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Broomcorn and foxtail millet were the most important crops in northern China
during the Neolithic period. Although the significance of broomcorn millet in
human subsistence exceeded that of foxtail millet during the early Neolithic,
this pattern was reversed by the end of Neolithic period. However, the process
underlying this shift remains unclear. The recent excavation of the Gedachuan
(GDCQ) in Zhangjiachuan county has revealed an abundance of relics including
millet crop remains from relatively continuous strata of the Yangshao and Qijia
cultures, and therefore provides a unique opportunity to examine how and
when foxtail millet replaced broomcorn millet as the dominant crop in the
western Loess Plateau during the Neolithic period. In this study, we identify
1,738 and 2,686 broomcorn and foxtail millet remains, respectively, from 74
flotation samples, accounting for 38.81% and 59.98% of total plant remains,
respectively. Compared with 23 direct dates of carbonized crop grains in GDC,
we propose that the weight of foxtail millet in plant subsistence of GDC first
exceeded that of broomcorn millet as early as ~5,500 BP, filling an important
gap in the archaeobotanical record from the western Loess Plateau. Further
comparative analysis of multidisciplinary data suggests the shift in significance
of these two millet crops during the late Neolithic may have been triggered by
variations in human settlement intensity and climate change in the western
Loess Plateau. The results of this study also suggest that the Banpo Phase of
Yangshao Culture survived in the western Loess Plateau as late as ~5,600 BP.

archaeobotanical analysis, radiocarbon dating, Gedachuan site, millet, late Neolithic,
subsistence strategy.

Introduction

Broomcorn and foxtail millet are among the oldest domesticated
cereals in the world, first used in northern China around 10,000 BP
(Zhao, 2011; Yang et al, 2012; Zhao et al, 2020). The cultivation of
these two crops has been identified as one of the most important
economic bases for the development of Neolithic cultures and emergence
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of ancient civilizations in northern China (e.g., Pearson and
Underhill, 1987; Cao, 2006; Zhao, 2014; Han, 2021). However,
recent evidence now suggests that the relative significance of
broomcorn and foxtail millet in human subsistence changed
throughout the Neolithic Age. Though broomcorn and foxtail
millet were utilized in northern China during the pre-Yangshao
period (~10,000-6,000 BP) (e.g., Liu et al,, 2012; Wang et al,,
2017; Deng et al., 2020), hunting-gathering may have been the
primary livelihood strategy in most areas during this period
(Zhao, 2014; Dong et al., 2016a; Dong et al., 2022). Cultivation
of millet crops became the most important subsistence strategy
in the Loess Plateau during 7,000-6,000 BP (Zhao, 2014; Chen
et al., 2016), and was widely expanded across the Yellow River
valley during the late Neolithic period (Chen et al, 2015;
Yang et al,, 2021). Archaeobotanical evidence suggests that the
significance of foxtail millet in plant subsistence was lower than
broomcorn millet before ~6,000 BP (Zhao, 2004; Wu et al,,
2015; Dong et al., 2022), but became the dominant cultivated
crop in northern China after 6,000 BP (Lee et al., 2007; Bao et al,,
2018; Song et al.,, 2019; Yang et al., 2021; Dong et al., 2022).
However, the precise timing and the context in which such a
shift occurred are not yet fully understood due to the limited
direct dates of millet remains between 7,000-5,000 BP.

The western Loess Plateau (WLP) has been identified as a
key area for the development of rain-fed agriculture during the
Neolithic Age (Cai, 2021). Remains of broomcorn millet have
been recovered from the cultural layer of the Dadiwan Phase
I (~7,800-7,200 BP) (Liu et al, 2004; Li, 2018b), indicating
that humans began utilizing millet crops in this area during
the pre-Yangshao period. However, isotopic evidence indicates
that millet crops did not contribute to human diets substantially
before c. 5,900 BP, but had become the major staple after
this time (Barton et al, 2009). Much archaeobotanical data
in the WLP have been published in recent decades, mostly
from the late Neolithic and Bronze Ages (e.g., Li et al., 2007;
Jia et al., 2013; Chen et al., 2019; Chen et al., 2020). Current
archaeobotanical evidence suggests foxtail and broomcorn
millet were the primary and secondary crops, respectively, in
the WLP between 5,000-4,000 BP. This differs from the earlier
Dadiwan period (~7,800-7,200 BP) when millet played a minor
role in diets. The crop shift of millet farming probably occurred
in the Miaodigou period of the Yangshao Culture (5,900-5,500
BP), largely based on archeological stratigraphy and typology
(Qin, 2012). However, the chronological framework of the
Yangshao Cultural system in the WLP is poorly understood due
to the “old carbon effect” of radiocarbon dating for charcoals
(Gavin, 2001; Yan, 2009; Dong et al., 2014). Therefore, direct
radiocarbon dates of broomcorn millet and foxtail millet are
lacking. The timing of the shift in crop dominance in the
Neolithic WLP is enigmatic, largely due to the absence of
archaeobotanical data from sites dated in 6,000-5,000 BP.

Nearly continuous stratum spanning the early, mid and late
phases of Yangshao Culture (7,000-5,000 BP) and Qijia Culture
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(4,300-3,500 BP) have been uncovered from the excavation
of the GDC site, providing a rare opportunity to explore the
trajectory of plant subsistence in the WLP during the mid-late
Neolithic period. Using identified plant remains, radiocarbon
dating of crop remains unearthed from the GDC site, and
their comparison to published data in the WLP, we aim to
study the history of the transformation in cropping patterns,
especially the shift in crop dominance from broomcorn millet to
foxtail millet during the Yangshao and Qijia periods. Moreover,
the chronology of the Banpo Phase in the WLP is vague due
to the limited radiocarbon dates and “old carbon effect” of
radiocarbon dating for charcoals. The GDC site is currently
the largest Banpo Phase site in the WLP, and therefore, we
also examined the chronology of the Banpo Phase of Yangshao
Culture in this work.

Study area

The western Loess Plateau (WLP) is situated to the west of
Liupan Mountain, East of Wushaoling, North of Qinling, and is
mainly situated in the middle of Gansu province (Figures 1A,B).
The main rivers flowing through this area include the upper
reaches of the Yellow River and the Wei River. The WLP
is characterized by undulating ridges and gullies, with an
arid climate, sparse vegetation, serious soil erosion and harsh
ecological conditions. However, this area is associated with the
development of several Neolithic cultures, including the Daiwan
Phase I culture, and the Yangshao and Qijia cultures (The
institute of archaeology CASS, 1999; Gansu Provincial Institute
of Cultural Relics and Archaeology, 2006; Hosner et al., 2016).
The GDC site is another important Yangshao Culture site in
Zhangjiachuan county, which is situated at the intersection of
the Nan and Songshu rivers, both of which are third-order
tributaries of the Wei River. The site is surrounded by typical
loess beam and loess gully landforms of the WLP. The climate
of Zhangjiachuan county is classified as continental winter dry
(Chan et al., 2016) and the mean annual temperature is 8-10°C
with mean annual precipitation of 500-650 mm.

The GDC site was recently excavated in 2021, with an
excavation area of about 27,000 mZ2,which preserved many
rich cultural relics, including a complete Yangshao settlement.
Neolithic relics include ash pits, houses, burials, kitchen
pits, ditches, and kilns, and the relationship between the
archeological strata is complex. According to the most recent
excavations, the Neolithic settlement site stratums can be
roughly divided into four periods: Banpo Phase of early
Yangshao Culture, Miaodigou Phase of middle Yangshao
Culture, late Yangshao Culture and Qijia Culture. Recently,
the larger and well-preserved ring trench settlement in the
Banpo Phase of Yangshao Culture was found (Figure 2A). This
settlement included a residential area, burial area, and pottery
kiln area, which is the same as the settlement of the Jiangzhai site
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FIGURE 1
The distribution of survey and excavation sites in the WLP from 8,000 BP to 4,000 BP. (A) The distribution of survey and excavation sites in the
WLP. (B) The distribution of Gedachuan site and its adjacent Zhuanglang county survey sites.

FIGURE 2

Excavation site of ring trench settlement and representative pottery of various cultural periods. (A) ring trench settlement. (B—D) pottery of the
Banpo Phase of Yangshao Culture. (E) Painted pottery of the Maodigou Phase of Yangshao Culture. (F) Painted pottery of the Late Yangshao
Culture. (G) Pottery of the Qijia Culture.
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FIGURE 3
Photographs of charred crop remains unearthed from different periods at the Gedachuan site. (A—C) Banpo Phase. (D—F) Miaodigou Phase.
(G-1) Qijia Culture. (A,B,D,E,G) Broomcorn millet. (C,F,H,I) Foxtail millet. (Scalebar: 1 mm).

(Peterson and Shelach, 2012). The unearthed artifacts classified
as from the Banpo Phase mainly included pointy-bottom bottles,
round bottom basins, round bottom bowls, tiny mouth tube
belly tanks, gourd bottles, urn and jar covers (Figures 2B-
D). In the middle-Yangshao Culture layer, remains from the
Miaodigou Phase were damaged, of which a few individual
houses and many ash pits were preserved and intact. The
unearthed artifacts mainly included pointed bottom bottles,
curved abdomen basins, bottom bowls, flat bottom bottles, urns
and so on. Figure 2E shows the painted pottery basin of the
Miaodigou Phase. The upper culture layer containing remains
of the late Yangshao Culture and the Qijia Culture were mixed
and seriously damaged by late human activities, of which only
the house ground and some ash pits, kitchen pits, and ditches
were preserved (Figures 2E,G).

Material and methods

With the excavation of the GDC site, soil flotation samples
were collected from cultural layers and relics units, such as
houses, ash pits, kitchen pits, and ditches. Particular attention
was paid to avoid disturbed contexts, specifically, samples were
collected evenly for larger relic units like houses, which were
sampled from different areas. Moreover, the volume of most
soil samples was larger than 15 L, while the sampled volume
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of a few soil samples ranged from 3 L to 14 L (Supplementary
Table 1). The collected soil samples were floated in a water-wave
floatation machine. Here, the lighter remains, such as charcoal
and charred plant seeds, floated upward and were gathered by an
80-mesh sifter (with a 0.2-mm aperture). The gathered material
was subsequently wrapped in gauze and hung in a shady and
cool area for desiccation. Next, the dried samples were sifted
through 0.35, 0.7, 1.2, and 4 mm mesh sieves (Zhao, 2010).
Finally, charred plant seeds were picked and identified in the
Environment Archaeology Laboratory, Lanzhou University.
Carbonized crop seeds from the GDC site were pretreated
with acid-base-acid washing processes and then graphitized
using Auto Graphitization Equipment (AGE III), and finally
were tested using a compact Accelerator Mass Spectrometer,
Mini Carbon Dating System (MICADAS). These experiments
were completed in the Radiocarbon Chronology Laboratory
of Lanzhou University. Bayesian modeling of the 4C
chronological data was performed using the built-in "Phase”
function of the OxCal online program® and IntCal20 curves
(Reimer et al, 2020), using the “R_Date” function to enter
the 14C dates. Each "Phase” included all C dates of a
prehistoric culture, and each "Phase" function was bounded
by the "Boundary" function. The start and end time of each

1 https://cl4.arch.ox.ac.uk/oxcal.html
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TABLE 1 Calibrated radiocarbon dates of charred crop grains from the excavation of the Gedachuan site.

Lab Nu. Sampling feature = Dating material Dating method Radiocarbon Calibrated age (cal.yr BP) Culture
Age (yr BP) lo 20
LZU21815 2021ZG IVT0502F15d5 Broomcorn millet AMS 5,180 + 30 5,988-5,911 5,997-5,900 Banpo
LZU211111 2021ZG IVT0703® Charcoal AMS 5,160 + 30 5,985-5,903 5,994-5,765 Banpo
LZU211106 2021ZGIT0203® Broomcorn millet AMS 5,150 + 30 5,985-5,897 5,992-5,758 Banpo
LZU21816 2021ZG II T0208F27z Broomcorn millet AMS 5,050 + 30 5,893-5,742 5,904-5,719 Banpo
LZU21822 2021ZGIT0302F38d1 Broomcorn millet AMS 5,030 + 30 5,891-5,722 5,898-5,661 Banpo
LZU21817 2021ZG 11 T0207F25z Broomcorn millet AMS 4,980 + 30 5,736-5,610 5,860-5,601 Banpo
LZU211105 2021ZG 1T0203® Broomcorn millet AMS 4,970 £+ 30 5,725-5,609 5,844-5,600 Banpo
LZU21827 2021ZG II T1105F65d9 Broomcorn millet AMS 4,930 £ 30 5,705-5,597 5,720-5,594 Banpo
LZU21818 2021ZG I1 T0207F25d3 Broomcorn millet AMS 4,890 + 30 5,652-5,589 5,712-5,581 Banpo
LZU21825 2021ZG I T0202F43d10 Broomcorn millet AMS 4,890 + 30 5,652-5,589 5,712-5,581 Banpo
LZU21821 2021ZGIT0202F38 Broomcorn millet AMS 4,970 + 30 5,725-5,609 5,844-5,600 Banpo
LZU211096 2021ZG II TO606H279 Broomcorn millet AMS 4,890 + 30 5,652-5,589 5,712-5,581 Miaodigou
LZU211095 2021ZGI'T0101H276 Broomcorn millet AMS 4,880 + 30 5,652-5,586 5,705-5,488 Miaodigou
LZU21812 2021ZG II T1009F29 Broomcorn millet AMS 4,880 + 30 5,652-5,586 5,705-5,488 Miaodigou
LZU211097 2021ZG II TO610H275 Foxtail millet AMS 4,840 + 30 5,598-5,486 5,650-5,477 Miaodigou
LZU21986 2021ZG 11 T1206H64 Broomcorn millet AMS 4,830 £+ 30 5,596-5,483 5,600-5,477 Miaodigou
LZU21985 2021ZG 11 T0507H33 Broomcorn millet AMS 3,740 + 20 4,148-4,009 4,219-3,988 Qijia
L7U211103 2021ZG 11 T1704)20@ Foxtail millet AMS 3,740 £+ 30 4,149-4,000 4,226-3,984 Qijia
LZU211098 2021ZG II T1009H190 Foxtail millet AMS 3,730 + 30 4,148-3,991 4,221-3,981 Qijia
LZU211102 2021ZG 11 T1409]15® Foxtail millet AMS 3,710 + 30 4,140-3,986 4,150-3,933 Qijia
LZU211101 2021ZG IV T0204H42 Foxtail millet AMS 3,720 £+ 20 4,142-3,992 4,148-3,984 Qijia
LZU211100 2021ZG IV T0604H38®@ Foxtail millet AMS 3,690 + 30 4,085-3,981 4,146-3,924 Qijia
LZU211109 2021ZG IV T0702H87 Foxtail millet AMS 3,670 + 30 4,082-3,929 4,090-3,900 Qijia

prehistoric culture was constrained using this function, and the
"Order" function was used to order the beginning and end of
each prehistoric culture. Furthermore, the "outlier" function
was used for each *C chronological measurement (Long et al.,
2017), to ensure that the model was reliable (Ramsey, 2009). The
Bayesian model results were reported as a range of 95.4% and
68.3% and the median-to-median range was used to determine
the chronological range of different prehistoric cultures (Long
and Taylor, 2015; Yang et al., 2019).

Results

Archaeobotanical results

The plant remains unearthed from the GDC site are listed
in Supplementary Table 1, which includes 74 flotation samples
from three periods, namely the Banpo Phase of early Yangshao
Culture, the Miaodigou Phase of middle Yangshao Culture and
the Qijia Culture. Overall, 1,475.5 L of flotation soil were floated,
and a total of 4,428 charred crop seeds and 20 weed seeds were
identified. As for crop seeds, the assemblage was composed
of 2,686 foxtail millet (Setaria italica), 1,738 broomcorn millet
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(Panicum miliaceum), 2 rice (Oryza sativa) and 2 wheat
(Triticum aestivum) seeds (Figure 3). A small number of weed
seeds (20, representing 0.45% of the plant assemblage) were also
recovered at the GDC site, including Oat (Avena sativa), Green
foxtail (Setaria viridis), Milkvetch Root (Astragalus adsurgens),
Daghestan Sweetclover (Melilotus suaveolens), Threehorned
Badstraw (Galium tricorne), and Garden Sorrel (Rumex acetosa).

During the Banpo Phase, 138 foxtail millet seeds (13.28%
of the plant assemblage), 895 broomcorn millet seeds (86.14%
of the plant assemblage) and 2 wheat seeds (0.19% of the plant
assemblage) were identified from 28 samples (574 L of soil in
total). During the Miaodigou Phase, 115 foxtail millet seeds
(23.23% of the plant assemblage) and 373 broomcorn millet
seeds (75.35% of the plant assemblage) were identified from
32 samples (624.5 L of soil in total). Here, only one rice seed
was identified. During the period of the Qijia Culture, 2,433
foxtail millet seeds (83.49% of the plant assemblage) and 470
broomcorn millet seeds (16.13% of the plant assemblage) were
identified from 14 samples (277 L of soil in total). As in the
Miaodigou period, only one rice seed was identified during the
period of the Qijia Culture. The ratio of the number of identified
foxtail and broomcorn millet seeds increased from 0.15 (Banpo
Phase) and 0.31 (Miaodigou Phase) to 5.18 (Qijia Culture),
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FIGURE 4
The chronology of different prehistoric cultures based on the Bayesian model at the Gedachuan site.

indicating an increasing trend of foxtail millet cultivation Radiocarbon dates

importance in subsistence agriculture over time. In addition, a

few weed seeds were identified in the Banpo, Miaodigou and The 23 new '“C dates of charred seeds and charcoal with
Qijia Culture periods, accounting for 0.38%, 1.21% and 0.34% 95.4% age range are displayed in Table 1. According to the
of the identified plant seeds, respectively. dating results, the site was divided into three periods. During
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FIGURE 5
Proportion of crop remains from different periods at the Gedachuan site (in red) and the Zhuanglang survey sites (in black). Black font
represents the survey sites with identified crop remains data from Li (2018). n represents the number of identified crop remains.

the Banpo Phase, the dates of ten broomcorn millet seeds and
one charcoal sample ranged from 5,997 to 5,581 cal yr BP.
In the Miaodigou Phase, the dates of four broomcorn millet
seeds and one foxtail millet seed ranged from 5,712 to 5,477 cal
yr BP. In the period of the Qijia Culture, the dates of six
foxtail millet seeds and one broomcorn millet seed ranged
from 4,226 to 3,900 cal yr BP. The results from the Bayesian
model are given for the Banpo Phase (5,970 BP~5,570 BP),
Miaodigou Phase (5,582 BP~5,579 BP) and Qijia Culture
(4,090 BP~4,000 BP) (Figure 4).

Discussion

According to the archaeobotanical evidence identified
from the GDC site (Figure 5 and Supplementary Table 1),
the significance of foxtail millet as a subsistence crop
gradually increased from the Banpo to the Qijia period,
though broomcorn millet remained the most important
cereal crop during the Banpo and Miaodigou phases. The
proportional contribution of foxtail millet in a given assemblage
evidently exceeded that of broomcorn millet following the late
Yangshao period (~5,500 BP) (Figure 5), which is consistent
with previously published archaeobotanical data from other
Neolithic sites in the WLP (e.g., Li, 2018b; Chen et al.,, 2019;
Chen et al., 2020, Figures 6E,F).
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The utilization of broomcorn millet in the nearby Dadiwan
site can be traced back to the 8% millennium BP (Liu et al.,
20045 Li, 2018b), while no evidence of foxtail millet during that
period has been reported, which supports the superiority of
broomcorn millet over foxtail millet during the pre-Yangshao
period in the WLP. Similarly, this pattern has also been detected
in the contemporaneous mid-lower reaches of the Yellow
River, with the size of some broomcorn millets continuing
to increase (Lu et al, 2009; Wu et al, 2015; Wang et al,
2017; Liu et al, 2018; Stevens et al,, 2021), as well as in
eastern Inner Mongolia (Zhao, 2004). Intensification of millet
cultivation occurred in the Central Plains of northern China
during the 71 millennium BP (Zhao, 2014; Dong et al., 2016a;
Dong et al., 2022), and the significance of foxtail millet in
subsistence agriculture likely exceeded broomcorn millet in
this area. However, the importance of broomcorn millet was
still higher than foxtail millet in the WLP during the 7th
millennium BP (Figures 6E,F), which is likely driven by the
differences in the two taxa’s physiological responses to varying
environments. Specifically, broomcorn millet is hardier than
foxtail millet, in terms of drought-, frost- and barren tolerance
(Editorial Department of Chinese Agricultural Encyclopedia,
1991; Li, 2018a; Dong et al., 2022), while foxtail millet is more
high-yielding than broomcorn millet (Yang and Yu, 1992). The
hydrothermal conditions of the WLP are much worse than those
of Central Plains, which are more suitable to the cultivation of
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FIGURE 6
Comparison of human activity intensity, climate change and millet ratio in the WLP from 9,000-4,000 BP. (A) 813C record of a single plant in
Hongyuan peat bog (Hong et al., 2003). (B) Northern Hemisphere (30°~90°N) temperature record (Marcott et al., 2013). (C) Reconstructed
precipitation based on fossil pollen at Tianchi Lake (Zhao et al., 2010). (D) Stalagmite 180 record at Wuya Cave (Tan et al.,, 2020). (E) Proportions
of broomcorn millet and foxtail millet in the WLP between 9,000-4,000 BP at different periods. (F) Absolute number proportions of foxtail millet
to broomcorn millet identified from sites dated between 9,000-4,000 BP in the WLP. (G) The Summed Probability Distribution (SPD) of
averaged dates of bins (The line chart) and the dated site number (The column chart) in the WLP.

broomcorn millet in foothills close to rivers (Liu et al., 2009).
Only a few sites in the WLP have been dated between 7,000-
6,000 BP (Figure 6G), suggesting that human survival pressure
was probably low in the area, considering the relatively low
human settlement intensity and warm-wet climate during that
period (Figures 6A-D).

The proportion of foxtail millet in cereal count overtook
that of broomcorn millet in the GDC site after ~5,500 BP
based on the direct dates of the millet remains in the GDC
site (Figure 5 and Table 1). This pattern contrasts previous
archaeobotanical evidence from investigated sites in adjacent
Zhuanglang county. During ~6,000-5,400 BP, the abundance of
broomcorn millet in flotation assemblages overshadowed foxtail
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millet at Tiannjiaping in Zhuanglang, for example. However,
at other Zhuanglang county sites such as Zhangjiayuan and
Yuejiawan, foxtail millet was more important. In 1 of 28 Banpo
Phase (5,970 BP~5,570 BP) samples and 1 of 32 Miaodigou
Phase (5,582 BP~5,579 BP) samples of the GDC site, the
number of charred foxtail millet grains also exceeded those
of broomcorn millet (Supplementary Table 1), while the total
proportion of broomcorn millet remains far exceeded foxtail
millet in these two phases (Figure 5). The disagreement in
results of the archaeobotanical analysis at the GDC site and
those of surveyed sites in Zhuanglang county dated between
~6,000-5,400 BP are likely related to occasionality associated
with small sample sizes in Zhuanglang county.
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The percentage of foxtail millet in plant remains in the GDC
site was clearly higher than broomcorn millet after ~5,500 BP
(Figure 5), indicating that foxtail millet was the most important
subsistence crop in the WLP during the late Yangshao and Qijia
periods. Similar trends have been previously observed in other
WLP areas including Zhuanglang (Li, 2018b), Gangu (Chen
et al,, 2020), and Dingxi (Jia et al., 2013). Compared with the
period of ~6,000-5,500 BP, human settlement intensity in the
WLP evidently increased during the period of ~5,500-4,900 BP
(Figure 6G), while temperature and precipitation obviously
declined following ~5,500 BP (Hong et al,, 2003; Zhao et al,
2010; Marcott et al., 2013; Tan et al., 2020; Figures 6A-D).
This may suggest that the adoption of higher-yielding foxtail
millet over broomcorn in a context of a growing population
and needing for agricultural intensification facing increasingly
stressful environments (Liu and Reid, 2020). In general, foxtail
millet yield is much higher than broomcorn millet yield. The
average crop yields in China report that broomcorn millet yield
is only 750-1,500 kg/ha, while foxtail millet yield is as high
as 2,250-3,750 kg/ha (Chai and Feng, 2003). Especially in the
Loess Plateau, foxtail millet yield is almost twice as high as
broomcorn millet yield. At a broader geographic level, foxtail
millet had become a dominant crop over taking broomcorn
millet in other parts of north China after 6,000 BP (Lee
et al, 2007; Bao et al, 2018; Song et al., 2019; Yang et al,
2021).

Besides changes in the environment and survival pressure,
the assemblage formation process might influence cropping
patterns. For instance, grain ubiquity could be driven by
crop processing with variations in post-harvest labor or the
scale of processing could influence crop percentages (e.g.,
Stevens, 2003; Van der Veen and Jones, 2006). However, as
these effects were not directly investigated here, future work
is required to determine the influence of crop processing on
cropping patterns.

The 11 radiocarbon dates of millet remains from the
Banpo cultural layers in the GDC site ranged from 5,997
to 5,581 BP (Table 1), which is a few hundred years later
than previously estimated (Banpo: 7,000-5,900 BP) (Dai, 1998;
Gansu Provincial Institute of Cultural Relics and Archaeology,
20065 Zhang et al., 2013). With the application of the Bayesian
model, the chronology of the Banpo samples in the GDC
site was refined to ~5,970-5,570 BP. As typical Banpo style
ceramics, featuring double-gourd vase, pointed bottom bottle
and red pottery bowl have been unearthed from the associated
stratigraphic units, we considered the cultural association
with the Banpo Phase was reliable (Figures 2B-D). The
new radiocarbon results reported here shed insights into the
variation of the Banpo chronology in WLP, notwithstanding of
the potential “old wood” effect resulting from charcoal dates.
(Gavin, 2001; Yan, 2009; Dong et al, 2014). Similarly, the
difference of chronologies of the Neolithic and Bronze Age
estimated between short-lived crop remains, bones and other
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various materials has also been reported in the Hexi Corridor
(Yang etal., 2019), Qaidam basin (Dong et al., 2016b) and
Haidai region (Long et al., 2017).

Conclusion

The new archaeobotanical and radiocarbon dating data
presented in this study suggest that the shift in crop
dominance from broomcorn millet to foxtail millet in the
WLP occurred following ~5,500 BP, with broomcorn millet
becoming the primary subsistence crop during the period
of ~6,000-5,500 BP, and foxtail millet becoming the most
important crop in the subsequent period of ~5,500-4,000 BP.
The relative importance of foxtail millet to broomcorn millet
increased in a stepwise fashion in the WLP from the Banpo,
MiaoDigou, late Yangshao phases into the period of Qijia
Culture, which was likely triggered by the aggravation of
human survival pressure in relation to human settlement
intensity and climate change. Based on the analysis of
new radiocarbon dates of millet remains from the Banpo
cultural layers at the GDC site, we estimate the chronology
of the Banpo Phase of Yangshao Culture in the WLP
to ~6,000-5,600 BP, although additional investigation is
required in the future.
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