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Phosphorus (P) deficiency and aluminum (Al) toxicity often coexist and are two major

limiting factors for crop production in acid soils. The purpose of this study was to

characterize the function of GmBBE-like43, a berberine bridge enzyme-like protein-

encoding gene, in soybean (Glycine max) adaptation to Al and low P stresses. Present

quantitative real-time PCR (qRT-PCR) assays confirmed the phosphate (Pi)-starvation

enhanced and Al-stress up-regulated expression pattern of GmBBE-like43 in soybean

roots. Meanwhile, the expression of aGmBBE-like43-GFP chimera in both common bean

hairy roots and tobacco leaves demonstrated its cell wall localization. Moreover, both

transgenic Arabidopsis and soybean hairy roots revealed the function ofGmBBE-like43 in

promoting root growth under both Al and low P stresses. GmBBE-like43-overexpression

also resulted in more H2O2 production on transgenic soybean hairy root surface with

oligogalacturonides (OGs) application and antagonized the effects of Al on the expression

of two SAUR-like genes. Taken together, our results suggest thatGmBBE-like43might be

involved in the soybean’s coordinated adaptation to Al toxicity and Pi starvation through

modulation of OGs-oxidation in the cell wall.

Keywords: soybean, berberine bridge enzyme-like protein, phosphorus deficiency, aluminum toxicity,

oligogalacturonides

INTRODUCTION

Aluminum toxicity and low Pi availability are two major factors limiting crop production on acid
soils in tropic and sub-tropic areas (Kochian et al., 2004). Due to the coexistence of Al toxicity and
P deficiency in acid soils, understanding how plants coordinately adapt to Al-P couple stresses are
important for crops’ genetic improvement. To date, two strategies underlying P-improved plant
Al resistance have been suggested. One is based on the immobilization of Al by Pi in the root cell
wall, which has been reported in buckwheat (Fagopyrum esculentum), barley (Hordeum vulgare),
and maize (Zea mays) (McCormick and Borden, 1972; Gaume et al., 2001; Zheng et al., 2005). The
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other relied on the activation of organic anion’s exudation
induced by P application, which was observed in rapa (Brassica
campestris) and soybean (Glycine max) (Liao et al., 2006; Ligaba
et al., 2007; Liang et al., 2013). On the other hand, identification
and functional characterization of the sensitivity to proton
rhizotoxicity 1 (STOP1) zinc-finger transcription factor family
have largely expanded the understanding of the regulatory
mechanisms of plant adaptation to Pi starvation and Al toxicity
(Sawaki et al., 2009; Kobayashi et al., 2014; Gutiérrez-Alanís et al.,
2018; Wu et al., 2018a; Wang et al., 2019).

The cell wall is the first barrier of a cell that has direct contact
with the environment and plays an essential role in cell division,
enlargement, and differentiation. It was suggested that Al toxicity
and P deficiency might affect cell wall extension partially by
modifying the pectin methylation level (Yang et al., 2008, 2011,
2013; Fernandes et al., 2016). But pectin demethylesterification
subsequently increases the generation of active partially de-
methylated oligogalacturonides (OGs) (Osorio et al., 2008; Wolf
et al., 2012). It thus indicates that Al toxicity and P deficiency
could result in increased OGs production, which has been
characterized as the plant’s damage-associatedmolecular patterns
(DAMPs) and known to influence plant growth and development
in several plant species (Simpson et al., 1998; Ferrari et al.,
2013). However, prolonged exposure to OGs can also show
deleterious outcomes resulting in reduced plant growth (Cervone
et al., 1987). One possible reason is that OGs could antagonize
the physiological response of the plant to auxin (Branca et al.,
1988; Bellincampi et al., 1993; Altamura et al., 1998; Savatin
et al., 2011). In Arabidopsis (Arabidopsis thaliana), the transcript
accumulation of several auxin-induced genes, as well as the
activation of the synthetic auxin-responsive promoter DR5, are
inhibited by the OGs independently of AtrbohD-mediated H2O2

accumulation (Savatin et al., 2011; Ferrari et al., 2013). Thus,
maintaining the homeostasis of OGs in the cell wall would be
important for plant growth under abiotic stresses such as Al
toxicity and P deficiency.

The berberine bridge enzyme-like (BBE-like) is a subgroup
of the superfamily of FAD-linked oxidases, which feature
an unusual bi-covalent attachment of the flavin cofactor via
His and Cys residues (Daniel et al., 2017). Although plenty
of genes encoding BBE-like enzymes have been determined
in plants over the course of genome sequencing efforts,
the biochemical function of most of them remained elusive
(Wallner et al., 2013; Daniel et al., 2017). In Arabidopsis, a
total of 28 BBE-like genes were identified. Microarray data
demonstrated the high expression of AtBBE-like genes at
different developmental stages of plants, especially in root
growth, such as lateral root initiation, root elongation and
maturation, and proliferation as well as embryonal development
(Winter et al., 2007; Daniel et al., 2015, 2016; Wu et al., 2019).
Four of them have been identified as OG oxidases (OGOX),
including At1g01980 (AtBBE-like1), At1g11770 (AtBBE-like2),
At4g20830 (AtBBE-like19 and AtBBE-like20), and At4g20840
(AtBBE-like21) (Daniel et al., 2015; Benedetti et al., 2018).
Likewise, CELLOX (At4g20860, AtBBE-like22) was identified
as cellodextrin oxidase, which specifically oxidizes cellodextrins
with a preference for cellotriose (Locci et al., 2019). According

to their structural characterization, AtBBE-like15 and fourteen
other AtBBE-like members were speculated to participate in cell
wall metabolisms (Daniel et al., 2015). In other plant species,
such as citrus fruit and poplar tree, BBE-like homologs were
documented to be highly up-regulated in response to osmotic
stress and pathogen attack, indicating the functional diversity of
plant BBE-like homologs (Attila et al., 2008; González-Candelas
et al., 2010).

Previous studies have identified a cell wall located in soybean
BBE-like protein GmBBE-like43 (Glyma.15G134300), which
showed enhanced protein accumulation under Pi starvation
conditions and increased transcript level under Al stress in
soybean roots (Wu et al., 2018b; Liu et al., 2021). These
individual studies strongly suggested that GmBBE-like43 might
participate in soybean root coordinate responses to Al stresses
and Pi starvation. However, its functions in root adaptation to
these multiple stresses remain unclear. In the present study,
genome-wide analyses were first conducted to get an overview
of GmBBE-likes in the soybean genome. Subsequently, the
expression patterns of GmBBE-like43 in response to Al stress
and P deficiency were determined using qRT-PCR and the
effects of alternative GmBBE-like43 expression on Al tolerance
and low-P adaptation were further evaluated in transgenic
Arabidopsis and soybean hairy roots. In addition, the OGs-
oxidase activity of GmBBE-like43 was determined in vivo using
GmBBE-like43-overexpressing soybean hairy roots. Our findings
will contribute to future research on soybean regarding its
coordinated adaptation to Al toxicity and P deficiency on
acid soils.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Seeds of soybean (Glycine max) genotype YC03-3 were
germinated in paper rolls soaked with 1/4 Hogland nutrient
solution after being surface-sterilized with 10% (v/v) NaClO
solution as described by Liang et al. (2010). Four-day-old
seedlings were transplanted to a modified nutrient solution with
either 5 or 250µM KH2PO4. The other nutrient elements were
composed of (in mM): 1.5 KNO3, 1.2 Ca (NO3)2, 0.4 NHNO3,
0.025 MgCl2, 0.5 MgSO4, 0.3 K2SO4, 0.3 (HN4)2SO4, 0.0015
MnSO4, 0.0015 ZnSO4, 0.0005 CuSO4, 0.00016 (NH4)6Mo7O24,
0.0025 NaB4O7, and 0.04 Fe-Na-EDTA. The nutrient solution
was replaced weekly and aerated every 30min. Plants were
harvested to determine the dry weight and total root length at
3, 6, 9, and 12 d after P treatments as described by Wu et al.
(2018b) and Zhu et al. (2020). Roots were also harvested for gene
expression assays.

To determine the effect of Al stress on GmBBE-like43
expression, soybean seeds were surface-sterilized and germinated
as described above. Four days after germination, the initial
root lengths of uniform seedlings were measured. Subsequently,
seedlings were subjected to 0.5mM CaCl2 solution (pH 4.2)
containing either 0 or 50µM AlCl3 for 0, 12, 24, 48, 72, and
96 h. Root length wasmeasured to calculate the root elongation at
the indicated times. Moreover, root tips (0–2 cm) were separately
harvested for gene expression assays. For tissue expression
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analysis of the genes, soybean roots were divided into three
segments (0–2 cm, 2–4 cm, and>4 cm) after 24 h of Al treatment.
All experiments had at least three biological replicates with five
plants for each replicate.

To study the effect of OGs on genes expression in soybean
roots under Al toxicity, 4-day-old seedlings were measured for
their initial root length and subsequently treated with –Al–OGs
(0.5mM CaCl2), –Al+OGs (0.5mM CaCl2, 100 µg mL−1 OGs),
+Al–OGs (50µM AlCl3), and +Al+OGs (50µM AlCl3, 100
µg mL−1 OGs) for 24 h. After treatments, the root length was
measured again to calculate the root elongation. The root tips
(0–4 cm) were separately harvested to determine gene expression.

Identification and Bioinformatic Analysis of
Soybean GmBBE-Like Genes
The soybean GmBBE-like genes were obtained by blast-search
analysis in the Phytozomev13 database (https://phytozome-next.
jgi.doe.gov/blast-search) with AtBBE-like amino acid sequences
as query (Daniel et al., 2015). The physical and chemical
properties of GmBBE-like members were analyzed using the
ExPASy software (http://www.expasy.org). GmBBE-like protein
sequences were aligned with ClustalX and a phylogenetic tree
was constructed by MEGA-X using the neighbor-joining method
with 1,000 bootstrap replicates. The Gene Structure Display
Server2.0 (GSDS) was used for gene structure analysis (Huang
et al., 2021). The online CDD (https://www.ncbi.nlm.nih.gov/
Structure/cdd/wrpsb.cgi) program and MEME program (https://
meme-suite.org/meme/tools/meme) were used to analyze the
GmBBE-like conserved domains and motifs, respectively. The
conserved domains and motifs were visualized by TBtools (Chen
et al., 2020).

RNA Extraction and qRT- PCR Analysis
Total RNA was extracted using an RNA-solve reagent
(OMEGABio-Tek, Norcross, GA, USA) as described previously
in Zhu et al. (2020) and treated with RNase-free DNase
I (Invitrogen, United States) to eliminate genomic DNA
contamination. The amount and purity of RNA in each
sample were evaluated by the Nano-drop spectrophotometer
(Thermo, United States). Approximately 1 µg of RNA was
used to synthesize the first-strand cDNA using MMLV-reverse
transcriptase (Promega, USA) following the instructions. The
qRT-PCR was performed and analyzed using SYBR Green PCR
master mix (Promega, USA) on an ABI7500 real-time PCR
system (Thermo Fisher Scientific, Waltham, MA, USA). For
target gene expression analysis, the specific primers used are
listed in Supplementary Table S1. Soybean housekeeping gene
GmEF1-α (Glyma.17G186600) and Arabidopsis housekeeping
gene AtEF1-α (At5G60390) were used as an endogenous control
to normalize the expression of corresponding genes in soybean
and Arabidopsis (Zhu et al., 2020; Lin et al., 2021). The relative
expression level was calculated by the ratio of the expression
level of the target genes to that of the housekeeping gene (Qin
et al., 2012).

GUS Histochemical Analysis and
Subcellular Localization Assay of
GmBBE-Like43
To determine the subcellular localization of GmBBE-like43, the
coding region of GmBBE-like43 was amplified with specific
primersGmBBE-like43-GFP-F/R (Supplementary Table S1), and
then cloned into the pEGAD vector to produce a 35S::GmBBE-
like43-GFP construct. The 35S::GFP construct was used as the
control. The constructs were subsequently transformed into
tobacco epidermal cells (Liu et al., 2016a,b; Zhu et al., 2020).
The fluorescent signals were observed via a confocal scanning
microscope (Zeiss LSM780, Oberkochen, Germany) at 488 nm
for GFP (Zhu et al., 2020). Fluorescent images were further
processed using Zen2011 software (Carl Zeiss Microscopy,
Germany). To further verify the subcellular localization of
GmBBE-like43, the 35S::GFP and 35S::GmBBE-like43-GFP were
also transformed into common bean (Phaseolus vulgaris) hairy
roots (Liang et al., 2010; Wu et al., 2018b). Propidium iodide
(PI) was used to identify the cell wall. Green fluorescence derived
from GFP and red fluorescence derived from PI were observed
by confocal scanning microscopy at 488 nm and 636 nm (Zeiss
LSM780, Oberkochen, Germany), respectively.

The up-stream 2000bp of the GmBBE-like43 promoter
region was amplified with specific primers GmBBE-like43-
GUS-F/R (Supplementary Table S1). The PCR products
were cloned into pTF102 to produce pGmBBE-like43::GUS
constructs. The plasmid was subsequently transformed into
Agrobacterium tumefaciens strain GV3101 and used for
Arabidopsis transformation by the floral dip method (Clough
and Bent, 1998). The homozygote transgenic Arabidopsis
seedlings were either treated with 6.25µM (–P) and 1.25mM
(+P) KH2PO4 in 1/2 modified solid MS medium for 6 d
or treated with 0 and 5µM AlCl3 in 1/5 Hoagland nutrient
solution (pH 4.5, without KH2PO4, with 0.5mM CaCl2) for
24 h, respectively. After treatments, Arabidopsis seedlings were
separately harvested and stained with GUS staining solution
(Zhu et al., 2020). After GUS staining, seedlings were pictured
using a light microscope (Leica, Germany).

DAB Staining for Root Surface H2O2
Uniform soybean hairy roots were subjected to MS
nutrient solutions containing either 0mM or 100 µg mL−1

(approximately 54mM) OGs for 12 h. After treatment, roots
were stained with 0.1mg mL−1 DAB in 50mM Tris buffer, pH
5.0 in a light homoeothermic incubator for 8 h (He et al., 2012).
Subsequently, roots were fixed in a solution of 3:1:1 ethanol:
lactic acid: glycerol and photographed by a light microscope
(Leica, Germany).

Functional Analysis of GmBBE-Like43 in
Soybean Hairy Roots
The coding region of GmBBE-like43 was amplified using
primers (GmBBE-like43-OX-F/R, Supplementary Table S1) and
inserted into the modified pTF101s vector to produce a
35S::GmBBE-like43 construct. In addition, a 364 bp specific
fragment from the GmBBE-like43 coding region was amplified
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with specific primers (GmBBE-like43-RNAi-Asc I-F/R and
GmBBE-like43-RNAi-BamH I-F/R) (Supplementary Table S1),
and PCR products were inserted into the pFGC5941 vector
after digestion by Asc I and BamH I, producing GmBBE-
like43-RNAi construct. Subsequently, the GmBBE-like43-OX,
GmBBE-like43-RNAi, and their corresponding empty vectors
were separately transformed intoAgrobacterium rhizogenes strain
K599, which was further used to infect soybean cotyledons to
obtain transgenic hairy roots (Liang et al., 2010;Wu et al., 2018b).
Transgenic hairy roots verified by qRT-PCR assays with specific
primers GmBBE-like43-RT-1-F/R and GmBBE-like43-RT-2-F/R
(Supplementary Table S1) were used for further analyses.

To investigate the effects of alternative GmBBE-like43
expression on soybean hairy root growth in response to P
treatment, transgenic soybean hairy roots were transplanted to
a modified solid MS medium with 0.8% agar (Sigma-Aldrich,
USA, CAS: 9002-18-0) containing either 1.25mMKH2PO4 (+P)
or 10µM KH2PO4 (–P) for 14–21 d. The dry weight and total
root length of the soybean hairy roots were measured after P
treatment. To evaluate the effects of alternated GmBBE-like43
expression on soybean hairy root growth in response to Al
stress, uniform hairy roots were selected, and initial root length
was analyzed. Subsequently, hairy roots were subjected to 0
and 100µM AlCl3 in 1/4 modified liquid MS medium (pH
4.2, without KH2PO4) in a growth chamber with 100 rpm,
28◦C for 24 h. After Al treatment, root length was measured.
Root elongation (24 h root length−0 h root length) and the
relative root elongation (root elongation in 100µM AlCl3/root
elongation in 0µMAlCl3 × 100) were evaluated. Each treatment
had twelve independent transgenic hairy roots.

Functional Analysis of GmBBE-Like43 in
Transgenic Arabidopsis
The transgenic Arabidopsis plants with GmBBE-like43
overexpression were produced as mentioned above. Two
homozygous T3 lines (OX1 and OX2) were selected using a
qRT-PCR assay with specific primers GmBBE-like43-RT-3-F/R
(Supplementary Table S1). Columbia-0 wild-type (WT) and
GmBBE-like43-overexpression seeds were surface-sterilized and
then germinated on petri dishes containing modified MS solid
medium at 23◦C for 16 h /8 h (light /dark). After 4 days, uniform
seedlings were selected and treated either with Al stress or P
deficiency. For the P treatment, seedlings were transplanted to
1/2 modified solid MS medium with 6.25µM KH2PO4 (–P) or
1.25mM KH2PO4 (+P). After 9 d, seedlings were harvested
to measure root fresh weight and primary root length. For Al
treatment, uniform seedlings were transplanted to 1/5 Hoagland
nutrient solution (pH 4.5, without KH2PO4, with 0.5mMCaCl2)
with or without 5µM AlCl3 for 48 h. The root length before and
after Al treatment was measured to calculate the root elongation
and relative root elongation as described above.

Statistical Analyses
Data analyses and standard error calculations were statistically
performed using Microsoft Excel 2010 (Microsoft Company,
United States), and boxplots were carried out using Origin
2021b. The student’s t-test and Duncan’s multiple range test

were performed with the SPSS program (v21.0; SPSS Institute,
United States).

RESULTS

Identification and Characterization of
GmBBE-Like Members
A survey of the soybean genome (Glycine max Wm82. a2.
v1) revealed that a total of 45 potential GmBBE-like gene
sequences had been identified and named GmBBE-like1 to
GmBBE-like45, according to their position in the chromosome
(Figure 1A). General information on the GmBBE-like members
was summarized showing that the amino acid residue numbers
of GmBBE-like proteins ranged from 443 to 593, their isoelectric
point ranged from 5.54 to 9.68, and molecular weight varied
from 501 kDa to 665 kDa (Supplementary Table S2). An in-silico
analysis placed the identifiedGmBBE-like genes on eight different
chromosomes. These GmBBE-like genes were not randomly
distributed in the eight genomes, but most of them were found
in tandem arrays of highly related genes (Figure 1A). Conserved
domain analysis showed that 36% of the soybean GmBBE-like
members had both a FAD-binding domain and a BBE domain.
Among them, GmBBE-like43 was grouped in the same clade and
showed high similarity with Arabidopsis AtBBE-like members
(AtBBE-like1/20/21) that have been reported to contain OGOX
activities (Figure 1B).

Expression of GmBBE-Like43 Is Regulated
by Al Toxicity and Pi Starvation
Our previous proteomic study found that the GmBBE-like43
protein accumulation was increased by P deficiency in the
cell wall of soybean roots (Wu et al., 2018b). Moreover, a
recent transcriptome study reported that Al stress enhanced
the expression level of GmBBE-like43 (Liu et al., 2021). These
studies indicated that GmBBE-like43 might be involved in the
coordinated responses of soybean roots to Al toxicity and P
deficiency. Therefore, GmBBE-like43 was selected for further
functional characterization. The qRT-PCR assays were first
conducted to analyze GmBBE-like43 expression patterns in
response to Al toxicity and P deficiency.

Results showed that under Al stress, the growth in the primary
roots was significantly inhibited after 12 h of Al treatment and
maintained a low growth rate (Supplementary Figures 1A,B).
Compared to the –Al treatment, the level of GmBBE-like43
transcript abundance was increased by more than 45.4-fold
in the root tips (first 0–2 cm of the root) and 17.7-fold in
the middle of the roots (2–4 cm of the root) after 24 h of
Al3+ exposure, while no significant changes of GmBBE-like43
expression were observed in the other root regions (>4 cm
of the root) (Supplementary Figure 1C). Moreover, the Al-
regulated expression of GmBBE-like43 in root tips was time-
course dependent. Without Al stress, the expression level of
GmBBE-like43 remained low during a period of 96 h (Figure 2A).
However, after 12 and 24 h of Al treatment, a transient up-
regulation of GmBBE-like43 transcription was observed. The
GmBBE-like43 expression responsive to Al stress was soon
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FIGURE 1 | Genes chromosome distribution, phylogeny, and conserved motifs/domains of GmBBE-likes. (A) The location of GmBBE-like genes in chromosomes.

The size of a chromosome is indicated by its relative length and the figure was produced using the TBtools software; (B) The phylogenetic analysis and conserved

motifs/domains of GmBBE-likes. The phylogenetic tree was created using the MEGA-X program with neighbor-joining method (1000 bootstrap replicates) based on

BBE-like protein sequences from soybean and Arabidopsis. The bootstrap values are indicated for major branches as percentages. Conserved motifs and conserved

domains in the BBE-like proteins as revealed by MEME analysis.
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FIGURE 2 | Expression analysis of GmBBE-like43 and its subcellular localization. (A) Relative expression of GmBBE-like43 in 0-2 cm soybean root tips in response to

Al for different time periods; (B) Relative expression of GmBBE-like43 in response to Pi starvation at the indicated times; (C) Transgenic Arabidopsis containing the

pGmBBE-like43::GUS and 35S::GUS were subjected to either Al treatment (0µM or 5µM AlCl3 ) for 24 h or P treatment (1.25mM and 6.25µM KH2PO4) for 6 d. Bars

= 0.5mm; (D) Subcellular localization analysis of GmBBE-like43 in common bean hairy roots. Red fluorescences were derived from PI indicating the cell wall. Bars =

20µm. Asterisks indicate a significant difference between either +Al and –Al treatments or –P and +P treatments according to Student’s t-test: *: P < 0.05; **: 0.001

< P < 0.01; ***: P < 0.001.

decreased after 48 h of Al treatment, remaining low over the next
48 h (Figure 2A). These results indicated that Al3+ transiently
induced the expression of GmBBE-like43 in soybean root apexes.

To determine the GmBBE-like43 expression in response to
Pi starvation, soybean seedlings were subjected to different P
levels for 3, 6, 9, and 12 days (Supplementary Figure 1D). While
the fresh weight of seedlings decreased by 24% after 12 days
of low P treatment (Supplementary Figure 1E), the total root
length increased by 28 and 33% in 9 and 12 days after low P
treatment, respectively (Supplementary Figure 1F). Results of
qRT-PCR showed that GmBBE-like43 expression was initially
up-regulated after 6 days of P deficiency. Compared to the P-
sufficient roots, the expression of GmBBE-like43 was 2, 3.1, and
5.6 folds higher in the P-deficient roots after 6, 9, and 12 days of
P treatment, respectively (Figure 2B).

Histochemical Analysis of GmBBE-Like43

Promoter and Subcellular Localization of
GmBBE-Like43
The expression patterns of GmBBE-like43 in response to

Al stress and Pi starvation were further confirmed by the

expression of pGmBBE-like43::GUS in transgenic Arabidopsis

plants (Figure 2C). Consistent with the qRT-PCR results, both

Al toxicity and Pi starvation strongly enhanced the GUS-staining

of transgenic Arabidopsis expressing pGmBBE-like43::GUS

(Figure 2C). Moreover, the subcellular localization of GmBBE-
like43 was determined by either expressing 35S::GmBBE-like43-

GFP in common bean hairy roots or transiently expressing

it in tobacco leaf epidermis cells. Results showed that GFP

fluorescence derived from 35S::GFP empty vector control was
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FIGURE 3 | Effects of GmBBE-like43 overexpression (OX) and RNA-interference (RNAi) on transgenic soybean hairy roots in response to Al treatment. (A) Phenotypes

of transgenic soybean hairy roots in response to Al stress. (B–E) Root elongation (B,D) and relative root elongation (C,E) of soybean hairy roots with either

GmBBE-like43 overexpressing (B,C) or GmBBE-like43 RNA-interference (D,E). For Al treatment, the uniform soybean hairy roots were transferred to 1/4 modified

liquid MS medium (pH 4.2, without KH2PO4 ) with either 0µM (–Al) or 100µM (+Al) AlCl3 for 24 h. Asterisks indicate significant difference between transgenic hairy

roots with either GmBBE-like43 overexpressing or RNA-interference and their corresponding empty vector controls according to Student’s t-test: *: P < 0.05; **: 0.001

< P < 0.01; ***: P < 0.001.

observed all over the cells from both common bean hairy
roots and tobacco leaves, whereas, GFP fluorescence derived
from 35S::GmBBE-like43-GFP was localized exclusively at the
periphery of the cells (Figure 2D, Supplementary Figure 2).
Moreover, in the transgenic common bean hairy roots, the
35S::GmBBE-like43-GFP green fluorescence merged well with
the red fluorescence derived from PI staining in the cell walls
(Figure 2D). It thus confirmed that GmBBE-like43 is a cell wall
localized protein.

Alternative Expression of GmBBE-Like43

Affects Soybean Hairy Roots Growth in
Response to Al Toxicity and Pi Starvation
To characterize the function of GmBBE-like43 in response

to Al toxicity and Pi starvation, transgenic soybean hairy

roots with GmBBE-like43 over-expressed (GmBBE-like43-
OX) and suppressed (GmBBE-like43-RNAi) were generated

(Supplementary Figure 3). And transgenic lines expressing
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FIGURE 4 | Effects of GmBBE-like43 overexpression (OX) and RNA-interference (RNAi) on transgenic soybean hairy roots in response to low P treatment. (A)

Phenotypes of transgenic soybean hairy roots in response to P availability. (B–E) Dry weight (B,D) and total root length (C,E) of soybean hairy roots with either

GmBBE-like43 overexpressing (B,C) or GmBBE-like43 RNA-interference (D,E). For P treatments, uniform soybean hairy roots were selected and transferred to MS

medium with either 10µM (–P) or 1250µM (+P) KH2PO4. The hairy roots expressing 35S::GmBBE-like43 (OX) and pTF101s empty vector control (OX-CK) were

harvested 14 days after P treatment, while the GmBBE-like43 RNA-interference (RNAi) and its pFGC5941 empty vector control (RNAi-CK) were sampled after 21 days

of P treatment. Asterisks indicate significant difference between transgenic hairy roots with either GmBBE-like43 overexpressing or RNA-interference and their

corresponding empty vector controls according to Student’s t-test: *: P < 0.05; **: 0.001 < P < 0.01; ***: P < 0.001.

empty vector (either pTF101s or pFGC5941) were used as the
corresponding controls (CK-OX and CK-RNAi).

All the transgenic hairy roots were subjected to Al treatment
for 24 h and the root elongation and relative root growth were
determined. It showed that compared to the corresponding
empty vector controls, the root elongation was significantly
higher in GmBBE-like43-OX lines, but lower in GmBBE-like43-
RNAi lines in Al treatment, respectively (Figures 3A,B,D).
Accordingly, the relative root growth of the GmBBE-like43-OX

lines and the GmBBE-like43-RNAi lines was 1.8-fold higher and
22% lower than that of the corresponding empty vector controls
(Figures 3C,E).

Furthermore, the effects of overexpressed and suppressed
GmBBE-like43 on soybean hairy root growth were detected
under different P treatments. Results showed that overexpression
of GmBBE-like43 stimulated transgenic hairy roots growth
independent of P availability (Figure 4A). The dry weight of
GmBBE-like43-OX lines was 1.6 and 3.4 folds higher than the
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FIGURE 5 | Effects of GmBBE-like43 overexpression on Arabidopsis root growth in response to Al toxicity and Pi starvation. (A–C) Phenotypes (A), root elongation

(B), and relative root growth (C) of wild-type (WT) and GmBBE-like43-overexpression (OX1 and OX2) lines treated with or without 5µM AlCl3 for 48 h, Bar = 0.5mm;

(D–F) Phenotypes (D), root fresh weight (E), and primary root length (F) of WT, OX1, and OX2 treated with either 1250µM (+P) or 6.25µM (–P) KH2PO4 for 9 days,

Bar = 1 cm. Asterisks indicates significant difference between WT and OX according to the Student’s t-test: *: P < 0.05; **: 0.001 < P < 0.01; ***: P < 0.001.

CK-OX control under P sufficient (+P) and P deficient (–P)
conditions (Figure 4B). This was confirmed by similar changes
in hairy root length in +P treatment (1.6 Folds higher) and
–P treatment (2.3 Folds higher) (Figure 4C). In contrast, the

hairy root growth was inhibited in GmBBE-like43-RNAi lines,
as indicated by 43% (+P) and 38% (–P) decrease in root dry
weight and 59% (+P) and 35% (–P) decrease in root length
(Figures 4D,E).
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FIGURE 6 | Effects of GmBBE-like43 overexpression on root surface H2O2 generation and the expression of two Al-regulated auxin-response genes. (A) DAB

staining of transgenic soybean hairy roots expressing either 35S::GmBBE-like43 (OX) or empty vector (CK) in treatments with or without OGs; (B) Expression of

auxin-responsive gene Glyma.19G258800 and Glyma.08G225100 in transgenic soybean hairy roots in response to Al treatment. Values are means ± SE of four

replicates. Different letters on the bar indicate differences among treatments (P < 0.05).

Overexpressing GmBBE-Like43 Enhances
Arabidopsis Root Growth in Response to
Al Stress and Pi Starvation
To confirm the function of GmBBE-like43 in root response to
Al toxicity and P deficiency, the 35S::GmBBE-like43 construct
was heterologously expressed in Arabidopsis. The expression of
GmBBE-like43 in two selected transgenic lines (OX1 and OX2)
was verified by qRT-PCR (Supplementary Figure 4).

Results showed that in the absence and the presence of
Al stress, the root elongation of OX1 and OX2 was higher
than the WT control (Figures 5A,B). Furthermore, OX1 and
OX2 showed enhanced Al tolerance, as indicated by 27% and
72% increases in the relative root growth compared to WT
(Figure 5C).

In addition, similar to the responses of the soybean
transgenic hairy roots to P, the transgenic Arabidopsis showed
enhanced root growth independent of P availability (Figure 5D).
Compared to WT, the root fresh weight of OX1 and OX2
were 23% and 22% higher in +P treatment, and 20% and
47% higher in –P treatment (Figure 5E). The primary root
length of 35S::GmBBE-like43 transgenic lines was also higher
than WT. Under +P condition, the primary root length
of both 35S::GmBBE-like43 transgenic lines was about 9%
higher than WT, while under –P condition, the primary root
length of OX1 and OX2 was 17 and 23% higher than WT
(Figure 5F).

Overexpressing GmBBE-Like43 Attenuated
the Effects of Al on Auxin-Responsive
Genes Expression
To determine the function of GmBBE-like43 in OGs oxidation
and further alternate the expression of genes involved in
root growth regulation, soybean transgenic hairy roots with
overexpressed GmBBE-like43 were generated. Then DAB
staining was conducted to determine H2O2 generation in
the transgenic hairy roots. It showed that overexpressing
GmBBE-like43 obviously enhanced the H2O2 accumulation,

both under with and without OGs treatment (Figure 6A). It
thus suggested that GmBBE-like43 contained the ability to
oxidize OGs.

The expression of auxin-response genes in response to
OGs andGmBBE-like43-overexpression was further investigated.
Based on recent transcriptomic data (Zhao et al., 2020),
two Al-regulated SAUR-like genes (Glyma.08G225100 and
Glyma.19G258800) were selected. Their expressions were first
determined by qRT-PCR assays in soybean primary roots
treated with combinations of Al and OGs. Consistent with the
transcriptome results, the expression of Glyma.19G258800 was
enhanced and Glyma.08G225100 was suppressed by Al stress
in soybean roots. Moreover, when treated with +Al+OGs,
the expression of Glyma.19G258800 was even higher and
Glyma.08G225100 was lower than that in +Al treatment
(Supplementary Figure 5). Moreover, in overexpressedGmBBE-
like43 soybean hairy roots, the suppression of Glyma.08G225100
by Al stress was alleviated, as well as the Al-regulated
enhancement of Glyma.19G258800 expressions (Figure 6B).
These results indicated that GmBBE-like43 was able to
antagonize the effects of Al on the expression of two SAUR-like
genes, probably by alleviating OGs activity.

DISCUSSION

High Al and low P are two major limiting factors for crop
production in acid soils, which constitute up to 40% of arable
land worldwide (Kochian et al., 2004). Since rhizotoxic Al and
P deficiency coexist in acid soils, it is clear that plant roots
have to deal with these two stresses simultaneously during
their growth in acidic soils (Liao et al., 2006; Liang et al.,
2013). Although studies of the molecular mechanisms have been
conducted focusing primarily on Al tolerance or occasionally
on P efficiency, few studies have simultaneously considered
P availability and Al toxicity together (Zheng et al., 2005;
Liao et al., 2006; Ligaba et al., 2007; Liang et al., 2013). Cell
walls in plant roots are directly connected to the rhizosphere
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environment. The structural and functional integrity of the
cell wall needs to be constantly monitored and finetuned
allowing plants to survive under stress (Rui and Dinneny, 2020).
Pectin in the cell wall is a group of complex polysaccharides
that are targeted by Al (Cosgrove, 2005). Increased esterified
homogalacturonans (HGs) and decreased methyl-esterified HGs
were observed in many plant species under Al stress (Yang
et al., 2008, 2011, 2013; Jaskowiak et al., 2019). Compared to
Al stress, fewer studies have been conducted to determine the
pectin methylation level in cell walls in response to Pi-starvation.
A recent report showed that increased pectin levels with a
low degree of methyl-esterification were observed under low
P conditions in mature internodes of grapevine (Vitis vinifera)
(Fernandes et al., 2016). These results suggest that plant cell
wall undergoes pectin demethyl-esterification under both Al
toxicity and P deficient conditions. This modification further
increases the possibility of the production of active de-methylated
oligogalacturonides (OGs), which were found to be deleterious
with high concentrations (Wolf et al., 2012; Ferrari et al., 2013;
Benedetti et al., 2015). Therefore, a mechanism to control OGs
homeostasis under Al and P stresses might exist to prevent their
prolonged impairment.

The BBE-like proteins belong to the superfamily of FAD-
linked oxidases, which have been reported to inactivate the
elicitor activity of OGs and maintain their homeostasis in
the cell wall (Benedetti et al., 2018). It is found that at least
four BBE-like enzymes in Arabidopsis contain an OG-oxidizing
(OGOX) activity that is accompanied by H2O2 production
(Daniel et al., 2017; Benedetti et al., 2018). Reviewing previous
proteomic and transcriptome studies, we noticed that a BBE-like
member (GmBBE-like43) in soybean showed enhanced protein
accumulation under Pi starvation conditions and increased
transcript level under Al toxicity (Wu et al., 2018b; Liu et al.,
2021). In this present study, qRT-PCR assays were used to
confirm the expression of GmBBE-like43 in response to Al and
low P stresses. Similar results were obtained when expression
of GmBBE-like43 was transiently enhanced by Al toxicity in
soybean root tips and increased in roots after 6 days of
Pi starvation (Figures 2A,B and Supplementary Figure 1C).
Further histochemical analysis of the GmBBE-like43 promoter
also proved this (Figure 2C). Therefore, it is suggested that
soybean BBE-like genes, such as GmBBE-like43, might be
involved in soybean roots’ coordinated adaptation to both Al and
low P stresses.

To test this hypothesis, we first characterized all the GmBBE-
like genes in the soybean genome and found a total of 45 GmBBE-
like members in the soybean genome, most of which are located
as tandem arrays in five chromosomes (Figure 1A). Among
them, GmBBE-like43 showed high similarity with and the same
protein structures as AtBBE-like members (AtBBE-like1/20/21)
that exhibited OGOX activities but had low similarity with
AtBBE-like8, which was identified as a cellulose oligomer oxidase
(Figure 1B) (Benedetti et al., 2018; Locci et al., 2019). It thus
indicated that GmBBE-like43 might have the same enzyme
functions in OG-oxidation as its homologs in Arabidopsis.
Considering the H2O2 production in the OG-oxidation reaction
(Daniel et al., 2017; Benedetti et al., 2018), we generated

GmBBE-like43 overexpressing soybean hairy roots and used
DAB staining to determine whether GmBBE-like43 was able
to oxidize OGs and produce H2O2. It showed that GmBBE-
like43 overexpressing enhanced DAB staining on surfaces of the
transgenic soybean hairy roots, especially with OGs application
(Figure 6). Together with the cell wall localization of GmBBE-
like43 (Figure 2D and Supplementary Figure 2) (Wu et al.,
2018b), we suggested that GmBBE-like43 had OGOX activities
and was able to oxidate OGs in the cell wall.

As far as the deleterious effects of the active OGs are
concerned, early observations showed that external treatment of
plant tissues with high amounts of OGs caused tissue necrosis
and disturbed plant developmental-related processes (Cervone
et al., 1987; Branca et al., 1988; Bellincampi et al., 1993;
Altamura et al., 1998). These adverse effects also confirmed
that elevated levels of released OGs in transgenic Arabidopsis
plants caused the accumulation of salicylic acid, reduced growth,
and eventually led to plant death (Benedetti et al., 2015).
Using the transgenic Arabidopsis with OGOX1 (At4g20830)
overexpression, Benedetti et al. (2018) demonstrated that OGs
oxidation occurs enzymatically in vivo, and oxidized OGs possess
lower eliciting activity than non-oxidized OGs. Therefore, we
speculated that if GmBBE-like43 is expressed at the right time,
it might be able to convert the active OGs into inactive
forms (e.g., oxidized-OGs) to prevent the deleterious effects of
OGs hyper-accumulation induced by either Al toxicity or Pi
starvation. This hypothesis was further confirmed when the
overexpression of GmBBE-like43 provided the Al tolerance and
adaptation to low P in transgenic soybean hairy roots and
transgenic Arabidopsis (Figures 3–5). On the other hand, an
interference with the GmBBE-like43 expression in the transgenic
soybean hairy roots reduced both the Al tolerance and low P
adaptation (Figures 3, 4).

Indeed, OGs regulate several developmental-related processes
including interfering with pea stem elongation (Branca et al.,
1988), as well as inhibiting root formation in both tobacco
(Nicotiana tabacum) and Arabidopsis (Bellincampi et al., 1993;
Altamura et al., 1998; Savatin et al., 2011). In these cases,
their action is antagonistic to the effects of exogenous auxin.
Moreover, the transcript accumulation of several auxin-induced
genes, as well as the activation of the synthetic auxin-responsive
promoter DR5, are inhibited by OGs (Savatin et al., 2011).
Metabolism and polar distribution of auxin have been reported
to be involved in root growth inhibition due to Al toxicity
through auxin transporters and auxin response factors (Ranjan
et al., 2021). If OGs have antagonistic effects on auxin responses,
they might also regulate the expression of auxin response genes,
which is modulated by the Al treatment. Accordingly, the
present study showed that the application of OGs enhanced
the Al-induced effects on the expression of two soybean
SAUR-like genes, which were either Al-up-regulated or Al-
down-regulated (Supplementary Figure 5) (Zhao et al., 2020).
However, in comparison, GmBBE-like43 had the opposite effect
on the Al-regulated expression of SAUR-like genes (Figure 6).
It thus confirmed that the inactivation of OGs in cell walls
mediated by GmBBE-like43 is one of the soybean’s Al-tolerance
mechanisms. However, the knowledge about how GmBBE-like43
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functions in soybean’s adaptation to Pi-starvation is still limited.
Further characterization of GmBBE-like43 in P-modulated
hormone-signaling and cell wall metabolisms may help to
elucidate this aspect of abiotic adaptation.
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