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Normally, forest quality (FQ) and site quality (SQ) play an important role in

evaluating actual and potential forest productivity. Traditionally, these

assessment indices (FQ and SQ) are mainly based on forest parameters

extracted from ground measurement (forest height, age, density, forest stem

volume (FSV), and DBH), which is labor-intensive and difficult to access in

certain remote forest areas. Recently, remote sensing images combined with a

small number of samples were gradually applied to map forest parameters

because of the various advantages of remote sensing technology, such as low

cost, spatial coverage, and high efficiency. However, FQ and SQ related to

forest parameters are rarely estimated using remote sensing images and

machine learning models. In this study, the Sentinel images and ground

samples of planted Chinese fir forest located in the ecological “green-core”

area of Changzhutan urban cluster, were initially employed to explore the

feasibility of mapping the FQ and SQ. And then, four types of alternative

variables (backscattering coefficients (VV and VH), multi-spectral bands,

vegetation indices, and texture characteristics) were extracted from Sentinel-

1A and Sentinel-2A images, respectively. After selecting variables using a

stepwise regression model, three machine learning models (SVR, RF, and

KNN) were employed to estimate various forest parameters. Finally, the FQ

of the study region was directly mapped by the weights sum of related factors

extracted by the factor analysis method, and the SQ was also extracted using

mapped forest height and age. The results illustrated that the accuracy of

estimated forest parameters (DBH, H, and Age) was significantly higher than

FSV, FCC, and Age and the largest and smallest rRMSEs were observed from

FSV (0.38~0.40) and forest height (0.20~0.21), respectively. Using mapped

forest parameters, it also resulted that the rRMSEs of estimated FQ and SQwere

0.19 and 0.15, respectively. Furthermore, after normalization and grading, the

grades of forest quality were mainly concentrated in grades I, II, and III in the study

region. Though the accuracy of mapping FQ and SQ is limited by the saturation
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phenomenon, it is significantly proved that using machine learning models and

Sentinel images has great potential to indirectly map FQ and SQ.
KEYWORDS
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1 Introduction

With the aggravation of global warming, forests are regarded

as the most critical ecological system on land, are playing an

important role in reducing carbon dioxide concentration (Jin

et al., 2011; Kavats et al., 2020) and forest productivity is

essential to accurately evaluate forest resources. Normally,

forest quality (FQ) and site quality (SQ) are considered as

important indices in the evaluation of forest productivity,

whereby forest managers can assess potential forest stem

volume production for a species or forest type (Gong et al.,

2007; Fujiki et al., 2016). Traditionally, forest and site quality

assessments are mainly based on forest parameters (forest

height, age, density, forest stem volume, and DBH)

investigated in the field, which is labor-intensive and difficult

to access in certain remote forest areas (Venkatalaxmi et al.,

2004; Belgiu and Drăgut,̧ 2016; Che et al., 2018). Therefore, it is

urgent to improve the assessment method of forest and site

quality for large forest regions.

Traditionally, FQ and SQ were received from the evaluating

models constructed by measured or estimated forest parameters.

In previous studies, several approaches were employed to

construct the models between forest quality and forest

parameters in various forest types. Normally, three types of

factors, forest productivity, forest structure factors, and

topographic factors, are highly related to forest quality (Jugran

et al., 2005). Firstly, forest productivity includes indicators that

affect the metabolic strength of forest, such as tree height, DBH,

and FSV (Reich, 2012). And then, forest structure factors reflect

both vertical and horizontal information about the forest, such

as forest crown closure (FCC) and density. Topographic factors

are also the necessary information to describe the slope position

and the orientations. Furthermore, the analytic hierarchy

process (AHP) has been used to determine the weights of

related factors, and then the values of FQ were eventually

calculated by weighted average (Shataee et al., 2012; Zhang

et al., 2015; Feng et al., 2016). However, it is still a problem to

determine the contribution of each related factor. As for SQ, tree

height is usually used as an evaluation index derived from

national forest inventory data (Yu et al., 2019). There are two

traditional methods to evaluate SQ, the site class method and the

site index method (Lei et al., 2018). The site index method was
02
formed using the relationship between dominant tree height and

forest age, which has a complete theoretical system (Lumbres

et al., 2018). However, extracting forest parameters severely

hinders the mapping of the FQ and SQ in large regions.

Over the last few decades, remote sensing (RS) is becoming

an increasingly important technology in mapping forest

parameters. Normally, forest parameters, such as forest height,

age, density, FCC, DBH, FSV, etc., have been widely mapped by

various regression algorithms based on multi-spatial resolutions

and multi-spectral sensors. Especially, the mean forest heights

were estimated using a combination of sentinel 1/2 and DEM

using optical and SAR data (Kahriman et al., 2014). And FCC

was also mapped from Landsat images (Yu et al., 2017a).

Furthermore, FSV was widely estimated using various images

acquired from several sensors (Chen et al., 2017). The previous

studies indicated that the indirect measurements of forest

parameters by utilizing remotely sensed data, have great

potential to provide estimated forest parameters more reliable

and cost-effective than direct field-based measurements (Wang

et al., 2018). However, these complicated forest assessment

indies (FQ and SQ) related to forest parameters are rarely

estimated using remote sensing images. Therefore, it is

meaningful to further processing for mapping FQ and SQ

using remote sensing images in region scales.

Facing the challenge of mapping FQ and SQ, the accuracy is

depended on models between the forest parameters and variables

extracted from images (Zhang et al., 2018). In previous studies,

traditional linear regression models were often used to estimate

forest parameters (Zhou et al., 2013; Pu and Cheng, 2015).

However, these linear models were limited to describing the

relationships for these complex nonlinear problems. Therefore,

the prediction of forest parameters using machine learning

algorithms is a relatively reasonable selection. Recently,

prevalent methods, such as k-nearest neighbor (KNN), artificial

neural network (ANN), random forest (RF), and support vector

regression (SVR), have been widely used in forest parameter

estimation (Shao and Lunetta, 2012; Verrelst et al., 2012;

Rodriguez-Galiano et al., 2015; Xu et al., 2018) and the resulted

showed that machine learning algorithms have more advantages

than traditional regression algorithms (Cooner et al., 2016).

Therefore, this paper mainly focused on mapping FQ and

SQ using machine learning algorithms and variables extracted
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forest parameters from Sentinel-1A and Sentinel-2A in the

planted Chinese fir forest. Firstly, the values of FQ and SQ in

each ground sample were calculated based on the Factor analysis

method and forest height-age model, respectively. And then,

four types of alternative variables, including backscattering

coefficients (VV and VH), multi-spectral bands, vegetation

indices and texture characteristics, were extracted from

Sentinel -1A and Sentinel -2A images, respectively. Finally, the

results of FQ and SQ were estimated using estimated forest

parameters by three machine learning models (SVR, RF, KNN)

and applied to further clarify the potential capability of mapping

FQ and SQ using remote sensing images.
2 Material and methods

2.1 Study area

The study area is located in the ecological “green-core” area

of Changzhutan urban cluster, Hunan Province, China. This

area is the intersection of three cities, such as Changsha city,

Zhuzhou city, and Xiangtan city, ranging from 112°53′31″E
to113°17′47″E and 27°43′29″N to 28°5′53″N (Figure 1). There

are numerous hills with elevations varying from 15 m to 307 m.

Influenced by the subtropical monsoon climate, this region has

annual mean and maximum temperatures of 17.09°C and 40°C,

respectively. By 2019, forest area and forest biomass are up to

11772 ha and 1.346 million tons, respectively. Moreover, planted
Frontiers in Plant Science 03
Chinese fir is the main tree species in this region, accounting for

68.70% of forest area.
2.2 Field data and remote sensing images

In the study region, a total of 3,741 sub-compartments were

investigated in 2019 and the planted Chinese fir is the dominant

tree species (Figure 2). In each sub-compartment, forest

parameters and geographical factors, such as DBH, H, FCC,

FSV, Age, slope, aspect, and slope position, were recorded and

established in the database of forest management investigation.

According to the stratified random sampling method and the

spatial distribution of FQ in planted Chinese fir forest, ten

percent of sub-compartments with pure Chinese fir forest were

selected from each grade of forest quality. So, 374 sub-

compartments (Figure 2) were selected as samples to construct

the models in the next work. And the statistics results of selected

samples are listed in Table 1.
2.3 Pre-processing of remote
sensing data

To map the FQ and SQ, two remote sensing images were

acquired from Sentinel-1A and Sentinel-2A (Table 2),

respectively (https://scihub.esa.int). For the images of Sentinel-

1A, dual-polarization SAR images with C band (VH and VV)
FIGURE 1

The location of the study area.
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were acquired on September 10, 2019. And then, several pre-

processing, including radiometric correction, speckle noise filter,

terrain correction, and geocoding, were employed to retrieve the

backward scattering coefficient by SNAP software provided by

ESA. The multi-spectral images with three spatial resolutions

(10m, 20m, and 60m) were acquired on September 5, 2019, and

radiation correction, geometric correction, and atmospheric

correction were applied to reduce the errors caused by the

influence of interference factors. In our study, ten bands with

spatial resolutions of 10m and 20m were selected to extract

remote sensing variables. Furthermore, the DEM data was
Frontiers in Plant Science 04
derived from the SRTM 30m Digital Elevation Data Product

downloaded from the geoscience data cloud (http://www.

Gscloud.cn//).
2.4 Variable selection and models

2.4.1 Extracting variables
After pre-processing, four types of variables, including

backscattering coefficients (VV and VH), multi-spectral bands,

vegetation indices, and texture characteristics, were extracted
TABLE 1 The statistics results of selected samples.

Parameter Range Mean Standard deviation Coefficient of variation

DBH (cm) 6-24 12.06 3.14 0.26

FSV(m3/ha) 8.61-155.56 64.14 32.46 0.51

H(m) 3-14 8.49 2.04 0.24

FCC 0.2-0.9 0.53 0.13 0.25

Density (per ha) 203-2829 1081.30 438.15 0.41

Age(year) 5-30 15.69 5.16 0.33
FIGURE 2

The distribution of the ground samples in the study area.
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from Sentinel -1A and Sentinel -2A images, respectively. In

particular, the multi-spectral bands included Band 2, Band 3,

Band 4, Band 5, Band 6, Band 7, Band 8, Band 8A, Band 11, and

Band 12. Furthermore, eighteen vegetation indices (VIs) were

calculated using these selected multi-spectral bands (Table 3). In

addition, eight texture features (mean, variance, uniformity,

contrast, dissimilarity, entropy, second moment, and

correlation) were also calculated from images of backscattering

coefficients and multi-spectral bands with a size of 3 × 3

(Haralick et al., 1973; Biesiada and Duch, 2007). Additionally,

topographic variables, such as the aspect, slope, and slope

position, were directly derived from external DEM

data (Figure 3).
2.4.2 Variables selection and models
To obtain the optimally combined variables, the Random

Forest Importance was used to select the variables extracted

from the alternative feature set. Initially, the Random Forest

Importance between the variables and each related forest

parameter was calculated and sorted. The optical variable set

related to each forest parameter was ranked by stepwise

regression, and then the results were used to estimate forest

parameters in the next work.

Normally, the accuracy of estimated forest parameters

(DBH, FSV, H, FCC, and Density) is highly related to the

employed models. In this study, three machine learning

models, such as the support vector machine model (SVR),

random forest model (RF), and K-nearest neighbor method

(KNN), were employed to estimate the forest parameters

(Cortes and Vapnik, 1995; Breiman, 2001; Mountrakis et al.,

2011). To evaluate the estimated forest parameters, the leave-

one-out cross-validation (LOOCV) was employed to calculate

the Root Means Square Error (RMSE) and the coefficient of

determination ( R2 ) between estimated and observed forest

parameters. The relative RMSE (rRMSE) was also considered as

an accuracy index. The formulas of these indices are listed as

follows:

R2 = 1 −o
n
i=1 yi − ŷ ið Þ2

on
i=1 yi − �yð Þ2   (1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1 yi − ŷ ið Þ2
n

s
(2)

rRMSE = RMSE=y − � 100% (3)
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In where, ŷ and y are the estimated and measured forest

parameters, respectively.
2.5 Forest quality and site quality

Commonly, FQ is highly related to forest productivity, forest

structure factors, and topographic factors, such as DBH, FSV, H,

density, etc. However, quantifying the contribution of each

factor to forest quality is still a knotty problem. In the

previous study, the complex problems were often solved by the

factor analysis method and analytic hierarchy process (AHP). In

our study, the relative importance of each selected factor was
TABLE 3 Selected VIs used for forest parameter estimation.

Vegetation Indices (VIs) Formula

Ratio vegetation index (RVI) B8/B4

Difference vegetation index (DVI) B8-B4

Weighted difference vegetation index
(WDVI)

B8-0.5×B4

Infrared vegetation index (IPVI) B8/(B8+B4)

Perpendicular vegetation index (PVI) sin (45°) ×B8-cos (45°)×B4

Normalized difference vegetation index
(NDVI)

(B8-B4)/(B8+B4)

NDVI with band4 and band5 (NDVI45) (B5-B4)/(B5+B4)

NDVI of green band (GNDVI) (B7-B3)/(B7+B3)

Soil adjusted vegetation index (SAVI) 1.5×(B8-B4)/8×(B8+B4+0.5)

Transformed soil adjusted vegetation
index (TSAVI)

0.5×(B8-0.5×B4-0.5)/(0.5×B8+B4-0.15)

Modified soil adjusted vegetation index
(MSAVI)

(2-NDVI×WDVI) ×(B8-B4)/8×(B8+B4
+1-NDVI×WDVI)

Secondly modified soil adjusted
vegetation Index (MSAVI2)

0.5×[2×(B8+1)-ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ñ(B8+1)2-8ñðB8-B4Þ

q
Atmospherically resistant vegetation
index (ARVI)

B8-(2×B4-B2)/B8+(2×B4-B2)

Pigment specific simple ratio chlorophyll
index (PSSRa)

B7/B4

Meris terrestrial chlorophyll index
(MTCI)

(B6-B5)/(B5-B4)

Modified chlorophyll absorption ratio
index (MCARI)

[(B5-B4)-0.2×(B5-B3)] ×(B5-B4)

Sentinel-2 red edge position index
(S2REP)

705+35×[(B4+B7)/2-B5]/(B6-B5)

Global environmental monitoring index
(GEMI)

[2×(B8A-B4) +1.5×B8A+0.5×B4]/(B8A
+B4+0.5)
TABLE 2 The information of acquired remote sensing data.

Sensors Acquisition date Spectral/Polarizations

Sentinel-1A(level-GRD) July 10, 2019 VH, VV

Sentinel-2A (level-L2A) September 10, 2019 Band2, Band3, Band4, Band5, Band6, Band7, Band8, Band8A, Band11, Band12
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determined by the factor analysis method. And the three

indicators (Forest productivity, Forest structure, and

Topographic factors) were firstly divided by rotating the

loading matrix. Then, the degree of contribution of each

indicator and indicator group can be obtained based on their

eigenvalues, and the relative and global weights of each factor

were ultimately determined (Table 4).

Normally, the growth of timber volume or tree height is

positively correlated with the growth potential of the stand, and

the tree height can generally reflect the change in timber volume

in the same-age forest (Duan et al., 2013). Therefore, estimating

average stand height is the most effective technique for

evaluating stand quality. In our study, the table of site index of

Chinese fir forest in Hunan Province (Liu et al., 1982) was

employed to evaluate the stand quality based on empirical

equations of forest height and age. After determining the stand

quality, the values of SQ were also divided into five grades with

an interval of 0.2 (Table 5).

To further analyse the relative levels of FQ and SQ, the

normalization method was employed. The normalized formula

is as follows:

x* =
x − xmin

xmax − xmin
(4)

Where, x*is the normalized FQ or SQ, xmax is the maximum

value of FQ or SQ, and xmin is the minimum value of FQ or SQ.

And then, the values of FQ or SQ were divided into five grades

with an interval of 0.2 (Table 5).
Frontiers in Plant Science 06
3 Results

3.1 The results of variable selection

To estimate the various forest parameters, several types of

variables (backscattering coefficients, multi-spectral bands,

vegetation indices, and texture characteristics) were extracted

from Sentinel-1A and Sentinel-2A images. And then, the

importance between each variable and forest parameters was

evaluated by RF. Finally, the optimal variable set extracted by the

stepwise regression model was employed to construct the models

(Table 6). The results indicated that the importance of the

variables (mtci and s2rep) of DBH, H, FCC, and Age are

relatively higher than other forest parameters. Moreover, it is

also illustrated that the variables extracted from Sentinel-1 could

be selected for estimating forest parameters.
3.2 The results of estimated
forest parameters

After the variables selection, three models (SVR, RF, and

KNN) were employed to construct the relationships between the

measured forest parameters and selected variables. And then, the

determination coefficient (R2) and relative RMSE (rRMSE) were

regarded as accuracy indices to evaluate the estimated forest

parameters (Table 7). The results illustrated that the values of
TABLE 4 FQ evaluation indicators and weights.

Objective Indicator groups Relative weights of indicator groups Indicators Relative weights Global weights

FQ Forest productivity 0.482 DBH 0.356 0.172

FSV 0.294 0.142

H 0.350 0.169

Forest structure 0.281 FCC 0.504 0.142

Density 0.496 0.139

Topographic factors 0.237 Aspect 0.325 0.077

Slope 0.335 0.079

Slope position 0.340 0.080
B CA

FIGURE 3

Maps of the topographic factors derived from DEM. (A) Slope aspect (B) Slope (C) Slope position.
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rRMSE varied with forest parameters and models. The largest

and smallest rRMSEs were observed from FSV (0.38~0.40) and

H (0.20~0.21), respectively. Obviously, the accuracy of estimated

forest parameters (DBH, H, and Age) was significantly higher

than FSV, FCC, and Age. Additionally, some models are less

effective in estimating parameters, such as FCC using the

random forest model.

Then, the various forest parameters were mapped using the

optimal machine learning algorithms according to the results in

Table 7, and the maps of forest parameters are shown in Figure 4.

It is illustrated that the ages of planted Chinese fir forests ranged

from 6 years to 16 years, and more than 70% of forests’ ages

ranged from 13 years to 16 years (Figure 4F). It is inferred that

most Chinese fir forests are immature forests, and the rest are

young forests in the study area. Therefore, most of the forest

height (Figure 4C) and DBH (Figure 4A) ranged from 9 m to

11m and 11cm to 13 cm, respectively. Meanwhile, the FSV is

mainly distributed from 70 m3/ha to 110 m3/ha (Figure 4B).
3.3 Estimated forest quality and site
quality

After mapping forest parameters using Sentinel-1A and

Sentinel-2A images, the FQ of the study region was directly
Frontiers in Plant Science 07
derived by the weights sum of related factors. Simultaneously,

the site quality was also extracted using mapped forest height

and ages. Before the normalization, the scatterplots between

estimated and measured forest and site quality were illustrated in

Figure 5. The determination coefficients (R2) of the models

(Y=X) were 0.36 for forest quality and 0.47 for site quality,

respectively. Moreover, the accuracy of estimated forest quality

[(rRMSE=0.19)] is lower than site quality (rRMSE=0.15).

After estimating the FQ and SQ, normalization and grading

processes were applied in further analysis of the spatial distribution.

Then, five grades (I, II, III, IV, and V) of FQ and SQ were formed,

and the spatial distributions of the FQ and SQ were illustrated in

Figure 6, five grades were represented by five colors (red to green),

respectively. The closer to green, the higher the grade, and vice

versa. Figures 6A, B illustrated that the grades of forest quality were

mainly concentrated in grade I, grade II and grade III. Specifically,

the percentage of forest quality in grade I was the highest (40.85%),

followed by grade II (27.66%) and grade III (23.85%), and the lowest

was grade V (1.94%). It is inferred that the forest quality is rather

low for planted Chinese fir forests in the study area. Moreover,

Figure 6C illustrated the distribution of mapped site quality. The

percentage of site quality was concentrated in grade III (29.06%)

and grade IV (64.6%). However, the sum of grade I and grade II was

less than 5%. Therefore, the level of site quality is very high for

planted Chinese fir forests in the study area.
TABLE 6 The optimal variables set related to each forest parameter.

DBH FSV H FCC Density Age

mtci B12 mtci pssra B2_me mtci

s2rep mtci s2rep rvi B7_se s2rep

B8a_cor VH B5 B2 B2 B11

pssra s2rep VH gndvi VV_var B5_ent

VH_se pssra B6 VV_cor B8a_cor VV_cor

B8a_var B8a_cor B8a_cor VH_cor ndi45 B11_me

VH_ent B12_cor B2_var B11_cor B8a_var mcari

B8a_con B4_var tsavi B7_ent B8a_cor

B12_cor mtci VH_cor

VH_uni B8a_con B5

VV VH_cor VH_me

VV_var VH_me B12_var

B8a_cor B2_con B12_cor

msavi VV_var

B3_se

B2_me
frontie
TABLE 5 The grades of FQ and SQ.

Grades Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ

FQ index (0.0-0.2] (0.2-0.4] (0.4-0.6] (0.6-0.8] (0.8-1.0]

SQ index (0.0-0.2] (0.2-0.4] (0.4-0.6] (0.6-0.8] (0.8-1.0]
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3.4 The distribution of FQ and SQ

According to the spatial distribution of graded forest FQ and

SQ, the matching degree of FQ and SQ is easy to explore in the

planted Chinese fir forest. To further analyze the matching

degree, the grade difference was calculated by subtracting

grades of site quality from grades of forest quality in each sub-

compartment. The maps of grade difference were illustrated in

Figure 7A, and the values contained seven grades ranging from

-2 to 4 for the study area (Figure 7B). The values ranged from -2

to 0, indicating that the grade of FQ lagged the grade of SQ, and

the smaller the grade difference, the worse the mismatch between

the FQ and SQ. Furthermore, the values ranged from 0 to 4,

meaning that the growth of planted Chinese fir forest broke the

limitation of SQ. Figure 7B shows the histogram of grades

difference between FQ and SQ, and the percentages of values

greater than zeros were close to 90% in the planted Chinese fir

forest. It was concluded that FQ matched well with SQ in our

study area.
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4 Discussion

4.1 The errors of estimated
forest parameters

For evaluating FQ and SQ, several forest parameters (DBH,

FSV, H, FCC, Density, and Age) are initially estimated using

related samples and variables (Silva Guimarães et al., 2020).

Therefore, the accuracy of mapped FQ and SQ are highly related

to the quality of forest parameters. Moreover, the errors in

estimating forest parameters are severely dependent on the

employed models and variable sets derived from Sentinel-1A

and Sentinel-2A images (Zhao et al., 2019). Therefore, the

variables selection methods are a key point in mapping FQ

and SQ. Normally, feature selection methods can be classified

into three categories: filters, wrappers, and embedded. In our

study, four types of alternative variables (backscattering

coefficients, multi-spectral bands, vegetation indices, and

texture characteristics) were extracted from Sentinel -1A and
B C

D E F

A

FIGURE 4

Maps of the forest parameters estimated by optimal models. (A) DBH (B) FSV (C) H (D) FCC (E) Density (F) Age.
TABLE 7 The R2 and rRMSE of the estimated forest parameters.

Model DBH H FSV FCC Density Age

R2 rRMSE R2 rRMSE R2 rRMSE R2 rRMSE R2 rRMSE R2 rRMSE

SVR 0.28 0.23 0.34 0.20 0.49 0.40 0.42 0.22 0.49 0.22 0.34 0.27

RF 0.34 0.22 0.32 0.21 0.61 / / 0.30 0.19 0.27 0.25 0.29

KNN 0.34 0.21 0.35 0.20 0.55 0.38 0.13 0.27 0.41 0.23 0.28 0.28
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Sentinel -2A images, respectively (Ghasemi et al., 2018; Gao

et al., 2020). Then, two methods (filters and wrappers) of feature

selection were applied to obtain the optical variable set, which

was ultimately derived by means of a stepwise regression model

(Yu et al., 2017a; Yu et al., 2017b; Zhang et al., 2018). It is

illustrated that the selected variables set changed with the related

forest parameters (Table 8), and the errors of estimated forest

parameters were related to the selected variables set. For each

forest parameter, more than one variable extracted from

Sentinel-1A were selected in the optimal variable set, and these

features were proved to improve the accuracy of mapping forest

parameters (Table 8).

Furthermore, forest parameters (FSV, FCC, and density) are

widely estimated using optical satellite images with high spatial

resolution, and the values of rRMSE ranged from 15% to 40%. In

our study, the rRMSE ranged from 22% to 40%, and the biggest

rRMSE was derived from FSV using the SVR model (Table 8).

Meanwhile, without direct correlation, other forest parameters

(DBH, H, and age) are rarely derived from optical satellite
Frontiers in Plant Science 09
images (Wolter et al., 2009; Yalew et al., 2016; Yang et al.,

2018). In our study, dual-polarization SAR images with C band

(VH and VV) were added to improve the accuracy and reliability

in estimating some forest parameters, and the R2 ranged from

0.25 to 0.34. Additionally, common machine learning models

(SVR, RF, and KNN) are often used to invert these forest

parameters. In our study, the accuracy of estimated forest

parameters (DBH, H, FCC, and Age) was significantly higher

than FSV and density. Especially, the values of rRMSE from

estimated DBH, forest height, FCC, and ages were less than 20%

using employed models, and those values of FSV and density

were larger than 35%. Furthermore, the values of R2 ranged from

0.25 to 0.37 for estimated FCC and density because of using

remote sensing images with low spatial resolution. Normally,

FCC and density were often mapped using high spatial

resolution images, even using the images acquired from aerial

photography or unmanned aerial vehicles (UAVs) (Wang et al.,

2017). Therefore, these estimated forest parameters with low

accuracy decreased the reliability of mapping FQ and SQ.
BA

FIGURE 5

Scatterplots between ground measured and estimated forest quality and site quality. (A) Forest quality (B) Site quality.
BA

FIGURE 6

The Maps of the graded FQ and SQ and the histograms of five grades. (A) The maps of FQ (B) The maps of SQ.
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4.2 The uncertainty of estimated forest
and site quality

Normally, remote sensing images cannot directly reflect FQ

and SQ, and the uncertainty of estimated FQ and SQ depends on

the related forest parameters (Lim et al., 2003; Mirik et al., 2013;

Wang et al., 2017; Ou et al., 2019). To evaluate the uncertainty of

estimated FQ and SQ using Sentinel images, the errors between

estimated and measured FQ and SQ of all sub-compartments

were illustrated in Figure 8. For the results of FQ (Figure 8A), the

errors ranged from -0.4 to 0 and were mainly concentrated in

grade II and the accuracy was severely limited because of these

sub-compartments with underestimated FQ. Though SQ is only

related to two factors, forest height and age, the errors of

estimated and measured SQ were still systematically

distributed because of the saturation phenomenon of related

factors (Pueschel et al., 2012).

In the previous study, for estimating FSV, FCC, or DBH, the

saturation phenomenon has been widely proved in many studies

(Karlson et al., 2015; Li et al., 2020). It is also found that

overestimation may occur in the young forest, while

underestimation may be caused by optical saturation
Frontiers in Plant Science 10
(Avitabile and Camia, 2018). Usually, it is reported that the

saturation value of FSV often occurs at 200 m3/ha for optical

images and 300 m3/ha for SAR images. In our study, the

relationships between estimated and measured forest

parameters were illustrated using the estimated results with

the highest accuracy of each forest parameter (Figure 9). It is

obviously found that the saturation phenomenon also occurred

for mapping forest height, FSV, density, and age, and the

accuracy of these forest parameters was severely affected by

underestimated samples. Specially, combined with Sentinel-1A

and Sentinel-2A images, the saturation value of FSV closed to

less than 120m3/ha is significantly lower than other results, and

the results are induced by the density and forest ages. In the

study area, the average density is larger than 1000 trees/ha and

the ages of all sub compartments are around 15 years.
5 Conclusions

This study attempts to explore the potentiality of mapping

FQ and SQ using Sentinel-1A and Sentinel-2A images. In this

study, four types of alternative variables, including
BA

FIGURE 7

The maps and histograms of difference grades between FQ and SQ. (A) Distribution of grade difference (B) The histograms of grade difference.
TABLE 8 The results of estimated forest parameters using different images data.

Model Data source DBH H FSV FCC Density Age

R2 rRMSE R2 rRMSE R2 rRMSE R2 rRMSE R2 rRMSE R2 rRMSE

SVR S1 0.26 0.21 0.16 0.20 0.53 0.38 0.35 0.23 0.47 0.22 0.33 0.27

S2 0.13 0.25 0.14 0.23 0.36 0.45 0.20 0.26 0.37 0.24 0.12 0.31

S1&S2 0.28 0.23 0.34 0.20 0.49 0.40 0.42 0.22 0.49 0.22 0.34 0.27

RF S1 0.30 0.22 0.25 0.18 0.60 0.35 0.16 0.31 0.19 0.27 0.24 0.29

S2 0.14 0.25 0.24 0.22 0.44 0.42 0.29 0.24 0.07 0.29 0.05 0.34

S1&S2 0.34 0.22 0.32 0.21 0.61 0.35 0.12 0.30 0.19 0.27 0.25 0.29

KNN S1 0.32 0.22 0.18 0.20 0.54 0.38 0.13 0.27 0.43 0.23 0.29 0.28

S2 0.01 0.26 0.28 0.22 0.37 0.44 0.27 0.24 0.24 0.26 0.08 0.34

S1&S2 0.34 0.21 0.35 0.20 0.55 0.38 0.13 0.27 0.41 0.23 0.28 0.28
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backscattering coefficients (VV and VH), multi-spectral bands,

vegetation indices, and texture characteristics, were extracted

from Sentinel -1A and Sentinel -2A images, respectively. After

selecting the optimal variable set using a stepwise regression

model, FQ and SQ were indirectly mapped using related forest

parameters estimated by three machine learning methods. The

results showed that the values of rRMSE of forest and site quality

are 0.19 and 0.15, respectively. And the grades of forest quality

were mainly concentrated in grades I, II, and III. It has been

proved that using related forest parameters has great potential to

indirectly estimate forest and site quality. Meanwhile, the results

also confirmed that the accuracy of mapped forest and site
Frontiers in Plant Science 11
quality is significantly affected by the estimated errors of forest

parameters and the saturation phenomenon. Therefore, further

studies will be conducted to delay the saturation phenomenon

using high spatial resolution images (such as GF-1 and ZY-3)

and polarimetric SAR images.
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