as to recover plastid 
genomic DNA sequence to perform phylogenetic and molecular 
dating analyses.

Total genomic DNA was extracted from dry leaves using a 
Dzup plant genomic DNA extraction kit (Sangon, Shanghai, 
China). DNA concentrations were quantified with a Qubit 2.0 
fluorometer (Life Technologies). For RAD library construction 
and sequencing (Miller et al., 2007), each sample was digested 
with the restriction enzyme EcoRI followed by the ligation of the 
P1 adapter by T4 ligase. Fragments were pooled, randomly 
sheared and size-selected to 350–550 bp. A second adapter (P2) 
was then ligated. The ligation products were purified and 
PCR-amplified, followed by gel purification and size selection for 
fragments in the range of 350–550 bp. Libraries were multiplexed 
and sequenced using 2 × 150 bp reads generated on the Illumina 
Novaseq 6,000 (Tianjin, China).

Samples were initially de-multiplexed with the process_
radtags script in Stacks 2.0 (Catchen et al., 2011, 2013). Raw 
reads were filtered and trimmed with Trimmomatic 0.32 
(Bolger et al., 2014) with default parameters, to remove adaptor 
sequences and low-quality reads and sites, and then checked 
for quality with FastQC 0.11.2. We used Stacks 2.0 (Catchen 
et  al., 2011, 2013) to identify orthologous loci across 
individuals. Clean sequences were assembled de novo using 
denovo_map, with a minimum stack depth of three (m = 3), and 
we  tested a range of different mismatches between stacks 
within and between individuals (M = n = 2, 3 or 4). PCR 
duplicates were filtered using gstacks following the approach of 
Rochette et  al. (2019). At least 75% of individuals in a 
population were required to retain a locus (−r 0.75), and SNPs 
identified in all individuals with a minor allele frequency 
(MAF) of less than 5% were removed (−min-maf 0.05). SNPs 
with a missing frequency of less than 50 % among individuals 
(−max-missing 0.5) were retained using vcftools 0.1.13 
(Danecek et  al., 2011). Linkage-disequilibrium (LD) SNP 
pruning was performed in vcftools to excludes variants from 
closer than 100 bp (−thin 100). Heterogeneous loci were 
filtered out in TASSEL 5 (Bradbury et  al., 2007) to exclude 
SNPs originating from putative paralogs. We estimated genetic 
diversity indices including nucleotide diversity (Pi), expected 
heterozygosity (HE) and observed heterozygosity (HO) using 
the populations module in Stacks.

To obtain plastid sequences, clean reads were assembled using 
the GetOrganelle pipeline (Jin et al., 2020) with default parameter. 
We used the published plastome of G. hexaphylla (MG192305; Sun 
et al., 2018) as the reference. Contigs longer than 500 bp were 
mapped back to the plastome of G. hexaphylla in Geneious Basic 
5.6.4 (Kearse et al., 2012). Shared plastome regions present in at 
least one individual per population were extracted, aligned using 

https://doi.org/10.3389/fpls.2022.936761
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fu et al. 10.3389/fpls.2022.936761

Frontiers in Plant Science 04 frontiersin.org

MAFFT (Katoh et  al., 2002) and then concatenated for 
downstream analyses.

Population genetic structure

To assess the levels of genetic differentiation between 
populations, we estimated pairwise FST based on nuclear genomic 
SNPs using the Weir and Cockerham method (Weir and 
Cockerham, 1984) in vcftools 0.1.13 (Danecek et  al., 2011). 
Pairwise FST values were graphically displayed with the package 
“pheatmap” using R for Statistical Computing (v. 4.0.1; R Core 
Team, 2020). Analysis of Molecular Variance (AMOVA) was 
conducted with GenAlEx 6.5 (Peakall and Smouse, 2006). 
We tested for IBD (Wright, 1943) by applying a Mantel test using 
the geographic distance and pairwise genetic distance with zt 
(Bonnet and Van de Peer, 2002).

For exploring the genetic clusters present within the 
G. hexaphylla complex, we used a Bayesian clustering method 
implemented in FastSTRUCTURE (Raj et al., 2014) based on the 
nuclear SNPs identified above. Following Raj et  al. (2014), 
we used the chooseK.py script to assess model complexity for the 
data. Graphical representation of individual cluster assignments 
was performed using DISTRUCT 1.1 (Rosenberg, 2004). As 
FastSTRUCTURE makes a number of assumptions, such as 
individuals being in HWE, we also used a non-model-based 
method in DAPC (Jombart et  al., 2010) in the R package 
“adegenet” to identify genetic clustering. The most likely K value 
was selected using Bayesian information criterion (BIC; Jombart 
et al., 2010). Given the strong signal of IBD in our study (see 
“Results”), we used an additional spatial method implemented 
in the R package conStruct to infer patterns of genetic structure 

considering the geographic distance among the sampled 
populations (Bradburd et al., 2018). This method can be run 
without spatial information, which will give results similar to 
other Bayesian admixture approaches, or with spatial 
information, where it then explicitly accounts for allele 
frequency differences as expected by IBD, and can therefore 
reveal discontinuous genetic variation corresponding to barriers 
to dispersal. We  ran a cross-validation analysis with five 
replicates, comparing the spatial and non-spatial models with 
K = 1 through 10 for each replicate. Layer contributions were also 
calculated to interpret cross-validation results. Each training 
partition (one per replicate) was created by randomly 
subsampling 90% of the total number of loci and run for 1,000 
MCMC iterations.

Phylogenetic inference and divergence 
time estimation

We constructed a phylogenetic tree based on the nuclear 
genomic SNPs using maximum likelihood (ML) in IQ-TREE 
(Nguyen et  al., 2015) with 1,000 replicates. To investigate 
population relationships and model historical migration events, 
we used TreeMix 1.2 (Pickrell and Pritchard, 2012) using the 
SNP data. We calculated the percentage of variation explained 
by the TreeMix analyses with between 0 and 10 migration 
events using the treemixVarianceExplained scripts in the 
RADpipe package.1

1 https://github.com/darencard/RADpipe

TABLE 1 Information of samples and genetic diversity in this study.

Region ID No. Voucher 
ref.

Species Average 
leaves in 

whorl

Location Longitude/
Latitude

Altitude 
(m/a.s.l)

Ho HE Pi

North HY 6 Fu2017202 G. hexaphylla 6 Hongyuan, SC 102°14′E/32°39’N 3,731 0.0329 0.1861 0.2061

HYter 6 Fu2017199 G. ternifolia 3 Hongyuan, SC 102°14′E/32°39’N 3,731 0.0552 0.1991 0.2201

HYvia 6 Fu2017201 G. viatrix 5 Hongyuan, SC 102°14′E/32°39’N 3,731 0.0406 0.1912 0.2114

JZ 6 Fu2017229 G. hexaphylla 6 Jiuzhi, QH 101°19′E/33°22’N 4,048 0.0382 0.1972 0.2181

TB 6 Fu2019001 G. hexaphylla 6 Taibai, SX 107.967E/33.967 N 3,520 0.0440 0.1994 0.2206

Central SD 6 Fu2016046 G. hexaphylla 6 Seda, SC 100°06′E/31°49’N 4,483 0.0352 0.1828 0.2022

KD 6 Fu2016087 G. hexaphylla 6 Kangding, SC 101°47′E/30°04’N 4,224 0.0478 0.1834 0.2028

LH 6 Fu2017173 G. hexaphylla 6 Luhuo, SC 100°43′E/31°44’N 4,022 0.0550 0.1845 0.2040

LHter 6 Fu2017170 G. ternifolia 3 Luhuo, SC 100°43′E/31°44’N 4,022 0.0418 0.2031 0.2246

LHtet 7 Fu2017171 G. teterphylla 4 Luhuo, SC 100°43′E/31°44’N 4,022 0.0308 0.1572 0.1709

LHvia 6 Fu2017172 G. viatrix 5 Luhuo, SC 100°43′E/31°44’N 4,022 0.0371 0.1873 0.2076

South DQ 6 Fu2018052 G. hexaphylla 6 Deqin, YN 99°04′E/28°20’N 4,326 0.0514 0.1940 0.2146

GS 8 Fu2018064 G. hexaphylla 6 Gongshan, YN 98°45′E/28°04’N 3,900 0.0495 0.1756 0.1903

CY 8 Fu2018088 G. hexaphylla 6 Chayu, TB 98°04′E/28°36’N 4,330 0.0485 0.1695 0.1835

XC 6 Fu2016156 G. hexaphylla 6 Xiangcheng, SC 100°03′E/28°49’N 4,628 0.0485 0.1649 0.1823

HO, average observed heterozygosity; HE, average heterozygosity; Pi, nucleotide diversity. Abbreviation after localities indicate provinces as follows: QH, Qinghai; SC, Sichuan; SX, 
Shaanxi; TB, Tibet; YN, Yunnan.
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Using concatenated plastid sequences, ML phylogenetic 
analyses were conducted with IQ-TREE (Nguyen et  al., 2015) 
implemented in PhyloSuite platform (Zhang et  al., 2020)  
with 1,000 replicates. The substitution model was detected in 
ModelFinder (Kalyaanamoorthy et al., 2017). Information about 
outgroup samples is presented in Supplementary Table S1.

We estimated the divergence times of plastid sequences 
using the Bayesian method implemented in BEAST 2.4 
(Drummond et al., 2012; Bouckaert et al., 2014) under the 
HKY substitution model (as the best model detected in 
ModelFinder, Kalyaanamoorthy et al., 2017), the Yule model, 
and the strict clock model. We constrained one of the nodes 
with the fossil of G. section Cruciata (G. cruciata L. in 
Germany, Mai & Walther, 1988; the early Miocene, Mai, 2000) 
following Fu et al. (2021a), namely with lognormal priors with 
an offset at 16.0 Ma, a mean of 1.0, and a standard deviation 
of 1.0. Because the fossil record is very limited for gentians, 
we  also employed a secondary calibration approach, 
constraining the Gentiana crown age with the estimated 
divergence time from Janssens et al. (2020), using uniform 
priors with a lower age of 21.25 Ma and an upper age of 
38.21 Ma (Fu et al., 2021a). We ran three independent MCMC 
chains with 10,000,000 generations, sampling every 1,000th 
generation and discarding the initial 10% as burn-in. 

Convergence was confirmed in TRACER 1.52 and judged by 
ESS values (>200). Trees were summarized using 
TreeAnnotator 1.7.5 (Drummond et al., 2012) and visualized 
in FigTree 1.4.3

Ancestral range estimation and species 
distribution modelling

We used the R package ‘BioGeoBEARS’ (Matzke, 2013, 
2014) to compare biogeographical models and estimate the 
evolution of geographic ranges across the phylogeny which 
we obtained using BEAST. The distribution of the four lineages 
of G. hexaphylla were coded for their presence/absence in the 
four biogeographical regions, which were based on the genetic 
clusters identified above. Dispersal was restricted to adjacent 
areas and the maximum range size was set to four, which means 
no extant cluster can occur in more than the four 
biogeographical regions. We did not specify an outgroup as the 
aim of our preliminary analyses was to determine dispersal 

2 http://tree.bio.ed.ac.uk/software/tracer/

3 http://tree.bio.ed.ac.uk/software/figtree/

A B C

FIGURE 1

Genetic structure in the Gentiana hexaphylla complex. (A) Pie charts showing frequency of plastid haplotypes (inner circles) and colour-coded 
groups based on 1,907 SNPs in FastStructure (outer circles) for each sampling site. Black dots represent sampling sites. Map came from the Institute 
for Planets. (B) Bar plots showing probabilities of ancestral clusters of each sample at K = 3 in FastSTRUCTURE. The sampling site is shown on the left 
of the bar plot. Dark shapes in panels B,C indicate different species: circles, G. hexaphylla; pentagons, G. viatrix; squares, G. tetraphylla; triangles, and 
G. ternifolia. (C) Phylogeny of plastid data based on eight plastome fragments. Support values from the maximum likelihood analyses are shown on 
the nodes. Subclades are named HN1, HN2, and HS. Line connections indicate the same individual in the phylogeny and bar plot. The border of the 
Hengduan Mountains is indicated with a broken yellow line, and based on Ding et al. (2020). An equal-area projection has been used in the map. 
White shapes in the photos indicate different species, as used in panels B,C. Photographs: Peng-Cheng Fu.
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routes below the species level. We  compared six models: 
dispersal-extinction-cladogenesis (DEC; Ree and Smith, 2008), 
dispersal-vicariance analysis (DIVA; Ronquist, 1997) and 
BAYAREA models (Landis et al., 2013), plus all three models 
separately with the possibility of founder events (+j; Matzke, 
2013, 2014). As our main objective was to trace ancestral areas 
rather than to infer the diversification dynamics or the 
speciation mode, concerns raised by Ree and Sanmartín (2018) 
on the DEC + J model are unlikely to have significant effects on 
our results. The best model was selected using the Akaike 
information criterion (AIC) and the sample size corrected AIC 
(AICc) after computing the loglikelihood score (Dupin et al., 
2016). The probabilities of the ancestral states at all nodes in the 
phylogeny were estimated using the best model.

Current distribution data for G. hexaphylla included 
observations made during the course of our fieldwork, and those 
available in the Global Biodiversity Information Facility (GBIF).4 
Records occurring less than 10 km from each other were removed 
in ArcGIS 10.2  in order to avoid multicollinearity. The 19 
bioclimatic variables at present, mid-Holocene (6 kya) and LGM 
(Last Glacial Maximum, ~22 kya) were obtained from the 
WorldClim dataset (Hijmans et al., 2005) with a spatial resolution 
of 2.5 arc-min. To avoid multicollinearity, a Pearson correlation 
analysis of the 19 variables was conducted using SPSS 20. Highly 
correlated variables with correlation coefficients significantly 
larger than 0.8 (p < 0.05) were removed. MaxEnt 3.4.1 (Phillips 
et al., 2005) was then applied to predict the potential distribution 
area. We  used 75% of the location data for training and the 
remaining 25% to test the predictive ability of the model. 
Effectiveness of the model was evaluated using the receiver 
operating characteristic (ROC) and the area under the ROC curve 
(AUC) > 0.9.

Results

Data preprocessing and SNP calling

Illumina sequencing of RAD libraries produced an average 
of 1.83 × 107 reads per sample. After quality filtering the 
number of reads retained per sample varied from 4.45 × 106 to 
8.07 × 107, with a median value of 1.81 × 107 
(Supplementary Table S2). A total of 202,861, 229,804, and 
257,315 SNPs were called with the three different Stacks 
parameter settings of M = n set to 2, 3, and 4, respectively, 
suggesting broadly similar number of SNPs are recovered 
regardless of the number of mismatches allowed within (M) or 
between (n) individuals. After filtering for MAF, LD, missing 
data and heterogeneous loci, the total number of unlinked 
SNPs obtained with Stacks for all samples was 1,988, 1,875, and 
1,907 when M = n was 2, 3, and 4, respectively.

4 https://www.gbif.org

Population genetic structure and genetic 
divergence

We firstly used the data set of 1,907 SNPs (m = 3, M = n = 4) to 
infer population genetic structure in the G. hexaphylla complex. 
chooseK.py indicated that the marginal likelihood scores from 
FastSTRUCTURE analyses peaked at K = 3 
(Supplementary Figure S1). Generally, the inferred genetic groups 
were consistent with known geographic barriers present between 
populations (Figure 1). The northern genetic cluster (TB, JZ, and 
HY) occurs from the Qionglai Mountains to Mount Taibai and the 
southern genetic cluster (XC, DQ, GS and CY) from the Shaluli 
Mountains to Gaoligong Mountains (coloured red and pink, 
respectively; Figures 1A,B). Populations LH, SD, and KD in the 
Daxue Mountains in the central HM, was composed of two 
genetic clusters, and populations LH and SD also formed another 
genetic cluster (indicated in orange in Figure 1). DAPC analyses 
suggested an optimal clustering value of K = 3 
(Supplementary Figure S2), with population groupings 
corresponding to their geographic location (Figure 2). None of the 
four study species consistently formed a separate cluster in both 
FastSTRUCTURE and DAPC analyses. The other two sets of SNPs 
(1,988 and 1,875 SNPs) gave almost identical results to the dataset 
of 1,907 SNPs (Supplementary Figure S1, S2), suggesting these 
inferences are robust to the parameters in Stacks used to assemble 
reads into loci, thus we performed all downstream analyses on 
this dataset.

Mantel tests between genetic and geographical distance 
showed a significant correlation (R = 0.49, p = 0.0012), 
indicating strong IBD. The cross-validation analyses in 
conStruct indicated that the spatial models always had higher 
predictive accuracy than non-spatial models, with little 
increase in accuracy when K was greater than three 
(Supplementary Figure S3). Comparing parametric covariance 
contributions of each model, layers larger than three generally 
contributed little to overall covariance across the replicates 
(Supplementary Figure S3), and are therefore unlikely to be of 
biological importance. We thus chose three layers for further 
characterization. In this model, spatial analyses showed genetic 
clusters separating the northern and southern populations 
(Figure  3), supporting divergence caused by barriers to 
dispersal rather than simply IBD in the G. hexaphylla complex.

The southern populations (XC, DQ, GS, and CY) had 
higher values of pairwise FST (0.259–0.541) than the northern 
populations (−0.056–0.320; Figure  4A; 
Supplementary Table S3). Population (TB) in Mount Taibai 
had lower values of pairwise FST with the northern than with 
the southern populations, and the population KD in the 
Central HM had low values of pairwise FST with both the 
southern and the northern populations. Populations from the 
South HM generally had lower nucleotide diversity than other 
regions (Table 1). Genetic variance mainly occurred among 
populations (56%) and within populations (37%) rather than 
among the South, Central and North regions (7%).
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Phylogenetic inference and estimation of 
divergence time

Using genomic SNPs, the ML tree showed that individuals from 
the North and the South were assigned to two distinct clades with 
full support (Figure 4B). None of the species in the G. hexaphylla 
complex formed a monophyletic lineage. The TreeMix analysis also 
showed that the southern populations were a distinct clade with 
populations placed on a long branch (Figure  4C). When no 
migration was allowed, the variance explained was high (99.17%), 
indicating a simple model of divergence without migration is a good 
fit to populations of the G. hexaphylla complex. Adding migration 
events in the phylogeny produced a marginally better fit 
(Supplementary Figure S4), and showed some potential historical 
dispersal events across the northern and central populations as well 
as to the southern populations (Figure 4C).

Mapping contigs from each sample to the plastome of 
G. hexaphylla generated eight regions shared among 62 individuals, 
which covered all populations, and these were concatenated for 
downstream analyses. The eight aligned regions ranged from 374 bp 
to 798 bp in length and the aligned concatenated sequences were 
4,341 bp. The ML tree indicated that the G. hexaphylla complex had 
two highly supported clades corresponding to the South (HS) and 
the North (HN), respectively (Figure 1C; Supplementary Figure S5). 

The HN clade was further divided into two subclades (HN1 and 
HN2) with high support. Comparing genetic clustering based on 
genomic SNPs and plastid data showed that samples in the same 
group from the south and the north were included in the HS and the 
HN clade, respectively, while the samples in a distinct clade from the 
central HM were included in the HN clade (Figures  1B,C; 
Supplementary Table S4). Bayesian inference in BEAST supported 
the two subclades in the North HM (HN1 and HN2) and two 
subclades in the South HM (HS and KD; Supplementary Figure S6). 
More than one lineage co-occurs at the Central and the North HM 
(Figure 1A).

Our divergence time analyses based on plastid sequences 
(Supplementary Figure S6) showed that the HN and HS clades in 
G. hexaphylla diverged in the Pliocene, approximately 4.01 Ma 
(95% HPD: 3.04–5.06 Ma). The two subclades in the HN and HS 
diverged in the Early Pleistocene 1.71 Ma (95% HPD: 1.09–
2.38 Ma) and in the Late Pliocene 3.10 Ma (95% HPD: 2.28–
3.88 Ma), respectively.

Ancestral range estimation and 
palaeo-distributional reconstruction

Estimation of the evolution of geographic range in 
BioGeoBEARS indicated that the BAYAREA model was the best 

FIGURE 2

Scatterplot of DAPC analysis in the Gentiana hexaphylla complex using 1,907 SNPs. Clusters and inertia ellipses are shown in different colours, 
consistent with Figure 1. Each dot represents an individual. Insets show histograms of discriminant analysis eigenvalues. CV, cumulated variance; 
EV, explained variance.
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fit to the G. hexaphylla complex, as it received the largest LnL 
value and the lowest AIC and AICc scores (Table 2). The DEC 
model also gave a very similar evolutionary scenario to the 
BAYAREA model. Based on the probability of each estimated 
ancestral range, the earliest common ancestor of the four lineages 
in G. hexaphylla complex might have occurred in the central HM 

(the green area, b) around 4 Ma, implying that the ancestral 
lineage dispersed out of this area southward and northward 
independently, which gave rise to different sub-lineages (Figure 5).

After the Pearson correlation analysis, nine bioclimatic 
variables (bio1–bio4, bio7, bio12–bio15) were kept for 
distributional reconstruction. The palaeo-distributional 

A B

C D

FIGURE 3

Maps of admixture proportions and bar plots for the Gentiana hexaphylla complex inferred using conStruct spatial and non-spatial analyses, using 
a K-value of three. Pies show mean admixture proportions across individuals from sampling sites inferred using spatial (panel A) and non-spatial 
(panel B) models. Admixture bar plots show genetic clustering in spatial (panel C) and non-spatial (panel D) models. Each bar represents an 
individual. The sampling sites are labelled at the bottom of the bar plots.

A CB

FIGURE 4

Genetic differentiation and phylogenetic relationships based on genomic SNPs in the Gentiana hexaphylla complex. (A) Heatmap of Weir and 
Cockerham’s FST between each pair of populations. (B) Unrooted maximum likelihood tree. (C) TreeMix graph showing population splits, and 
migration edges with migration weights indicated by the colour. The x-axis is the drift parameter reflecting the amount of genetic drift that has 
occurred between populations and the assumed common ancestral population. Locations in the South HM are showed in green and locations in 
other regions in blue.
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reconstruction showed that during the LGM the potential habitat 
of G. hexaphylla was restricted to the Himalayas and the South to 
East of the HM (Figure 6). Afterwards, from the LGM to today, its 
range significantly expanded into the HM, but experienced a slight 
contraction in the Northeast.

Discussion

As the longest continuously existing alpine flora (Ding et al., 
2020), the HM alpine flora offers an excellent opportunity to 
explore spatial–temporal changes in the distribution ranges of 
species. Such studies can test how range changes may have been 
driven by geological or climatic modifications and resulted in 
divergence, speciation and ultimately diversification. Using 
genomic data for a common Gentian species, we detected deep 
genetic divergence corresponding to geological barriers in the 
HM, with divergence likely promoted by both mountain uplift and 
climatic fluctuations. While we detected divergence in populations 
spread across the landscape, there was notably high genetic 
similarity between populations in Mount Taibai and the North 
HM, indicating a connection between the alpine flora of the 
Qinling Mts and the HM. Here, we discuss our results in terms of 
the biogeographic history of this important hotspot for alpine 
species, and consider the implications for future studies.

Strong geographic genetic differentiation 
between the North and South HM

The HM is well known for its extraordinary diversity and 
high rate of in situ alpine speciation (Sun et al., 2017; Xing and 
Ree, 2017; Ding et al., 2020). However, how genetic subdivision 
of populations corresponds to major geological features within 
the HM and surrounding areas remains to be characterized in 
detail. To address this issue, studies of fine-scale population 
divergence across this region are necessary, but they have been 
hampered by the poor resolution offered by traditional markers 
and/or by the complex evolutionary history of this region (Qiu 
et al., 2011; Liu et al., 2012; Muellner-Riehl, 2019). Using genomic 
data, our results clearly show that deep genetic differentiation in 
the G. hexaphylla complex occurs between the North and South 

HM, two areas which are geographically separated by the Daxue 
Mountains. Although we detected a significant pattern of IBD, 
once geographic distance is accounted for, we confirmed that 
there are clearly defined geographic genetic clusters rather than 
structure corresponding to a cline (Twyford et al., 2020). Our 
genomic data showed much clearer genetic structure and 
geographical divergence in the G. hexaphylla complex than 
previous work on the same species complex using one plastid 
fragment but with denser population sampling (Fu et al., 2020b). 
Recently, other genomic studies in plants of the HM, including 
Pinus armandii (Liu et  al., 2019) and the Rheum palmatum 
complex (Feng et  al., 2020), have also found similar results. 
Together with other studies (e.g., Dufresnes et al., 2020; Marková 
et al., 2020), these results show how genomic data can resolve 
complex and potentially cryptic genetic patterns, even in 
topographically complex settings.

The deeply dissected landscape of the HM is expected to 
generate numerous barriers to gene flow and thus to promote 
genetic differentiation and speciation. This was supported by the 
high FST value in our study, as well as the high variance explained 
by the TreeMix model without migration, as well as by the 
presence of private haplotypes in previous work (Fu et al., 2020b). 
Our finding of a North–South divide in the HM is in line with 
others studies, for example in Pinus armandii (Liu et al., 2019) 
and the Rheum palmatum complex (Feng et  al., 2020). In 
addition, changes in species richness and composition can 
be  observed across this zone (Zhang et  al., 2009a). Thus, the 
Daxue Mountains, which create a North–South divide, is the 
primary geological barrier for this species complex. To the 
contrary, our study did not detect the Nu River—the notorious 
Salween-Mekong divide isolating the Gaoligong Mountains 
(around population GS in this study) from the rest of the HM—as 
a barrier to gene flow, as has been previously found in yew trees 
(Liu et al., 2013). Taken together, our analyses as well as previous 
work show geological features in the HM create significant 
barriers to gene flow and lead to discrete population genetic 
structure, but the specific patterns are likely to be idiosyncratic to 
different biomes and taxa.

In addition, by sequencing typical individuals of each species 
in the G. hexaphylla complex, our genomic data show that all 
samples of species co-occurring with G. hexaphylla cluster 
together based on their geographical origin rather than their 

TABLE 2 Model comparison and parameters (d, dispersal; e, extinction; j, founder speciation) of ancestral area estimation of the Gentiana 
hexaphylla complex based on BioGeoBEARS.

Model LnL numparams d e j AIC AIC_wt AICc AICc_wt

DEC −8.39 2 0.17 1.00E−12 0 20.77 0.23 32.77 0.31

DEC + J −8.39 3 0.17 1.00E−12 1.00E−5 22.77 0.08 Inf 0

DIVALIKE −9.09 2 0.23 1.00E−12 0 22.19 0.11 34.19 0.15

DIVALIKE+J −9.09 3 0.23 1.00E−12 1.00E−5 24.19 0.04 Inf 0

BAYAREALIKE −7.84 2 0.12 0.19 0 19.68 0.39 31.68 0.54

BAYAREALIKE+J −7.84 3 0.12 0.19 1.00E−5 21.68 0.14 Inf 0

The optimal model for the G. hexaphylla complex is shown in bold.
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morphological traits (taxonomic attribution). Thus, our results 
not only point to geographical structuring, but also highlight the 
need for taxonomic clarification in this species complex.

Divergence correlates with uplift and 
climate change

The timing of geological events leading to the current 
topological conformation in the HM is still debated (Favre et al., 
2015; Spicer et al., 2020), but most studies agree that at least some 
parts of the HM (in the east) have experienced local uplift in the 
HM during the Late Miocene to the Pliocene (Favre et al., 2015; 
Ding et al., 2020), and that this caused in situ diversification of 
many alpine groups (Xing and Ree, 2017; Muellner-Riehl et al., 
2019; Ye et  al., 2019). However, other studies suggest that the 
extent of Pleistocene climate fluctuation are a key factor causing 
divergence, rather than geological processes (Muellner-Riehl, 
2019). The divergence between the two main lineages in the 
G. hexaphylla complex dated to the Pliocene, and correlated with 
the uplift of the Daxue Mountains, including Mt. Gonggar 
(7,556 m above sea level, a.s.l.), which may then have acted as 
barrier to dispersal. This is likely to be similar to Pinus armandii 
(Liu et al., 2019). Our ancestral area estimation also indicated that 
the G. hexaphylla complex originated in the central HM and then 
dispersed northward and southward, suggesting that the species 
occurred in the region of the Daxue Mountains and then 
experienced divergence associated with mountain uplift. However, 
climatic oscillations lead to variable connectivity among 

sky-islands in mountain systems, as previously shown in the HM 
(Deng et al., 2020) and considered in the Flickering Connectivity 
System’ proposed for the Andean flora (Flantua et  al., 2019). 
Through vertical displacement as climate oscillates, some areas 
may be characterized by cycles of extinction and colonization, 
while other areas may be colonized anew. Thus, the dispersal from 
the central HM to other regions, as well as differentiation in 
isolation in each of these regions, may have been caused by climate 
oscillations. Therefore, the G. hexaphylla complex may bear the 
marks of a species-pump effect, as predicted by the Mountain-
Geobiodiversity Hypothesis (Mosbrugger et al., 2018).

Colonization from the HM to Mount 
Taibai

The G. hexaphylla complex is distributed across two 
biogeographically disjunct regions, namely the HM and the 
QM. The QM provides a natural boundary between northern 
and southern China, and served as a geographical and ecological 
barrier for species with low dispersal ability (Yan et al., 2010; Hu 
et al., 2021). Its isolation also promoted the divergence of some 
relict species (Shahzad et al., 2020). Mount Taibai, belonging to 
the QM, is the highest peak (3,500 m a.s.l.) in Central and East 
China and sits more than 400 km northeast of the HM. At its 
highest elevation it harbors an alpine flora including several 
Gentiana species (Ho and Pringle, 1995), for example the 
endemic G. apiata N.E. Brown (Ho and Liu, 2001). Our species 
distribution modelling showed that this region may have been 

A B

FIGURE 5

Ancestral area estimation of the Gentiana hexaphylla complex based on BioGeoBEARS. (A) Area definition for ancestral area estimation, based on 
the extant distribution of the G. hexaphylla complex. (B) Ancestral range estimation based on BAYAREALIKE model implemented in BioGeoBEARS 
based on the result from BEAST. Extant species distributions used for the ancestral area estimations are provided in coloured boxes next to each 
lineage. Boxes on each node represent the cumulative probabilities for the estimated ancestral range. Phylogenetic support values for Bayesian 
inference are shown on branches.
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suitable for G. hexaphylla since the LGM. As Mount Taibai was 
glaciated during the LGM (Rost, 1994; Zhang et  al., 2016), 
G. hexaphylla individuals now occurring in this region are likely 
to be the result of uphill migration as glaciation receded. This 
colonization scenario would be consistent with climate change 
from cold and humid to warm and dry from 18 kya to present 
in the QM (Zhao et al., 2014). This inference is also supported 
by our pairwise FST values and the genetic clustering results, 
which both showed less genetic differentiation between 
population TB and the northern populations of the HM. This 
result indicates that G. hexaphylla is likely to have colonized the 
QM from the North HM. To our knowledge, our study is the 
first to show the dispersal directionality between the QM and 
the North HM, although at the genus level, Gentiana is known 
to match the out-of-Tibet hypothesis (Favre et  al., 2016). 
Although more case studies are needed to evaluate the relative 
role of the different modes of assembly of the alpine biome in 
the QM, our results do improve our understanding of how 
Gentiana, and likely other alpine lineages, may have colonized 
these mountains.

Conclusion

Using genomic data, this study recovered deep differentiation 
between populations of the G. hexaphylla complex along two sides 
of the Daxue Mountains in the Central HM, from where the 
complex originated. Divergence is likely to have been driven by a 
combination of mountain uplift, climatic fluctuations and 
geographical isolation. We also found that the QM were colonized 
from the HM by G. hexaphylla relatively recently, probably aided 
by changes in climatic conditions.
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