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Auxin is one of the most important plant growth regulators of plant

morphogenesis and response to environmental stimuli. Although the

biosynthesis pathway of auxin has been elucidated, themechanisms regulating

auxin biosynthesis remain poorly understood. The transcription of auxin

biosynthetic genes is precisely regulated by complex signaling pathways.When

the genes are expressed, epigenetic modifications guide mRNA synthesis

and therefore determine protein production. Recent studies have shown that

di�erent epigenetic factors a�ect the transcription of auxin biosynthetic genes.

In this review, we focus our attention on the molecular mechanisms through

which epigenetic modifications regulate auxin biosynthesis.

KEYWORDS
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Introduction

As an important plant growth regulator, auxin plays a central role in regulating the

growth and development of plants (Woodward and Bartel, 2005; Enders and Strader,

2015; Lavy and Estelle, 2016; Weijers et al., 2018; Semeradova et al., 2020). It is

well-established that the key to auxin’s control of growth and development is through its

gradient distribution (Tanaka et al., 2006; Vieten et al., 2007). According to the classical

view in the auxin field, auxin is produced in the shoot apical meristems, young leaves,

and flower buds and is distributed over a gradient through Polar Auxin Transport (PAT)

(Teale et al., 2006). More recently, local auxin biosynthesis has also been considered to

play an important role in the formation of auxin gradients. Local auxin biosynthesis is

regulated by diversified signaling pathways and guides plant growth and development

and response to environmental stimuli (Brumos et al., 2018; Lv et al., 2019). The

regulatory mechanisms underlying auxin biosynthesis include transcriptional regulation

and posttranslational modifications (Casanova-Saez et al., 2021).
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As one of the primary modes of transcriptional regulation,

epigenetic modifications of the genome, which mainly include

histone modifications in nucleosomes and DNA methylation

modifications, change the structure of chromosomes or change

the spatial structure of the modified DNA, resulting in

gene silencing or overexpression. A number of reviews have

summarized the functions of different epigenetic mechanisms

in auxin signaling, transport, and metabolism (Yamamuro

et al., 2016; Do et al., 2019; Mateo-Bonmati et al., 2019;

Nguyen et al., 2020; Wojcikowska et al., 2020), two of which

focused on epigenetic contributions to auxin biosynthesis.

Mateo-Bonmati et al. (2019) comprehensively described the

relationships between epigenetic modifications and auxin

homeostasis. Do et al. (2019) highlighted the roles of epigenetic

modifications in the YUC family genes, which are the most

important genes in the auxin biosynthesis pathway. This

review, based on emerging results, aims to provide an

updated overview and some hypotheses about the effects of

epigenetic modification on the regulation of auxin biosynthesis

(Table 1).

Main pathway for IAA biosynthesis

Biochemical and genetic evidence has shown that the major

natural auxin, indole-3-acetic acid (IAA) is synthesized through

twomajor pathways: the Tryptophan-Independent (TI) pathway

and the Tryptophan-Dependent (TD) pathway (Woodward and

Bartel, 2005; Normanly, 2010; Ljung, 2013; Casanova-Saez and

Voss, 2019; Casanova-Saez et al., 2021). While the TD pathway

is fairly well-understood, little is known about the TI pathway

(Gomes and Scortecci, 2021).

As shown in Figure 1, the Tryptophan (Trp) biosynthesis

pathway includes six critical steps (Maeda and Dudareva,

2012). The rate-limiting step is catalyzed by anthranilate

synthase, which contains two subunits, WEAK ETHYLENE

INSENSITIVE 2 (WEI2)/ANTHRANILATE SYNTHASE

ALPHA-SUBUNIT 1 (ASA1) and WEI7/ANTHRANILATE

SYNTHASE BETA-SUBUNIT 1 (ASB1) (Stepanova et al.,

2005, 2008). Some publications reported that both wei2 and

wei7 mutants exhibit auxin-deficient phenotypes triggered

by reduced endogenous auxin (Stepanova et al., 2005; Di

et al., 2016a; Veloccia et al., 2016). In the TD pathway, there

are several parallel pathways downstream of Trp for IAA

biosyntheses, such as the indole-3-pyruvic acid (IPyA) pathway,

the indole-3-acetamide (IAM) pathway, and the indole-3-

acetaldoxime (IAOx) pathway (Ljung, 2013; Di et al., 2016c;

Casanova-Saez and Voss, 2019; Casanova-Saez et al., 2021).

The IPyA pathway has been established as the main pathway

of auxin biosynthesis (Mashiguchi et al., 2011; Won et al.,

2011; Zhao, 2014) and consists of a two-step reaction. The

TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS

(TAA) family proteins have overlapping functions and catalyze

the conversion of Trp to IPyA (Stepanova et al., 2008; Tao et al.,

2008; Yamada et al., 2009; Zhou et al., 2011). This family of

proteins include three homologous proteins TAA1/WEAK

ETHYLENE INSENSITIVE 8 (WEI8)/TRANSPORT

INHIBITOR RESPONSE 2 (TIR2)/SHADE AVOIDANCE

3 (SAV3)/CYTOKININ INDUCED ROOT CURLING 1

(CKRC1), TRYPTOPHAN AMINOTRANSFERASE RELATED

1 (TAR1), and TAR2 (Stepanova et al., 2008; Tao et al., 2008;

Yamada et al., 2009; Zhou et al., 2011). The biosynthesis

of IAA from IPyA is catalyzed by YUC (YUCCA) flavin

monooxygenase-like proteins (Mashiguchi et al., 2011;

Stepanova et al., 2011; Won et al., 2011; Di et al., 2016b), which

is a large family of 11 members that are functionally redundant

with each other (Zhao et al., 2001; Cheng et al., 2006, 2007; Kim

et al., 2007; Stepanova et al., 2011; Chen et al., 2014; Liu et al.,

2017).

The repressive histone mark
H3K27me3 controls the expression
of auxin biosynthetic genes

The DNA sequences in eukaryotes are assembled with

proteins into nucleosomes, which are 146-bp of DNA wrapped

1.7 times around histone core protein complexes (H2A, H2B,

H3, and H4). Surrounding the nucleosome is the junction

histone H1, which compresses the nucleosome into higher-

order structures to form chromatin fibers (Carlberg andMolnár,

2020b). In Arabidopsis, gene transcription is regulated by the

chromatin state, which is determined by histone H3methylation

and acetylation and histone H2Bmonoubiquitination (H2Bub1)

(Roudier et al., 2011). Compared with acetylation and

monoubiquitination, methylation also occurs on lysine residues

of histones but varies in the degree of modification, i.e.,

mono-, di-, or tri-methylation (Carlberg and Molnár, 2020a).

Different methylation sites have different regulatory functions

on gene transcription. For instance, H3K4me3 (H3 lysine 4

trimethylation) is detected specifically at active promoters,

while H3K27me3 is correlated with gene repression over larger

genomic regions (Carlberg and Molnár, 2020a).

About a decade ago, whole-genome occupancy studies

showed that H3K27me3 was associated with the transcriptional

repression of auxin-related genes. In comparisons of dividing

and differentiated cells, differential H3K27me3 modifications

were observed at the loci of YUCs, Cytochrome P450s (CYPs),

and TAA1/TARs (Lafos et al., 2011; He et al., 2012). In

Arabidopsis, H3K27me3 is catalyzed by Polycomb Repressive

Complex 2 (PRC2), which is an important epigenetic regulator

of developmental processes (Schuettengruber et al., 2007; Muller

and Verrijzer, 2009). In Drosophila, the PRC2 complex consists

of four core subunits: the histone methyltransferase Enhancer of

zeste [E(z)], Suppressor of zeste 12 [Su(z)12], Extra sex combs

(Esc), and the histone-binding Nurf55 (nucleosome remodeling
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FIGURE 1

The main pathways of auxin biosynthesis. The figure shows three parallel Trp-dependent (TD) IAA biosynthesis pathways in Arabidopsis, namely

the indole-3-acetamide (IAM) pathway, and the indole-3-pyruvic acid (IPyA) pathway, and the indole-3-acetaldoxime (IAOx) pathway. Enzymes

mentioned in this review are in red font.

factor 55 kDa) (Schuettengruber and Cavalli, 2009; Simon and

Kingston, 2013; Mozgova and Hennig, 2015). There are three

PRC2 complexes in Arabidopsis, one of which is called FIS-

PRC2 [including FERTILIZATION INDEPENDENT SEED2

(FIS2), Homolog of Su(z)12, CURLY LEAF (CLF), Homolog of

E(z), FERTILIZATION INDEPENDENT ENDOSPERM (FIE),

Homolog of Esc, and MULTIPLE SUPPRESSOR OF IRA 1

(MSI1), Homolog of Nurf55] (Mozgova and Hennig, 2015).

During angiosperm fertilization, the auxin biosynthetic gene

YUC10 is constitutively repressed in maternal-derived tissues by

the action of the FIS-PRC2 complex (Figueiredo et al., 2015).

When FIS2, MEA/FIS, and MSI1 functions are deficient, the

absence of H3K27me3 results in heterochronic expression of

auxin biosynthetic genes, resulting in fertilization-independent

development of empty seeds (Figueiredo et al., 2015).

A model for the regulation of auxin biosynthetic genes by

H3K27me3 was established through studies of LHP1/TFL2

(LIKE HETEROCHROMATIN PROTEIN 1/TERMINAL
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FIGURE 2

Two models for histone methylation are involved in the transcriptional regulation of YUCs. (A) Model of how H3K27me3 by the PRC2 complex

inhibits the expression of auxin biosynthetic genes. (B) The JMJ12/REF6 histone demethylase positively regulates YUCs by demethylation of

histone H3K27.

FLOWER 2), which is a unique homolog of Drosophila

HETEROCHROMATIN PROTEIN 1 (HP1) in the Arabidopsis

genome (James and Elgin, 1986; Gaudin et al., 2001; Kotake

et al., 2003). It was initially thought that LHP1 binds to

methylated H3K27, interact with a plant Ring-Finger protein,

and catalyzes H2A ubiquitination as part of the plant PRC1-like

complex (Xu and Shen, 2008; Bratzel et al., 2010). However,

Derkacheva et al. (2013) found that the MSI1 subunit links

PRC2 to LHP1 for H3K27me3. There is evidence of this LHP1-

PRC2 association in other reports, such as LHP1 is proved to

be co-purified with PRC2 and impacts H3K27me3 levels at

thousands of loci (Wang et al., 2016), and the involvement

of LHP1-PRC2 complex in maintaining H3K27me3 levels in

dividing cells in Arabidopsis (Zhou et al., 2017). Early studies

showed that TFL2/LHP1 is involved in auxin biosynthesis

by activating the expression of YUCs (Rizzardi et al., 2011).

Chromatin immunoprecipitation (ChIP) analysis showed

TFL2/LHP1 enrichment over the transcribed regions of YUC1,

YUC2, YUC4, YUC5, YUC6, YUC8, YUC9, and YUC10 (Rizzardi

et al., 2011). At the late stage of floral organ development, the

C2H2-type zinc-finger transcription factor SUPERMAN (SUP)

was expressed at the floral meristem-organ boundaries to

define flower patterning. The loss function of SUP leads to

higher levels of auxin in these boundaries, resulting in flowers

with supernumerary stamens. As shown in Figure 2A, while

binding to the YUC1 and YUC4 promoters through the

C2H2 zinc-finger domain, SUP recruits the PCR2 complex

by interacting with the CLF subunit and LHP1 to form the

SUP-LHP1-PRC2 complex, which represses YUC1 and YUC4

expression by trimethylation modification of histone H3 at

K27 (Xu et al., 2018). Interestingly, LHP1 functions by linking

with PRC2 and participating in maintaining H3K27me3, which

contradicts earlier studies that showed that LHP1 positively

regulates auxin biosynthetic genes (Rizzardi et al., 2011),

suggesting that the function of LHP1 seemed to be controlled

by complex mechanisms. Perhaps LHP1 plays various biological

functions with different epigenetic regulators in different

tissues, at different developmental stages, or under different

environmental stimuli. It remains necessary to uncover the

precise mechanism by which LHP1 regulates auxin biosynthesis

at the YUC loci in the future.

Gene repression by H3K27me3 is also orchestrated by

other proteins that act antagonistically to PRC2. The JUMONJI

DOMAIN-CONTAINING (JMJ) proteins have been identified
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to function as Histone DeMethylases (HDMs) in mammalian

and plant cells (Agger et al., 2008; Lu et al., 2011; Cheng

et al., 2018). As shown in Figure 2B, a number of studies

have documented that JMJ12/REF6 (RELATIVE OF EARLY

FLOWERING 6) was found to regulate YUC1, YUC3, YUC7,

YUC8, YUC9, and YUC11 via specifically demethylating

H3K27me3 and H3K27me2 in Arabidopsis (Cui et al., 2016; Li

et al., 2016; Yan et al., 2018). In leaf explants upon wounding,

upregulation of YUC1 and YUC4 is accompanied by the removal

of H3K27me3 (Chen et al., 2016). Do et al. (2019) speculated

in their review that the wound-jasmonate (JA) signal or even

other environmental signals may trigger the recruitment of

JMJ12/REF6. A recent study showed that JMJ14, JMJ15, and

JMJ18 play key roles in high ambient temperature-induced

YUC8 expression. However, unlike JMJ12/REF6, the JMJ14,

JMJ15, and JMJ18 mediated removal of H3K4me3 (activating)

marks activates YUC8 transcription by inhibiting the expression

of some negative regulators (Cui et al., 2021).

Other studies have also suggested that H3K36me3 and

H3K4me2 are involved in auxin biosynthesis. The H3K36me3

histone mark readers EMSY-Like protein 1 (EML1) and EML3

in the Tudor/Agent family repress YUC10 expression during

seed coat and endosperm development (Milutinovic et al., 2019).

This is contrary to the common belief that H3K36me3 positively

regulates gene transcription (Liu et al., 2010; Milutinovic et al.,

2019), although the molecular mechanism remains unknown.

The RNA binding protein FLOWERING CONTROL LOCUS

A (FCA) is involved in chromatin silencing by promoting

histone demethylation (Tian et al., 2019). A large number of

studies have shown that PIF4 promotes growth by inducing the

expression of YUC8 at high ambient temperatures (Sun et al.,

2012; van der Woude et al., 2019; Xue et al., 2021), but there

is also a mechanism that decreases transcriptional activation of

PIF4 to avoid heat stress damage. PIF4 recruits FCA to trigger

histone H3K4me2 (activating mark) demethylation at the YUC8

promoter region, which triggers PIF4 dissociation from the

DNA to inhibit its expression (Lee et al., 2014).

Histone acetylation and chromatin
remodeling in activating or
repressing auxin biosynthetic genes

Since histone acetylation was first reported (Allfrey et al.,

1964), it has been extensively studied in microorganisms,

animals, and plants (Anonymous, 2021). Histone acetylation

neutralizes the positive charge of lysine at the histone tail,

decreasing the interaction between the histone protein and

the negatively charged DNA to promote an “open” and

transcriptionally permissive chromatin structure (Lee and

Workman, 2007; Lawrence et al., 2016). Increased levels of

histone acetylation are associated with the activation of many

genes involved in different plant biological processes, such as

root morphogenesis (Nguyen et al., 2020), photosynthesis (Zhou

et al., 2022), shade avoidance response (Peng et al., 2018),

wound-induced cellular reprogramming (Rymen et al., 2019),

and salt stress response (Li et al., 2014). The dynamic changes

in histone acetylation are often controlled by two enzymes

with opposing functions, HISTONE ACETYLTRANSFERASEs

(HATs), and HISTONE DEACETYLASEs (HDAs) (McGinty

and Tan, 2014). Current studies have elucidated that homeostasis

of histone acetylation is not only critical for AUXIN/INDOLE-3-

ACETIC ACID-AUXIN RESPONSE FACTOR (AUX/IAA-ARF)

mediated auxin signaling (Nguyen et al., 2020), but also for

regulation of auxin biosynthesis.

Local biosynthesis of auxin plays a key role in the shade

avoidance response of plants. Disruption of auxin biosynthesis

by mutation of the TAA1 gene reduced hypocotyl elongation

responses (Tao et al., 2008; Won et al., 2011). Shade can activate

the expression of YUC2, 5, 8, and 9 (Tao et al., 2008; Hornitschek

et al., 2012; Muller-Moule et al., 2016; Peng et al., 2018), which

depend on different PIF transcription factors such as PIF4,

PIF5, and PIF7 (Hornitschek et al., 2012; Peng et al., 2018).

As shown in Figure 3A, Peng et al. (2018) have revealed the

molecular mechanism of PIF7 activating YUC8 transcription.

When plants are exposed to shade, the PIF7 is dephosphorylated

and subsequently binds to the G-box (CACGTG) cis-element

of the YUC8 promoter (Li et al., 2012; Peng et al., 2018).

Secondly, PIF7 interacts with MRG2 (MORF-RELATED GENE

2), which binds to H3K4me3/H3K36me3 at the 5′-end of YUC8

(Bu et al., 2014; Xu et al., 2014; Peng et al., 2018). Finally,

the PIF7-MRG2 complex recruits HATs to promote histone

acetylation at H4K5, H3K9, and H3K27 at the coding region

of YUC8, resulting in the induction of its expression (Peng

et al., 2018). A similar mechanism for transcriptional regulation

of GH3.3, which converts IAA to IAA amino acid conjugates

(Chen et al., 2010), is driven by the BASIC LEUCINE ZIPPER

11—TRANSCRIPTIONAL ADAPTOR 2b (bZIP11-ADA2b)

complex, which is able to recruit GENERAL CONTROL NON-

REPRESSIBLE 5/HISTONE ACETYLTRANSFERASE OF THE

GNAT FAMILY 1 (GCN5/HAG1) to the GH3.3 promoter,

inducing the activation ofGH3.3 expression (Weiste and Droge-

Laser, 2014).

As an evolutionarily conserved variant of the canonical

histone H2A, H2A.Z plays a critical role in multiple cellular

processes through its influence on chromatin structure and

dynamics. In plants, H2A.Z is involved in regulating growth and

development, phase transitions, and response to environmental

stimuli (Kumar, 2018). One well-studied model of H2A.Z is

the regulation of thermomorphogenesis through temperature-

responsive nucleosome dynamics (Kumar and Wigge, 2010;

Casal and Balasubramanian, 2019). The histone variant H2A.Z

is enriched at gene loci with high thermo-responsiveness, and

its presence is often associated with transcriptional repression

(Coleman-Derr and Zilberman, 2012; Dai et al., 2017; Sura et al.,

2017). Numerous auxin-related genes, such as YUCs, AUX/IAAs,
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FIGURE 3

Two models for histone acetylation involvement in transcriptional regulation of YUC8. (A) The transcription factor PIF7 positively regulates YUC8

by recruiting the MRG-HAT complex. (B) When the ambient temperature rises, the HDA9-PWR complex mediates the deacetylation of H3K9 and

H3K14, which opens YUC8 chromatin to allow PIF4 binding to activate YUC8 transcription. PIF4 recruits the INO80-C-COMPASS-TEFs complex

to promote H2A.Z eviction, H3K4me3, and transcription elongation at the YUC8 loci.

and SMALL AUXIN UP RNA (SAURs), have been shown to

mediate high-temperature-associated plant growth (Koini et al.,

2009; Franklin et al., 2011; Sun et al., 2012; Lee et al., 2014;

Perrella et al., 2022). As shown in Figure 3B, at low ambient

temperature, the transcription of YUC8 is repressed by the

SWR1 chromatin remodeling complex (Tasset et al., 2018; van
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der Woude et al., 2019), which is necessary for inserting the

alternative histone H2A.Z into nucleosomes in place of H2A

(Krogan et al., 2003; Kobor et al., 2004; Mizuguchi et al., 2004).

When the ambient temperature increases, the HDA9-PWR

(POWERDRESS) complex mediates the deacetylation of H3K9

and H3K14 in the first nucleosome at the 5’-end of the YUC8

gene, which reduces H2A.Z occupancy in nucleosomes (Tasset

et al., 2018; van der Woude et al., 2019). The transcription factor

PIF4 directly interacts with the INO80 chromatin remodeling

complex (INO80-C), which mediates H2A.Z eviction at the

YUC8 loci (Xue et al., 2021). At the same time, INO80-

C can interact with COMPASS (methyltransferase for H3K4

trimethylation) and TEFs (transcription elongation factors) to

enhance H3K4me3 and transcription elongation (Xue et al.,

2021). These dynamic changes in the chromatin promote YUC8

expression, leading to plant morphological changes in response

to elevated temperatures (Tasset et al., 2018; van der Woude

et al., 2019; Xue et al., 2021).

There are two other reports which suggested that the

chromosome remodeling resulting from histone deacetylation

may also be involved in the transcriptional regulation of

other YUCs. In the Arabidopsis gynoecium, the apical-basal

and mediolateral polarity of auxin involve regulation at the

YUC4 loci through histone acetylation at H3K9 and H3K14

by GCN5/HAG1 (at −174 to −84 in the YUC4 promoter,

also the first nucleosome at the 5′-end of YUC4), which

inhibits the transcription of YUC4 (Poulios and Vlachonasios,

2018). The SWR1 complex consists of several subunits, such

as PHOTOPERIOD INDEPENDENT EARLY FLOWERING

1 and ARP6 (ACTIN-RELATED PROTEIN 6) (Aslam et al.,

2019). As a homologous protein of ARP6, ARP4 represses

the transcription of YUC9 through exchanging H2A with the

histone variant H2A.Z (Lee and Seo, 2017), but it remains

unknown if the release of YUC9 transcriptional inhibition is

related to HDA-PWR complex-mediated histone deacetylation.

Moreover, in Arabidopsis leaf development, the expression of

the auxin metabolism gene IAMT1 (encoding an enzyme that

converts IAA into its methyl ester) and biosynthetic gene

YUC6 were regulated by the subunit SWI3B of the chromatin

remodeling complex SWI/SNF (Han et al., 2018; Lin et al., 2021).

Interestingly, the effects of histone acetylation on the

transcription of YUC8 were opposite in the two models

(Figures 3A,B), the acetylation of histone activated YUC8

transcription (Peng et al., 2018) during shade avoidance but

inhibited YUC8 transcription during thermomorphogenesis

(van der Woude et al., 2019). We noticed that the nucleosomes

containing acetylated histone were located in the coding region

of YUC8 in the study on shade avoidance, but were located

at the 5′-end of YUC8 in the study on thermomorphogenesis

(Peng et al., 2018; van der Woude et al., 2019). In addition,

the acetylated lysine sites were different, at H4K5, H3K9, and

H3K27 during shade avoidance (van der Woude et al., 2019)

and at H3K9 and H3K14 during high ambient temperature

(Peng et al., 2018). This means that nucleosomes may have

different functions based on the position of the acetylated

histone in the chromatin and on which lysine residues in the

histone are modified by acetylation. In addition, the histone

acetyltransferase GCN5/HAG1 not only acetylates H3K27 in

the GH3.3 promoter to activate GH3.3 expression (Weiste and

Droge-Laser, 2014), but also acetylates H3K9 and H3K14 in

the YUC4 promoter to inhibit YUC4 expression (Poulios and

Vlachonasios, 2018). This further shows that compared with

the enzyme that mediates histone acetylation modification, the

position of acetylated lysine sites in histone H3 may determine

whether transcription is activated or inhibited.

H2Bub1 is involved in the regulation
of auxin biosynthesis

Like histone acetylation, monoubiquitination of histone

H2B (H2Bub1) is another important epigenetic modification

related to gene transcriptional activation (Roudier et al., 2011).

In nucleosomes embedded in the coding regions of genes with

strong transcriptional activity, there are often increased levels

of histone H2Bub1, which changes the chromatin state and

is specifically linked with transcript elongation (Pavri et al.,

2006; Bourbousse et al., 2012; Himanen et al., 2012; Feng and

Shen, 2014; Van Lijsebettens and Grasser, 2014; Woloszynska

et al., 2019). H2Bub1 participates in a variety of physiological

processes by activating the transcription of related genes, such as

seed germination and dormancy (Wang et al., 2022), flowering

time (Cao et al., 2008; Woloszynska et al., 2019), defense (Zhao

et al., 2020; Ma et al., 2021), and stress responses (Chen et al.,

2019; Ma et al., 2019; Sun et al., 2020).

The monoubiquitination of histone H2B is catalyzed by

the ubiquitin ligase E3 heterotetrameric complex, consisting

of two Histone Monoubiquitination 1 proteins (HUB1s) and

two homologous HUB2s (Cao et al., 2008). The function of

HUB1 was tied to auxin biosynthesis through the Cytokinin-

Induced Root Curling (CKRC) system for screening auxin

deficient mutants. There was a reduced level of IAA in the

ckrw2mutant (cytokinin-induced root waving 2) that was linked

to the loss of function of the gene HUB1 (Wu et al., 2015).

Recent ChIP analysis showed that the ckrw1/hub1 mutant had

corresponding defects in H2Bub1 in the coding regions of

the auxin biosynthetic genes TSB1, WEI7/ASB1, YUC7, and

AMI1 (amidase 1), indicating that H2Bub1 is required for the

transcriptional regulation of these genes (Figure 4A; Zhang et al.,

2021).

The current challenge in understanding HUB function is the

identification of mechanisms that recruit the HUB complex to

the auxin biosynthetic genes. Research on the rice transcription

factor OsbZIP46 provides clues. Similar to how the transcription

factor bZIP11 recruits the ADA2b-GCN5/HAG1 complex

(Figure 4B; Weiste and Droge-Laser, 2014), phosphorylated
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FIGURE 4

Three models for histone ubiquitination and/or acetylation are involved in transcriptional regulation. (A) The auxin biosynthetic genes WEI7,

TSB1, YUC7, and AMI1 are regulated by H2Bub1. (B) The transcription factor bZIP11 positively regulates GH3.3 by recruiting the

ADA2b-GCN5/HAG1 complex. (C) H2Bub1 (according to the study of Cao et al., 2008, we speculate that the monoubiquitination modification

of H2B occurs at the K148 of H2B in Oryza sativa L.) and H3ac are involved in the regulation of stress-responsive genes (in Tang et al., 2016, the

sites of histone lysine residues modified by acetylation were not mentioned).
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FIGURE 5

Model for the involvement of DNA methylation and small RNAs in the transcriptional regulation of the auxin biosynthetic gene YUC2.

OsbZIP46 recruits the HUB complex to activate the expression

of stress-responsive genes by histone H2B monoubiquitination

(Figure 4C; Ma et al., 2019). Working in opposition,

the MEDIATOR OF OSBZIP46 DEACTIVATION AND

DEGRADATION (OsbZIP46-MODD) complex, consisting

of dephosphorylated OsbZIP46 and MODD, simultaneously

recruits OTUBAIN-LIKE DEUBIQUITINASE 1 (OsOTLD1)

and the TPL/TPR COREPRESSOR (OsTRP3)-HDA complex

to shut down the transcription of stress-responsive genes

via deubiquitination and deacetylation, respectively (Tang

et al., 2016; Ma et al., 2019). The transcriptional activity of

OsbZIP46 is blocked by the negative regulatory domain D.

Phosphorylation promotes the interaction between OsbZIP46

and the HUB complex to activate the transcriptional activity

of OsbZIP46 while also suppressing the negative regulatory

function of domain D and preventing MODD interaction

with domain D (Tang et al., 2016; Ma et al., 2019). The

function of the OsbZIP46 transcription factor is involved

not only in histone ubiquitination and deubiquitination

but also in histone acetylation and deacetylation, suggesting

that ubiquitination and acetylation may play a synergistic

role in the regulation of gene transcription (Figure 4C).

We speculate that some unknown factors may activate the

transcription of auxin biosynthetic genes by recruiting the

HUB complex to promote H2Bub1 on specific loci. Of

course, there may be other epigenetic factors involved in

this process.

DNA methylation and small RNAs’
role in auxin biosynthesis

Another epigenetic modification is DNA methylation which

is usually associated with the transcriptional silencing of

genes. DNA methylation is relatively stable but also reversible,

and usually occurs on a cytosine base of DNA, to form 5-

methylcytosine, in eukaryotes. Unlike mammalian methylation

which occurs only in the CG sequence context, plant DNA can

bemethylated in CG, CHH, andCHG sequence contexts (withH

representing A, T, or C) (Zhang et al., 2018; Gallego-Bartolome,

2020). There are two types of DNA methylation, one is de novo

methylation, the methylation of DNA with two unmethylated

chains; the other is maintenance methylation of a newly

synthesized DNA strand after semi-conservative replication of

methylated DNA. DNAmethylation is mainly established by the

de novo DNA methyltransferases DOMAINS REARRANGED

METHYLTRANSFERASE 1/2 (DRM1/2), which are directed

by 24-nt small interfering RNAs (siRNAs), and methylates

all three sequence contexts via the RNA-directed DNA

methylation (RdDM) pathway (Zhang et al., 2018). During

DNA replication, methylation at the CG, CHH, and CHG

contexts is maintained by METHYLTRANSFERASE 1 (MET1),

CHROMOMETHYLASE 2 (CMT2), and CMT3, respectively

(Stroud et al., 2014; Zhang et al., 2018).

In the previous section, we reviewed the regulation

of auxin biosynthetic genes by PIFs and histone
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acetylation during thermomorphogenesis. Another study

on thermomorphogenesis reported the temperature-related

regulation of endogenous auxin biosynthesis by a PIF4-

independent epigenetic pathway (Figure 5; Gyula et al.,

2018). The expression of the auxin biosynthetic gene YUC2

is negatively regulated by miRNA169 which prevents the

binding of transcription factors NF-YA2 and NF-YA10 to

the YUC2 promoter (Zhang et al., 2017). A 24-nt siRNA,

Locus_77297, directs DNA methylation in the promoter of

YUC2, which blocks the binding of NF-YA2 to inhibit the

expression of YUC2 (Gyula et al., 2018). At low ambient

temperature, the high levels of miRNA169 and Locus_77297

result in a low concentration of active NF-YA2 and a methylated

YUC2 promoter. In contrast, at high ambient temperature,

miRNA169 levels decrease, as do Locus_77297 levels and

the methylation level at the YUC2 promoter (Gyula et al.,

2018).

It has also been reported that the auxin biosynthetic genes

YUC2 and TAA1 are specifically up-regulated in leaves of

the drm1 drm2 cmt3 triple mutant, which has a low level

of DNA methylation (Forgione et al., 2019). Surprisingly,

the transcription of YUC2 and TAA1 showed almost no

differences in the roots of the triple mutant, thus suggesting

that DNA methylation is involved in tissue-specific patterns

of gene expression (Forgione et al., 2019) and may be a

potential mechanism to regulate local auxin biosynthesis.

Recently, Markulin et al. (2021) found several gene loci

targeted by RdDM in a whole-genome analysis. Most of the

auxin biosynthesis-related genes (TAA1, TAR1, TAR2, YUC1,

YUC2, YUC5, YUC10, LEC2) were targeted by RdDM. This

means that DNA methylation is a very important yet poorly

understood mechanism regulating auxin biosynthesis, marking

methylation as an interesting subject that requires further study

in plants.

Concluding remarks

Auxin is an essential plant growth regulator that governs

growth and development in concert with other signaling

pathways. Therefore, understanding the auxin biosynthesis

pathway and its regulation is crucial for plant science and

agriculture. The biosynthesis pathway of auxin has two

remarkable characteristics: the biosynthesis pathway includes

multi-step reactions and has several parallel pathways (Figure 1).

The complexity of auxin biosynthesis determines the complexity

of its regulation. At present, there are only a few genes known

to participate in the epigenetic regulation of auxin biosynthesis

(Table 1), a simplicity that does not match the complexity of

the pathway and suggests a lack of understanding of this topic.

For example, little is known about the epigenetic regulation

of the TAA gene family, which participates in the main auxin

biosynthesis pathway. Moreover, multiple histone modifications

TABLE 1 Epigenetically regulated auxin biosynthetic genes and the

factors involved in the epigenetic modification.

Auxin

biosynthetic

and metabolic

genes

Factors

responsible for

epigenetic

regulation

References

YUC10 FIS-PRC2 complex Figueiredo et al., 2015

YUCs TFL2/LHP1 Rizzardi et al., 2011

YUC1 and YUC4 SUP-LHP1-PRC2

complex

Xu et al., 2018

YUCs JMJ12/REF6 Cui et al., 2016; Li et al.,

2016; Yan et al., 2018

YUC8 JMJ14, JMJ15, and JMJ18 Cui et al., 2021

YUC10 EML1 and EML3 Milutinovic et al., 2019

YUC8 FCA Lee et al., 2014

YUC8 PIF7-MRG2 complex Bu et al., 2014; Xu et al.,

2014; Peng et al., 2018

GH3.3 bZIP11-ADA2b-

GCN5/HAG1

complex

Weiste and Droge-Laser,

2014

YUC8 SWR1 chromatin

remodeling complex

Tasset et al., 2018; van

der Woude et al., 2019

YUC8 HDA9-PWR complex Tasset et al., 2018; van

der Woude et al., 2019

YUC8 INO80 chromatin

remodeling complex

Xue et al., 2021

YUC4 GCN5/HAG1 Poulios and

Vlachonasios, 2018

YUC9 ARP6 Lee and Seo, 2017

IAMT1 and YUC6 SWI3B Han et al., 2018; Lin

et al., 2021

TSB1, WEI7/ASB1,

YUC7, and AMI1

HUB complex Zhang et al., 2021

YUC2 miRNA169, siRNA

Locus_77297, DRM1,

and DRM2

Zhang et al., 2017; Gyula

et al., 2018

act in a combinatorial fashion to specify distinct chromatin

states (Carlberg and Molnár, 2020a). Therefore, future research

should not only study the effect of certain histone modifications

on the transcription of auxin biosynthetic genes but also

study how various histone modifications determine chromatin

structure and ultimately determine the specific expression level

of genes. At the same time, the relationships between these

histone modifications and DNA methylation, transcription

factor binding, chromatin remodeling as well as RNA expression

need to be further studied.

The three of the most critical questions for local auxin

biosynthesis in plant growth and development are: in which

tissues and at what time are the expression of auxin biosynthetic
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genes controlled by which internal and external signals and how

these signaling pathways regulate chromosomal states. Although

epigenetic regulation of gene expression during development

has been known for decades, the specific relationship between

auxin biosynthesis and epigenetic modifications in plants

is only just being elucidated. The epigenetic regulation of

auxin biosynthesis in plants is a fascinating subject requiring

further study.
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