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Efficient breeding and selection of superior genotypes requires a comprehensive 

understanding of the genetics of traits. This study was aimed at establishing the 

general combining ability (GCA), specific combining ability (SCA), and heritability 

of sweetpotato weevil (Cylas spp.) resistance, storage root yield, and dry matter 

content in a sweetpotato multi-parental breeding population. A population 

of 1,896 F1 clones obtained from an 8 × 8 North Carolina II design cross was 

evaluated with its parents in the field at two sweetpotato weevil hotspots in 

Uganda, using an augmented row-column design. Clone roots were further 

evaluated in three rounds of a no-choice feeding laboratory bioassay. Significant 

GCA effects for parents and SCA effects for families were observed for most 

traits and all variance components were highly significant (p ≤ 0.001). Narrow-

sense heritability estimates for weevil severity, storage root yield, and dry 

matter content were 0.35, 0.36, and 0.45, respectively. Parental genotypes with 

superior GCA for weevil resistance included “Mugande,” NASPOT 5, “Dimbuka-

bukulula,” and “Wagabolige.” On the other hand, families that displayed the 

highest levels of resistance to weevils included “Wagabolige” × NASPOT 10 O, 

NASPOT 5 × “Dimbuka-bukulula,” “Mugande” × “Dimbuka-bukulula,” and NASPOT 

11 × NASPOT 7. The moderate levels of narrow-sense heritability observed 

for the traits, coupled with the significant GCA and SCA effects, suggest that 

there is potential for their improvement through conventional breeding via 

hybridization and progeny selection and advancement. Although selection for 

weevil resistance may, to some extent, be challenging for breeders, efforts could 

be  boosted through applying genomics-assisted breeding. Superior parents 

and families identified through this study could be deployed in further research 

involving the genetic improvement of these traits.
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Introduction

Sweetpotato [Ipomoea batatas (L.) Lam] is the second most 
important root crop in sub-Saharan Africa (SSA) after cassava 
(FAOSTAT, 2020). The region is estimated to produce 28 million 
metric tons of sweetpotato annually, which translates to about 31% 
of the world’s total production for this crop (FAOSTAT, 2020). Its 
key attributes include its hardiness, fairly good performance under 
poor soil and weather conditions, and adaptation to a wide range 
of agro-ecological zones (Karyeija et al., 1998; Grüneberg et al., 
2015). Additionally, orange-fleshed types possess nutritionally 
high pro-vitamin A content (Mwanga et al., 2009). Sweetpotato 
can be used as both human food and animal feed, making it one 
of the region’s most extensively produced root crops (Fuglie, 2007; 
Grüneberg et al., 2015; Gurmu et al., 2018). However, average 
yields of sweetpotato remain low in Africa, with estimates of about 
6.8 metric t ha−1, compared to 20.8 metric t ha−1 in Asia and 24.5 
metric t ha−1 in the United  States (FAOSTAT, 2020). Several 
negative factors have contributed to this predicament such as pests 
and diseases that affect the crop, notably the African sweetpotato 
weevils, Cylas puncticollis (Boheman) and Cylas brunneus 
(Fabricius).

Cylas spp. are the most destructive pests of sweetpotato in SSA 
and are known to cause losses ranging from 60 to 100%; particularly 
during dry spells, and under heavy infestations (Chalfant et al., 
1990; Smit, 1997; Capinera, 2006; Sorensen, 2009). Development 
and oviposition rates of these pests are temperature dependent, 
with optimal survival ranging between 25 and 30°C (Okonya 
et al., 2016). At 30°C, Cylas spp. require around 28 days to mature 
from egg to adult, and adults can live for another 94–309 days. 
Females lay between 94 and 350 eggs in their lifetime, with 
C. puncticollis females depositing 17 eggs per day on average 
(Musana et al., 2016; Okonya et al., 2016). The two African Cylas 
spp. usually occur together, co-infest the same plant, and develop 
within the same root, inflicting damage to storage roots and vines 
by tunneling into them (Anyanga et  al., 2017). As a defense 
response, the plants release bitter-tasting and foul-smelling 
phenols and terpenes, further degrading root quality and 
rendering them unfit for either human or animal consumption 
(Chalfant et al., 1990; Ames et al., 1996).

Several cultural practices have been put forward for the 
management of sweetpotato weevils (SPWs) including using clean 
planting materials, crop rotation, intercropping, early planting and 
harvesting, hilling up, and removing alternate hosts (Talekar, 
1992; Smit and Matengo, 1995; Smit, 1997). Chemical control 
using foliar fertilizers and dipping planting material in pesticides 
before planting has also been previously recommended (Allard, 
1990; Hwang, 2000; Stathers et  al., 2005). However, the 
effectiveness of these SPW management strategies is often variable 
because of the obscure feeding habits of the immature larvae that 
cannot be easily reached once inside the roots (Sorensen, 2009). 
Furthermore, the costs and limited access to insecticides in SSA 
further casts doubt on the feasibility and sustainability of this 
control method (Bassey, 2012). Okonya et al. (2014) reported that 

most sweetpotato growers do not take any steps to manage Cylas 
spp. from spreading in their gardens. Host plant resistance 
enhanced through genetic improvement, therefore, presents a 
major component for the integrated pest management (IPM) of 
these pests (Stathers et al., 2003; Stevenson et al., 2009; Anyanga 
et al., 2013), and breeding for resistance to Cylas spp. remains one 
of the key objectives in sweetpotato breeding programs in SSA.

The unknown sources of genetic resistance to weevils were 
formerly a major stumbling block in breeding (Mwanga et al., 
2009; Stevenson et al., 2009; Anyanga et al., 2013). Over the past 
decade, however, researchers have identified genotypes, including 
landraces, with higher levels of resistance to weevils and with a 
potential for exploitation in breeding for resistance to these pests 
(Muyinza et al., 2012; Anyanga et al., 2013; Kagimbo et al., 2019). 
For instance, “New Kawogo,” a Ugandan landrace, has been shown 
to have moderate field resistance to C. puncticollis and C. brunneus, 
owing to the high concentration of hydroxycinnamic acid (HCA) 
esters on its root surfaces (Muyinza et al., 2012; Anyanga et al., 
2013). “New Kawogo” is currently being utilized as parental 
material in breeding for SPW resistance in Uganda (Yada et al., 
2015; Zhou, 2020) and in studying resistance mechanisms to Cylas 
spp. (Anyanga et al., 2017).

Another deterrent factor in sweetpotato weevil management 
particularly relating to molecular breeding for resistance to SPWs 
is the limited genomic resources for the crop. In the past, Yada 
et al. (2015) used 133 simple sequence repeat (SSR) markers to 
identify SPW resistance loci through regression analysis of a 
segregating population of 287 clones derived from a bi-parental 
cross between “New Kawogo,” and “Beauregard.” Twelve SSR 
markers were observed to be  associated with SPW resistance 
(Yada et al., 2017a). More recently, Oloka (2019) also developed 
an integrated genetic linkage map of the same population using 
single nucleotide polymorphisms (SNPs) and identified four 
quantitative trait loci (QTL) associated with weevil resistance. 
Most of the markers and QTL published in these studies have 
hardly been utilized in crop improvement primarily because of the 
relatively low proportion of phenotypic variation explained by the 
QTL. Consequently, they had limited utility for marker assisted 
selection. However, efforts are currently underway to identify 
more QTL controlling SPW resistance using SNPs, in order to 
expedite genomic breeding for weevil resistance.

Nonetheless, there is currently a need for further identification 
and development of genotypes with more resistance to SPWs 
because the yield potential and storage root quality attributes of 
“New Kawogo” are not good and have been superseded by more 
recent varieties. Secondly, it is white-fleshed and lacks β-carotene 
(the precursor for vitamin A) that is found in the orange-fleshed 
varieties. There is presently a drive for vitamin A bio-fortified 
sweetpotato varieties, which are effective for combating vitamin A 
deficiency in Uganda and SSA at large (Yanggen and Nagujja, 
2006). Furthermore, roots from this landrace have a shape that is 
not desired by the market. Therefore, there is a pressing need for 
further research and identification of superior genotypes in 
this regard.
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To efficiently breed for resistance to SPWs, it is critical to have 
a comprehensive knowledge on the genetics of resistance to these 
pests and to identify parental genotypes that, when combined, 
result in superior progeny that outperform their parents in regard 
to weevil resistance and other key quality and agronomic traits 
such as storage root yield and dry matter content. Combining 
ability and heritability are key considerations when studying the 
genetics of crop traits (Ma Teresa et al., 1994). Combining ability 
is widely used by plant breeders in cultivar development to 
compare the performance of lines in hybrid combinations and to 
identify promising ones (Acquaah, 2007). It is a useful tool for 
identifying parents of superior genetic merit based on the 
performance of their offspring (Viana and Matta, 2003; Fasahat 
et al., 2016).

General combining ability (GCA) refers to the mean 
performance of a parental genotype in different cross combinations 
whereas specific combining ability (SCA) defines the performance 
of a specific cross combination regarding a particular trait and is 
based on the mean performance of the lines involved (Falconer 
and Mackay, 1996; Acquaah, 2007). Whereas GCA is ascribed to 
additive gene action, SCA is a result of non-additive genetic 
variance contributed by dominance, overdominance, or epistasis 
(Acquaah, 2007). Heritability, on the other hand, estimates the 
proportion of phenotypic variance that is due to genetic 
components (Bernardo, 2014). It indicates the extent to which a 
particular trait can be passed on from parents to their progeny. 
Narrow sense heritability, which represents the proportion of total 
phenotypic variance attributable to additive gene action, is 
important because the effectiveness of selection is dependent on 
the additive component of genetic variance relative to total 
variance (Acquaah, 2007; Bernardo, 2014).

Studies on the inheritance of sweetpotato traits are rather 
challenging because of its complex genome. Sweetpotato is a 
highly heterozygous autohexaploid (2n = 6x = 90) with complex 
segregation ratios, thus complicating studies on its genetics and 
cytology (Jones, 1986; Ukoskit and Thompson, 1997). Despite this, 
it is possible to partition genetic variation into components 
including general combining ability and specific combining ability 
(Mwanga et al., 2002) and as such, obtain a relative estimate of the 
inheritance of a given trait.

Mating designs that estimate GCA and SCA of quantitative 
traits are important in breeding heterozygous crops. The North 
Carolina (NC) II mating design is a factorial design that has 
previously been used by researchers to study inheritance in 
sweetpotato (Gasura et al., 2008; Sseruwu, 2012; Kagimbo et al., 
2019). This design enables breeders to obtain information about 
combining ability, using less labour and resources compared to a 
full diallel (Comstock and Robinson, 1952; Acquaah, 2007). It is 
thus advantageous over the diallel method when many parents are 
involved (Hallauer and Miranda, 1988).

Estimates of heritability and combining ability are usually 
specific to the trait, population, and environments being tested 
(Acquaah, 2007). An understanding of the heritability of a trait in 
a given population can guide a breeder in choosing the most 

appropriate selection strategy and in making the right decisions 
that would maximize genetic gain. Analysis of combining ability 
further enables breeders to identify the most suitable combiners 
for hybridization, in addition to identifying crosses with 
exceptional performance. This underscores the need to study these 
parameters in the present population. This study was carried out 
to determine the general combining ability and specific combining 
ability, and to estimate the heritability of sweetpotato weevil (Cylas 
spp.) resistance, storage root yield, and dry matter content in a 
multi-parental sweetpotato population.

Materials and methods

Description of germplasm

A population of 1,896 F1 progeny, developed from an 8 × 8 
paired crossing design, was used in this study. The population, 
known as the Mwanga Diversity Panel (MDP), was developed in 
Uganda in 2016 and 2017 at the National Crops Resources 
Research Institute (NaCRRI), Namulonge, under the Genomic 
Tools for Sweetpotato improvement project (GT4SP). The 16 
parental lines that were crossed to develop this population were 
sourced from a hybrid breeding pool that comprised of two 
separate polycross breeding nurseries: population A (50 clones) 
and population B (80 clones; David et al., 2018). The progenitors 
originated from four different countries, with the majority from 
Uganda (Wu et al., 2018; Zhou, 2020).

Parental lines were selected based on desirable attributes for a 
sweetpotato ideotype including, high dry matter content and 
storage root yields, beta-carotene content (for the orange-fleshed 
types), and resistance to key biotic stresses, such as sweetpotato 
virus disease, Alternaria disease, and sweetpotato weevils 
(Table 1). The 16 parental lines were crossed (8B × 8A) using the 
NCII mating design, without reciprocals that resulted in 64 
families. All eight pairs of crosses were successful, with over 100 
seeds generated cross. The seeds were thereafter transferred to 
Biosciences eastern and central Africa (BecA) in Kenya, where 
they were germinated and raised in vitro. The resulting lines 
(approximately 30 clones per cross), were later returned to Uganda 
where the seedlings were initially raised in a screen house, and 
later on planted in the field.

Study sites

Field experiments were conducted at two locations within 
Uganda, namely, Abi Zonal Agricultural Research and 
Development Institute (ZARDI), in Arua district; and Ngetta 
ZARDI, in Lira district (Table 2), respectively. The two sites were 
located in sweetpotato weevil hotspots in different agro-ecological 
zones of the country. Both field trial sites experience bi-modal 
rainfall patterns annually. In addition, a no-choice feeding 
bioassay was carried out at the sweetpotato entomology laboratory 
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at the National Crops Resources Research Institute (NaCRRI) 
located in central Uganda.

Trial design, establishment, and 
management

Field trials
Field trials were set up using an augmented row-column 

design with two replicated checks, one moderately resistant (“New 
Kawogo”) and the other susceptible (“Ejumula”) to sweetpotato 
weevils. The 1,896 test progeny, 16 parental genotypes, and two 
checks were randomized within 46 rows and 43 columns, and the 

checks were replicated in every column at each field site, making 
a total of 86 check plots per site and 344 checks in total. Field trials 
were conducted during the first and second rainy seasons of 2019 
(2019A and 2019B, respectively) at Abi ZARDI, and in 2019B and 
2020A (first rainy season of 2020) at Ngetta ZARDI. High quality, 
uniform sweetpotato vines of approximately 30 cm long were 
planted on ridges (3 m long and 60 cm high, knee length) at a 
spacing of 30 cm between plants and 1 m between ridges. Field 
management was implemented through regular weeding using 
hoes, three times during each season. Fertilizer and irrigation 
were not applied during these field experiments. Storage roots 
were harvested at 5 months after planting (unlike the 4 months 
when farmers usually start harvesting) in order to give time for 
weevil population buildup.

No-choice feeding laboratory bioassay
Clones that survived in the field and produced at least 3–5 

clean, uninfested storage roots at harvest were further evaluated 
in the entomology laboratory at controlled room temperature 
(25 ± 2°C) in a no-choice feeding bioassay. A total of 1,360 clones 
were tested using a randomized complete block design (RCBD) 
with three replicates and two checks (same checks used for field 
trials). Each replicate was placed on its own shelf in the laboratory, 
with each of the three shelves serving as a block. Three healthy 
storage roots of approximately equal weight (±200 g) were selected 
at harvest from the field trial for each clone. The roots were 
carefully selected to ensure that they were free from any visibly 
noticeable weevil punctures or damage. These were cleaned, dried, 
and then placed in separate plastic jars (1.5-L capacity) such that 
each jar contained one storage root per clone. The roots were then 
artificially inoculated with 10 2-week-old gravid female adult 
weevils (C. puncticollis).

The weevils used in this study were obtained from a 
C. puncticollis mother culture that is usually maintained at the 
NaCRRI sweetpotato entomology laboratory on the clone 
NAROSPOT 1. From the NaCRRI mother culture, a subculture 
consisting of 20–30 males and females were placed in containers 
(2-liter capacity) to allow for mating. After a two-week period, 10 
gravid female weevils were then introduced into jars and their tops 
covered using muslin cloth to allow aeration. They were allowed 
to feed and oviposit for 24 h, after which the weevils were removed 
from each jar and the number of feeding holes on the roots 
counted and recorded; following the methodologies of Anyanga 
et al. (2017). The eggs that were laid were left to incubate until 
emergence at room temperature (25 ± 2°C). A total of three runs/
rounds of this trial were conducted with storage roots that had 
been harvested from Abi ZARDI in 2019A and Ngetta ZARDI in 
2019B and 2020A.

Data collection

For the field trials, data were collected on weevil severity 
(WED), weevil incidence (WI), and storage root yield (SRY) at 

TABLE 1 Description of parental material utilized in the 8 × 8 paired 
cross.

Code Genotype Response to 
Cylas spp.

Origin

Male parents

A1 “Ejumula” Susceptible Uganda

A2 NASPOT 1 Susceptible Uganda

A3 “Dimbuka-bukulula” Susceptible Uganda

A4 NASPOT 5/58 Susceptible Uganda

A5 NASPOT 7 Susceptible Uganda

A6 SPK004 Susceptible Kenya

A7 NASPOT 10 O Susceptible Uganda

A8 NK259L Moderately resistant Uganda

Female parents

B1 “Resisto” Susceptible USA

B2 “Magabali” Moderately resistant Uganda

B3 NASPOT 5 Moderately resistant Uganda

B4 “Wagabolige” Moderately resistant Uganda

B5 “Mugande” Susceptible Uganda

B6 NASPOT 11 Susceptible Uganda

B7 “New Kawogo” Moderately resistant Uganda

B8 “Huarmeyano” Moderately resistant Peru

TABLE 2 Description of field study sites.

Description
Field sites

Abi ZARDI Ngetta ZARDI

Latitude 3°4′37.2” N 2°16′10.8”N

Longitude 30°56′34.6″E 32°53′57.2″E

Altitude (m.a.s.l) 1,211 1,080

Agro-ecological zonea Northwestern wooded 

savannah

Northern moist 

farmlands

Soil typeb Sandy Clay Loam Sandy Loam

Annual total rainfall (mm) 1,250 1,361

Mean annual temperature 

(°C)

24 23.4

m.a.s.l, meters above sea level. 
aWortmann and Eledu, 1999.
bKaizzi et al., 2012.
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harvest. Weevil severity was assessed by inspection of harvested 
storage roots in each plot and scoring using a scale of 1–9 as 
described by Grüneberg et  al. (2019) where: 1 = no damage; 
3 = minor; 5 = moderate; 7 = heavy; and 9 = severe damage, with 
numbers in between representing intermediate ratings. On the 
other hand, we determined weevil incidence by counting the 
number of infested and non-infested roots per plot after which 
we expressed the number of infested roots as a percentage of the 
total number of roots. At harvest, we  separately weighed 
marketable (root diameter > 3 cm, having no cracks, insect 
damage, and/or rotten parts) and non-marketable roots (root 
diameter < 3 cm, with cracks, insect damage, and/or rotten parts). 
Total storage root yield was then obtained by adding the weight 
of marketable and non-marketable roots in each plot and 
expressing the total weight in tons per hectare.

After harvest, the percentage dry matter content (DMC) of 
each clone was obtained by slicing two clean randomly selected 
medium-sized (approximately 200–300 gm) fresh storage roots 
into small chips. A composite sub-sample of about 100–200 g was 
then obtained, placed in a well-labeled paper bag, and weighed to 
determine the exact fresh weight. The sub-sample was then dried 
at 70°C in an oven for 72 h until a constant mass was attained. The 
dry mass was thereafter weighed and the weight was expressed as 
a percentage of the fresh weight (Islam et al., 2002; Kagimbo et al., 
2019). For the no-choice bioassay, data was collected on the 
number of feeding holes (FH) for each clone after roots had been 
exposed to weevils for 24 h as described by Anyanga et al. (2017). 
The number of adults that emerged from the roots was also 
counted on a weekly basis from day 25 to 67 after artificial 
infestation, after which the trial was terminated.

Data analysis

Data analysis was done using the package ASReml-R v. 4.1 
(Gilmour et  al., 2015) in R statistics software, v. 4.0 (R 
Development Core Team, 2019). The combination of sites and 
seasons formed four field trial environments: two sites by two 
seasons each. A joint mixed-model for each trait was used 
as follows:

 
y X Zg Ti e= + + +β ξη

where y  refers to the vector of phenotypic observations, β  
is the vector of fixed effects of environments, and X  is the 
associated design matrix; g  is the random vector of genotypic 
effects, g N A g~ 0

2
, σ( ) , where A  is a pedigree-based relationship 

matrix among genotypes and σ g
2  is the additive genetic variance, 

and Z is the associated design matrix; i  is the random vector of 
genotype by environment interaction, i N I i~ 0

2
, σ( ) , where I  is 

an identity matrix and σ i
2  is the genotype by environment 

variance, and T is the associated design matrix; eξη  is the random 
vector of residuals, modeled by using an auto-regressive order 1 

(AR1 × AR1) process in the row and column directions within 
each environment. The pedigree-based relationship matrix ( A ) 
was computed based on Kerr et  al. (2012) using the Amatrix 
function of the R package AGHmatrix v. 2.0.4 (Amadeu et al., 
2016) considering autohexaploidy.

Variance components for weevil severity and incidence, 
storage root yield, and dry matter content were estimated by the 
Restricted Maximum Likelihood (REML) method and best linear 
unbiased predictions (BLUPs) were obtained. Variance 
components were then tested against the reduced model (without 
a specific random effect) using likelihood ratio tests (LRT). The 
narrow-sense heritability ( h2)  for each field trait across 
environments was estimated by the model without spatial 
variation, i.e., assuming e N I e~ 0

2
, σ( ) , according to Cullis et al. 

(2006) as follows:

 

BLUP
2

21
2σ
∆= −

g

vh

where BLUP
∆v  is the average standard error of the genotypic 

BLUPs and σ g
2  is the additive genetic variance.

For the bioassay, the joint model used for each trait was 
as follows:

 y X Zg Ti Qr e= + + + +β

where r  is the random vector of replicate within environment, 
r N I r~ 0

2
, σ( ) , where σ r

2  is the replicate within environment 
variance and Q  is the associate design matrix, e  is the random 
vector of independent residuals, e N I e~ 0

2
, σ( ) , where σe

2  is the 
residual variance.

The variance components for GCA effects for males and 
females, and SCA effects for crosses for each trait across 
environments were obtained using the following mixed model:

 ξη

β= + + + +
+ + +

A A B B C C AE AE
BE BE CE CE

y X Z g Z g Z g Z g
Z g Z g e

where y  refers to the vector of phenotypic observations, β  
is the vector of fixed effects of environments, and X  is the 
associated design matrix; g g gA B C, ,  are random vectors of 
GCA for males, GCA for females, and SCA for crosses, 
respectively, with g N IA A~ 0

2
, σ( ) , g N IB B~ 0

2
, σ( ) , 

and ( )2~ 0,C Cg N Dσ , where D is a matrix that reflects the 
number of parents shared by the different crosses (Kerr et al., 
2012), computed using “1” for crosses that shared both parents, 
“½” for those that shared one parent, and “0” for crosses that did 
not share any parent; σ σ σA B C

2 2 2
, ,  are genetic variances of males, 

females, and crosses; Z Z ZA B C, ,  are the respective incidence 
matrices; g g gAE BE CE, ,  are random vectors of GCA for males 
by environment interaction, GCA for females by environment 
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interaction, and SCA for crosses by environment interaction, 
respectively, with g N IAE AE~ 0

2
, σ( ) , g N IBE BE~ 0

2
, σ( ) , and 

g N ICE CE~ 0
2

, σ( ) ; σ σ σAE BE CE
2 2 2
, ,  are genetic variances of 

males by environment interaction, females by environment 
interaction, and crosses by environment interaction, and 
Z Z ZAE BE CE, ,  are the respective incidence matrices. The D 
matrix was built based on the number of parents that a given pair 
of crosses may share. Considering families i and j, Dij = 1 if 
families i and j share both parents, =

1
2ijD  if i and j share the 

one parent, and Dij = 0 if i and j do not share any parent.
Pearson’s correlation analysis based on predicted mean values 

was conducted to observe the associations between weevil-related 
parameters recorded in the field and in the laboratory bioassay.

Results

Variance component parameters and 
heritability estimates

The REML analysis of traits measured in the field trials revealed 
that highly significant variance components (p ≤ 0.001) existed for 
genotype effects for weevil severity, incidence, storage root yield, 
and dry matter content. The variance components associated with 
genotype by environment (G × E) interactions were similarly highly 
significant (p ≤ 0.001) for the four traits (Table 3). Estimates of 
narrow-sense heritability ( h2 ) for field traits were moderate 
(Table 3). Significant variation was recorded in GCA effects of 
female parents (GCAf) for weevil incidence (p ≤ 0.05) and storage 
root yield (p ≤ 0.01), GCAf by environment interaction for WED 
(p ≤ 0.05), and between families for SRY and DMC (p ≤ 0.05; 
Table  4). However, variance components associated with GCA 
effects of male parents (GCAm) were all non-significant. SCA 
variances for WED and WI were also non-significant (Table 4).

Analysis of data obtained from the no-choice feeding bioassay 
showed significant variance components among genotypes 
(p ≤ 0.01) and G × E (p ≤ 0.05) for the number of adult weevils, 
C. puncticollis (Table 5). The case was different for the number of 
feeding holes, where significant variance components (p ≤ 0.01) 
were recorded for G × E interactions but not for genotypes 
(Table 5). We were unable to obtain BLUPS for genotypes for the 
number of feeding holes out of the model that was used for the 
analysis, so we limited our discussions to the other traits for which 
predictions were successfully obtained in the REML analysis 
(significant genetic variances).

Among the four environments, the highest predicted means for 
weevil severity and weevil incidence were recorded in Abi ZARDI 
in 2019A, whereas the lowest were in Ngetta ZARDI in season 
2020A. Conversely, the highest predicted means for storage root 
yield and lowest dry matter content were observed in Ngetta ZARDI 
in 2020A, while the lowest mean root yield and highest mean dry 
matter content were from Abi ZARDI in season 2019B (Figure 1).

Pearsons’ correlation analysis was done between weevil 
severity, incidence and the number of adult weevils recorded in 

the bioassay. A moderately strong, positive and highly significant 
(r = 0.51; p ≤ 0.001) relationship was observed between weevil 
severity and weevil incidence. However, a weak, negative and 
significant association (r = −0.31; p ≤ 0.01) existed between field 
weevil severity and the number of adult weevils that emerged 
from clones in the bioassay. Similarly, the correlation between 
weevil incidence and the number of adult weevils was also weak 
and negative, but not significant (r = −0.11; p = 0.2).

General and specific combining ability 
effects

The GCA and SCA effects for parental genotypes and the 64 
families are presented in Tables 6, 7 respectively. GCA predictions of 
parental clones for WED scores ranged from 4.11 (“Mugande”) to 
4.47 (NASPOT 11) whereas for WI ranged from 38.77% 
(“Mugande”) to 44.35% (NASPOT 11). “Ejumula,” the susceptible 
check, and Dimbuka-bukulula recorded the highest (43.26%) and 
smallest (40.03%) predictions for WI among the male parents across 
environments. GCA predictions for storage root yield ranged from 
9.45 to 12.1 t ha−1 in parental genotypes, with the highest values in 
NASPOT 5 and “New Kawogo” and the lowest in NASPOT 5and 
“Huarmeyano.” GCA predictions for DMC were highest in NASPOT 
11 (34.76%) and lowest in “Resisto” (32.41%). In the no-choice 
feeding bio-assay, NASPOT 5 (64.56) and “Ejumula” (60.24) 
recorded the highest GCA for number of adult weevils (CP), whereas 
“Wagabolige” (52.02) and Resisto (52.47) had the lowest values.

Overall SCA values across families for weevil severity and 
incidence, storage root yield, and dry matter content were 4.3, 
41.7%, 10.7 t ha−1, and 34%, respectively. SCA predictions 
for  WED in the 64 families varied from 4.18 to 4.5 (Table  7; 
Figure  2). Families that displayed desirable SCA effects 
for  WED  by  exhibiting the lowest levels of severity 
included  “Mugande” × NASPOT 10 O (B5 × A7), and 
“Mugande” × “Dimbuka-bukulula” (B5 x A3) whereas NASPOT 
11 × “Ejumula” (B6 × A1), “Huarmeyano” × “Ejumula” (B8 x A1), 

TABLE 3 Variance components, heritabilities ( 2h ), and likelihood 
ratio test results for weevil severity (WED, scale 1–9), weevil incidence 
(WI, %), storage root yield (SRY, t/ha), and dry matter content (DMC, 
%) across four environments.

Variance components
Traits

WED WI SRY DMC

Genotype 0.40*** 11.94*** 6.37*** 7.97***

Genotype × Environment 0.91*** 72.67*** 6.17*** 7.21***

Env_Abi2019A 3.66 743.70 13.12 34.30

Env_Abi2019B 2.60 708.90 26.37 17.71

Env_Ngetta2019B 2.11 616.31 11.55 83.26

Env_Ngetta2020A 1.89 162.46 29.31 192.50

h2 0.35 <0.01 0.36 0.45

***Significant at p ≤ 0.001. Residual variances presented separately for each of the four 
environments.
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and “Resisto” × NASPOT 1 (B1 ×A2) recorded the highest levels 
(Figure 2).

Specific combining ability (SCA) prediction for sweetpotato 
weevil incidence for families ranged from 41.2 to 42.1%. Families 
that exhibited superior SCA for WI by displaying lowest mean 
percentages included “Wagabolige” × NASPOT 10 O (B4 × A7) 
and NASPOT 5 × “Dimbuka-bukulula” (B3 × A3) whereas 
NASPOT 11 × “Ejumula” (B6 × A1) and NASPOT 11 × “Dimbuka-
bukulula” (B6 × A3) recorded the highest levels.

Considering SRYs, SCA effects for the 64 families ranged from 
9.83 to 11.59 t ha−1 (Table  7). The families, “New 
Kawogo” × NASPOT 7 (B7 × A5), and “Resisto” × NK259L 
(B1 × A3) recorded the highest while “Huarmeyano” × NASPOT5/58 
(B8 × A4) and “Huarmeyano” × “Dimbuka-bukulula” (B8 × A3) had 
the lowest means (Figure  2). SCA predictions for dry matter 
contents for families ranged from 30.0 to 34.8% (Table 7). The 
highest values were observed in “Mugande” × “Ejumula” (B5 × A1) 
and NASPOT 11 x “Ejumula” (B6 × A1), whereas the lowest were 
recorded in “Resisto” × NASPOT 1 (B1 × A2) and 
“Resisto” × NK259L (B1 × A8; Figure 2).

In the no-choice feeding bioassay, predicted means for the 
number of adult weevils in families ranged from 55 to 59. The 
families “Wagabolige” × NASPOT 5/58 (B4 × A4) and NASPOT 
11 × NASPOT 10 O (B6 × A7) recorded the highest numbers of 
mean adult weevils whereas “Magabali” × NK259L (B2 × A8) and 
Magabali × NASPOT 7 (B2 × A5) had the lowest SCA effects for 
CP. It was observed that the cross “NASPOT 11” x “Ejumula” had 
the lowest SCA effects for weevil severity and weevil incidence and 
as such, displayed the highest levels of susceptibility to sweetpotato 
weevils among the 64 families studied. Overall, the top five crosses 
in terms of sweetpotato weevil resistance were; 
“Wagabolige” × NASPOT 10 O, NASPOT 5 × “Dimbuka-bukulula,” 
“Mugande” × “Dimbuka-bukulula,” and NASPOT 11 × NASPOT 7.

Discussion

Performance of progenies across 
environments

This study was aimed at identifying the best performing 
parental genotypes and crosses with reference to weevil (Cylas 
spp.) resistance, storage root yield, and dry matter content in the 
MDP sweetpotato population. The highly significant variance 
components for weevil severity and incidence observed in our 
trials highlight the possibility of selecting genotypes and families 
from within this population that have more resistance to Cylas 
spp. and perform better in terms of other key attributes such as 
SRY and DMC. The significant differences observed in the 
genotype by environment interactions for field related traits 
indicate that the various genotypes tested performed differently in 
all the study environments. This highlights the need for testing 
clones across environments in order to select those that suit 
particular production areas or can be broadly recommended. This 
occurrence is not new in sweetpotato, as similar observations were 
made by previous authors such as Gurmu et al. (2018) and Osiru 
et al. (2009).

The variations in mean weevil severity and incidence in 
genotypes within families could be attributed to the differences in 
their individual responses to these pests and differences in 
resistance mechanisms employed by the test clones. There is 
already evidence that the Ugandan landrace ‘New Kawogo’ is 
moderately resistant to Cylas spp. (Mwanga et al., 2001; Muyinza 
et al., 2012; Anyanga et al., 2013). This resistance has been ascribed 
to chemical compounds in the storage root latex, specifically the 
presence of higher concentrations of HCA esters on the root 
surfaces, epidermal and peridermal tissues of this variety 
(Stevenson et al., 2009; Anyanga et al., 2013). These esters have 
toxic effects on juvenile Cylas spp. and have a repellent effect on 
adult Cylas spp. (Anyanga et al., 2013).

Other plant attributes are also known to influence weevil 
population build-up in sweetpotato fields, they include: rooting 
depth, time taken before harvest (length of the growing season), 
vine thickness, root latex, root density, dry matter, and starch 

TABLE 4 Variance components and likelihood ratio test results for 
general combining ability (GCA) and specific combining ability (SCA) 
effects for weevil severity (WED, scale 1–9), weevil incidence (WI, %), 
storage root yield (SRY, t/ha), and dry matter content (DMC, %) across 
four environments.

Variance 
components

Traits

WED WI SRY DMC

GCAf 0.02 4.68* 1.05** 0.53

GCAm 0.00 1.70 0.00 0.00

GCAf × Environment 0.02* 3.61 0.65* 0.36**

GCAm × Environment 0.00 0.47 0.24* 0.15

SCA 0.01 0.00 0.42* 0.54*

SCA × Environment 0.01 1.82 0.00 0.00

Env_Abi2019A 4.52 715.96 36.22 22.11

Env_Abi2019B 3.54 764.38 22.33 34.71

Env_Ngetta2019B 3.17 671.92 90.88 21.33

Env_Ngetta2020A 2.92 221.57 205.24 36.97

*Significant at p ≤ 0.05.
**Significant at p ≤ 0.01. Residual variances presented separately for each of the four 
environments.

TABLE 5 Variance components and likelihood ratio tests for number 
of emerged adult weevils (CP) and number of feeding holes (FH) 
tested for three rounds of the no-choice laboratory bioassay.

Variance components
Traits

CP FH

Rep × Environment 290.53*** 1.53*

Genotype 45.60** 2.33

Genotype × Environment 268.10* 24.40**

Residual 2971.13 439.11

*Significant at p ≤ 0.05.
**Significant at p ≤ 0.01.
***Significant at p ≤ 0.001. Residual variances presented separately for each of the four 
environments.
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content (Mwanga et  al., 2001; Stathers et  al., 2003; Sorensen, 
2009). More still, weevil populations are known to increase with 
higher temperature, soil cracks, and exposed storage roots during 
dry seasons (Jansson et al., 1987; Grüneberg et al., 2015).

The weak, negative correlations detected between weevil-
related field traits and the number of adult weevils recorded in the 
bioassay could probably be due to the no-choice situation that was 
presented to the SPWs in the laboratory, given that only one clone 
root was placed in each jar. Usually in field situations, Cylas spp. 
have a choice and would rather feed on roots that meet their taste 
or that are more accessible to them for instance in terms of rooting 
depth (Stathers et  al., 2003). However, when presented with 
no-choice situations such as the case in the current study, they 
may be forced to feed on whatever roots are available to them to 
ensure their survival. More still, the feeding habits of Cylas spp. 
are somehow related to the different resistance mechanisms 
employed by the various clones. For instance, clones such as 
MDP1140a (family NASPOT 11 × NASPOT 7), MDP3 
(“Resisto” × “Ejumula”), and MDP1355a (“New 
Kawogo” × NASPOT 10 O) performed fairly well in the field, but 
then exhibited high infestations of weevils and high numbers of 
feeding holes in the no-choice feeding bioassay (Supplementary 
File S1). This could be attributed to non-preference (antixenosis) 
in the field due to factors such as deep roots, heavy pubescence, 
and high vine vigor that made the roots less accessible for weevils. 
Weevils are known to access storage roots through cracks in the 
soil, which normally increase in dry seasons. Varieties that are 
deep rooting, produce thinner roots, have heavy pubescence or 
more vines that cover the surface-shielding it from the sunshine, 
usually suffer less weevil infestation (Talekar, 1992; Stathers et al., 
2003). These same clones when tested in the no-choice bioassay 
showed susceptibility as evidenced by the high number of adult 
weevils and feeding holes probably because they either lacked or 
had minimal HCA esters that are known to limit weevil 
proliferation (Anyanga et al., 2013). On the other hand, genotypes 
such as MDP1536f (“Huarmeyano” × SPK004) and MDP1018 

FIGURE 1

Boxplots of predicted means for weevil severity, weevil incidence, storage root yield, and dry matter content across four environments.

TABLE 6 General combining ability (GCA) predictions for weevil 
severity (WED, scale 1–9), weevil incidence (WI, %), storage root yield 
(SRY, t/ha), dry matter content (DMC, %), and number of emerged 
adult weevils (CP) for the 16 sweetpotato parental genotypes.

Trait

WED WI SRY DMC 1CP

Female parents
Huarmeyano 4.32 40.64 9.69 34.14 59.16

Magabali 4.27 42.34 11.31 34.31 55.69

Mugande 4.11 38.77 9.78 34.08 57.03

NASPOT 11 4.47 44.35 12.09 34.76 54.69

NASPOT 5 4.24 39.31 9.45 33.58 64.56

New Kawogo 4.41 44.17 12.04 34.28 56.34

Resisto 4.44 43.98 10.57 32.41 52.47

Wagabolige 4.26 40.64 10.14 34.22 52.02

Male parents

Dimbuka-

bukulula

4.30 40.03 10.66 33.98 57.25

Ejumula 4.31 43.26 10.62 34.06 60.24

NASPOT 1 4.31 42.61 10.71 33.94 55.93

NASPOT 10 O 4.30 41.97 10.76 34.00 54.97

NASPOT 7 4.30 40.86 10.86 33.96 57.15

NASPOT5/58 4.30 41.45 10.50 34.03 55.09

NK259L 4.30 42.23 10.81 33.95 53.93

SPK004 4.30 41.13 10.64 34.03 58.20

1Results from the no-choice bioassay trial.
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(“Mugande” × NK259L) generally performed well with lower 
numbers of adult weevils and feeding holes in the laboratory 
bioassay and low weevil incidence and damage in the field. In their 
case, resistance could probably be by way of antibiosis as a result 
of the HCA esters that either repelled or led to the death of 
C. puncticollis, thereby minimizing damage. Yada et al. (2017b) 
identified clones that consistently displayed high levels of both 
field and HCA ester-based SPW resistance. Given that they appear 
to target different resistance mechanisms, field and laboratory-
based bioassays may both be crucial in creating robust resistance 
to weevils. However, field screening should be prioritized because 
it best captures the actual conditions under which farmers grow 
sweetpotatoes. Laboratory phenotyping of clones for weevil 
resistance would otherwise be  best when studying a smaller 
population of clones as this would ensure more efficiency in data 
collection. We suggest that more studies be designed to better 
understand the biology of Cylas spp. for more targeted control.

The relatively low mean storage root yields of sweetpotato 
observed in this study were mainly due to the poor performance 
of the trial at Abi ZARDI (season 2019B). This trial was planted 
towards the end of the rains and as a result, minimal rainfall was 

TABLE 7 Specific combining ability (SCA) predictions for weevil 
severity (WED, scale 1–9), weevil incidence (WI, %), storage root yield 
(SRY, t/ha), dry matter content (DMC, %), and number of emerged 
adult weevils (CP) for the 64 sweetpotato families.

Family
Traits

WED WI SRY DMC 1CP

Resisto × Ejumula 4.39 41.64 10.20 33.91 56.76

Resisto × NASPOT 1 4.43 42.01 10.45 33.03 55.80

Resisto × Dimbuka- 

Bukulula

4.31 41.66 10.91 33.54 56.38

Resisto × NASPOT5/58 4.36 41.71 10.14 33.63 56.21

Resisto × NASPOT 7 4.35 41.59 11.41 33.74 57.19

Resisto × SPK004 4.30 41.58 10.45 33.83 56.06

Resisto × NASPOT 10 O 4.27 41.76 10.37 34.16 56.68

Resisto × NK259L 4.31 41.54 11.48 33.22 57.83

Magabali × Ejumula 4.40 41.98 10.81 34.63 56.73

Magabali × NASPOT 1 4.32 41.60 10.81 33.88 56.73

Magabali × Dimbuka-

Bukulula

4.28 41.44 10.69 33.53 56.75

Magabali × NASPOT5/58 4.28 41.51 10.26 34.67 57.46

Magabali × NASPOT 7 4.27 41.63 11.26 33.51 55.51

Magabali × SPK004 4.22 41.45 10.60 34.53 55.85

Magabali × NASPOT 10 O 4.27 41.89 10.72 34.32 56.71

Magabali × NK259L 4.35 41.83 11.05 33.44 55.10

NASPOT 5 × Ejumula 4.31 41.34 9.99 33.87 57.12

NASPOT 5 × NASPOT 1 4.38 41.84 10.76 33.89 56.05

NASPOT 5 × Dimbuka-

Bukulula

4.22 41.30 10.46 34.24 56.31

NASPOT 5 × NASPOT5/58 4.33 41.63 10.18 33.89 56.73

NASPOT 5 × NASPOT 7 4.33 41.75 10.86 33.78 56.47

NASPOT 5 × SPK004 4.23 41.59 10.28 33.46 57.22

NASPOT 5 × NASPOT 10 O 4.30 41.93 11.21 33.82 56.39

NASPOT 5 × NK259L 4.24 41.64 10.47 34.22 57.50

Wagabolige × Ejumula 4.40 41.76 10.86 34.41 57.06

Wagabolige × NASPOT 1 4.40 41.77 11.04 33.47 56.02

Wagabolige × Dimbuka-

Bukulula

4.26 41.53 10.61 34.02 57.14

Wagabolige × NASPOT5/58 4.22 41.65 9.90 34.60 59.64

Wagabolige × NASPOT 7 4.30 41.65 10.29 34.04 57.22

Wagabolige × SPK004 4.22 41.64 10.81 34.22 56.89

Wagabolige × NASPOT 10 O 4.25 41.23 10.55 33.89 56.89

Wagabolige × NK259L 4.31 41.92 10.89 33.70 56.02

Mugande × Ejumula 4.36 41.88 10.26 34.87 55.86

Mugande × NASPOT 1 4.23 41.51 10.65 33.70 55.68

Mugande × Dimbuka-

Bukulula

4.20 41.40 10.23 33.92 57.08

Mugande × NASPOT5/58 4.35 41.47 10.61 34.37 56.49

Mugande × NASPOT 7 4.28 41.67 11.01 33.69 56.91

Mugande × SPK004 4.26 41.72 10.47 34.46 57.61

Mugande × NASPOT 10 O 4.18 41.72 10.44 33.27 57.92

Mugande × NK259L 4.21 41.59 10.89 33.80 55.83

NASPOT 11 × Ejumula 4.49 42.10 10.75 34.68 56.26

NASPOT 11 × NASPOT 1 4.38 41.55 10.45 33.56 55.74

(Continued)

TABLE 7 Continued

NASPOT 11 × Dimbuka-

Bukulula

4.38 42.03 11.03 34.29 56.60

NASPOT 11 × NASPOT5/58 4.37 41.86 10.53 34.33 56.71

NASPOT 11 × NASPOT 7 4.24 41.40 11.22 34.17 56.85

NASPOT 11 × SPK004 4.26 41.52 11.08 34.50 55.56

NASPOT 11 × NASPOT  

10 O

4.28 41.63 10.86 34.09 57.97

NASPOT 11 × NK259L 4.35 41.45 11.12 33.71 56.47

New Kawogo × Ejumula 4.38 41.36 10.19 34.33 56.58

New Kawogo × NASPOT 1 4.35 41.67 10.84 33.89 56.39

New Kawogo × Dimbuka-

Bukulula

4.31 41.69 11.07 34.21 56.71

New 

Kawogo × NASPOT5/58

4.36 41.77 10.25 34.17 56.59

New Kawogo × NASPOT 7 4.28 41.42 11.59 33.82 56.18

New Kawogo × SPK004 4.30 41.94 10.87 34.19 56.32

New Kawogo × NASPOT  

10 O

4.32 41.72 11.23 33.85 56.29

New Kawogo × NK259L 4.34 41.95 10.94 33.98 57.48

Huarmeyano × Ejumula 4.44 41.76 10.86 34.25 55.97

Huarmeyano × NASPOT 1 4.37 41.65 10.81 34.09 55.63

Huarmeyano × Dimbuka-

Bukulula

4.27 41.63 9.87 33.64 56.56

Huarmeyano × NASPOT5/58 4.29 41.59 9.83 33.98 57.21

Huarmeyano × NASPOT 7 4.31 41.86 11.01 33.49 57.47

Huarmeyano × SPK004 4.26 41.62 9.88 34.53 56.37

Huarmeyano × NASPOT  

10 O

4.30 41.51 11.34 34.58 57.05

Huarmeyano × NK259L 4.23 41.53 10.88 33.63 56.50

1Results from the no-choice bioassay trial.
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received during the growing period (330 mm). As a result, the 
lowest storage root yieldsand highest dry matter contents were 
recorded during that season. Shumbusha et al. (2014) noted that 
variations in DMC of sweetpotato roots could be attributed to 
weather patterns, soil types, and pest and diseases. The higher 
levels of weevil severity and incidence recorded at Abi ZARDI 
compared to Ngetta ZARDI may be due to the fact that Abi is 
located in an area that is generally hotter and drier (with less 
annual rainfall) than Ngetta (Table 2). Drought stress is known to 
negatively affect the field establishment of sweetpotatoes, which 
lowers their resilience to attack by Cylas spp., thereby escalating 
weevil damage (Stathers et al., 2003; Anyanga et al., 2017). This 
could explain why most genotypes performed better in Ngetta 
compared to Abi in terms of weevil severity and incidence.

General and specific combining ability

Variance components for GCA for female and GCAf by 
environment interaction were important for WI and WED, 
respectively, and even more for SRY and DMC. The significant 
GCA and SCA variances observed for the traits in the field study 
indicate that both additive and non-additive effects are important 
in the expression of these traits. This indicates that both clonal 
selection and hybridization could be successfully employed in 
breeding depending on the trait (Acquaah, 2007). In our study, 
weevil-related traits did not show important SCA, though they 
were significant for SRY and DMC. Previous authors reported 
similar findings for weevil damage, storage root yield, and dry 
matter content while studying other sweetpotato populations. 
Kagimbo et al. (2019) reported that both additive and non-additive 
gene effects were important in controlling sweetpotato weevil 
resistance, although additive effects played a greater role. The case 
is similar for storage root yield and dry matter content (Rukundo 
et al., 2017; Gurmu et al., 2018; Kagimbo et al., 2019). Fasahat et al. 
(2016) observed that generally, both additive and non-additive 
gene action are important in governing pest resistance in many 

crops of commercial interest. The non-significant variance 
components observed for males, families, and their interactions 
with environments in terms of weevil severity and incidence, 
indicate that GCA for males and SCA generally performed in a 
similar manner across environments for these traits hence, did not 
contribute much to distinguishing best performing males and 
families. Similar observations were made by Kagimbo et al. (2019), 
who studied a population of 36 sweetpotato families in two 
locations in Tanzania and reported non-significant family-by-
environment interactions.

Parental genotypes that were the best in terms of weevil 
resistance included “Mugande,” NASPOT 5, “Dimbuka-
bukulula,” and “Wagabolige” whereas “New kawogo” and 
NASPOT 11 were the best combiners for SRY and DMC. The 
families that displayed highest levels of weevil resistance 
included; “Wagabolige” × NASPOT 10 O, NASPOT 
5 × “Dimbuka-bukulula,” “Mugande” × “Dimbuka-bukulula,” 
and NASPOT 11 × NASPOT 7. On the other hand, the families 
“New kawogo” × NASPOT 7 and “Mugande” × “Ejumula” 
performed best in terms of SRY and DMC, respectively, 
(Figure 2). Parental genotypes that display high GCA values 
for specific traits of interest are usually the most suited for 
integration into breeding programs considering that there 
would be more transmission of those traits to their offspring 
because of the additive effects. Crosses with higher SCA 
values, however, are specifically preferred in the development 
of hybrid programs (De la Cruz-Lázaro et al., 2010; Ferrari 
et  al., 2018). It is therefore recommended that the best 
performing parental genotypes and families identified 
through this study be deployed in view of this.

Heritability estimates

Heritability is known to influence the genetic improvement of 
traits, with a higher heritability usually associated with fewer 
genes controlling the given trait, making trait improvement 

FIGURE 2

Best and worst performing families based on best linear unbiased predictors (BLUPs) for weevil severity, weevil incidence, storage root yield, and 
dry matter content across four environments.
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relatively easier using conventional breeding methods (Ma Teresa 
et al., 1994; Courtney et al., 2008; Mwije et al., 2014). The narrow 
sense heritability ( h2 ) estimates for weevil resistance (0.35), 
storage root yield (0.36), and dry matter content (0.45) obtained 
in the present study are considered moderate. This suggests that 
selection for these traits might be somewhat challenging, although 
it could be done with a strong emphasis on using the best offspring 
as the parental genotypes for future hybridization. The narrow 
sense heritability estimate for weevil resistance obtained in this 
study, is similar to that reported by Thompson et al. (1994) who 
estimated h2  of 0.35 for the same trait through parent-offspring 
regression with data obtained from root weevil damage. The h2  
estimates reported in the current study were based on a model that 
included pedigree information and consequently, the genetic 
variance was purely additive. However, the weevil resistance h2  
estimate somewhat contrasted with what was reported by some 
previous researchers. For instance, Kagimbo et  al. (2019) and 
Odama (2021) reported 0.77 and 0.19, respectively, as h2  for 
weevil damage. The narrow sense heritability for weevil resistance 
based on weevil incidence was <0.01 due to the existence of large 
residuals that dropped the value close to zero. However, previous 
authors including Kagimbo et  al. (2019) and Thompson et  al. 
(1994) reported 0.78 and 0.52 as narrow sense heritability for this 
particular trait. For the case of storage root yield and dry matter 
content, our h2 estimates are higher than those reported by 
Gurmu et al. (2018) who obtained 0.20 and 0.19, respectively, for 
the two traits, and Odama (2021) who reported 0.28 and 0.32, 
respectively, for SRY and DMC.

Heritability estimates are known to vary with different 
populations, test environments, and methods of computation 
and can also be affected by bias and poor statistical precision 
(Acquaah, 2007; Agbahoungba et  al., 2018). In the case of 
sweetpotato, the differences could also be attributed to the 
high levels of heterozygosity and the hexaploid nature of the 
crop (Gurmu et al., 2018). Falconer and Mackay (1996) noted 
that heritability cannot be  fully exploited in heterozygotes 
because of the presence of non-additive gene action. Gasura 
et al. (2008) further indicated that the use of marker assisted 
selection in breeding for traits with low heritability could lead 
to enhanced selection efficiency. Considering the low to 
moderate levels of narrow sense heritability estimates reported 
in this study, it may be best to implement genomic assisted 
selection alongside conventional breeding for key traits in 
sweetpotato. This could not only enhance but also quicken 
research outputs in breeding for weevil resistance and other 
key sweetpotato traits.

Conclusion

In the present study, both additive and non-additive 
effects were found to be significant in the expression of weevil 
resistance, storage root yield, and dry matter content as 
revealed by the significant GCA and SCA estimates. This, 

coupled with the moderate levels of narrow-sense 
heritabilities estimated, suggests that these traits could 
be enhanced through conventional breeding via hybridization 
and progeny selection. However, selection for weevil 
resistance and storage root yield may be  challenging for 
breeders. Nonetheless, future effort in breeding for these 
traits could potentially be  boosted through applying 
genomics-assisted breeding.

Parental genotypes that proved to be  the best general 
combiners for weevil resistance included NASPOT 5, “Mugande,” 
“Wagabolige,” and “Dimbuka-bukulula” whereas “New Kawogo” 
and NASPOT 11 were superior for storage root yield and dry 
matter content. Based on SCA effects, the families 
“Wagabolige” × NASPOT 10 O, NASPOT 5 × “Dimbuka-bukulula,” 
“Mugande” × “Dimbuka-bukulula,” and NASPOT 11 × NASPOT 7 
displayed the highest resistance to Cylas spp., whereas “New 
kawogo” × NASPOT 7 and “Mugande” x “Ejumula” were the best 
in terms of storage root yield and dry matter content, respectively. 
We  recommend the superior parents and families identified 
through this study for further research involving the genetic 
improvement of these traits.
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