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A poisoned apple: First insights
into community assembly and
networks of the fungal
pathobiome of healthy-looking
senescing leaves of temperate
trees in mixed forest ecosystem
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and Witoon Purahong1*
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Bayreuth, Germany, 3School of Forestry, Central South of Forestry and Technology, Changsha, China,
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Despite the abundance of observations of foliar pathogens, our knowledge is

severely lacking regarding how the potential fungal pathobiome is structured and

which processes determine community assembly. In this study, we addressed

these questions by analysing the potential fungal pathobiome associated with the

senescing leaves and needles of 12 temperate tree species. We compared fungal

plant pathogen load in the senescing leaves/needles and demonstrated that

healthy-looking leaves/needles are inhabited by diverse and distinct fungal plant

pathogens. We detected 400 fungal plant pathogenic ASVs belonging to 130

genera. The fungal plant pathogenic generalist, Mycosphaerella, was found to be

the potential most significant contributor to foliar disease in seedlings. The

analyses of assembly process and co-occurrence network showed that the

fungal plant pathogenic communities in different tree types are mainly

determined by stochastic processes. However, the homogenising dispersal

highly contributes in broadleaf trees, whereas ecological drift plays an important

role in coniferious trees. The deterministic assembly processes (dominated by

variable selection) contributed more in broadleaf trees as compared to coniferous

trees. We found that pH and P level significantly corresponded with fungal plant
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pathogenic community compositions in both tree types. Our study provides the

first insight and mechanistic understanding into the community assembly,

networks, and complete taxonomy of the foliar fungal pathobiome in senescing

leaves and needles.
KEYWORDS

foliar fungal pathogens, next generation sequencing, deterministic processes,
stochastic processes, homogenising dispersal, ecological drift
Introduction

Mixed forest ecosystems have recently received considerable

attention due to their advantages over monospecific forests in

the context of global climate change but also in relation with

both economic and ecological aspects (Clasen et al., 2011;

Gamfeldt et al., 2013; Almeida et al., 2018). Mixed forests have

been reported to have a better risk–return relation compared to

monocultures, which are associated with higher risks and lower

returns (Clasen et al., 2011). The net present value (defined as

appropriately discounted and summed net revenues gained or

caused by the management) of mixed beech forests can reach the

annual gains up to 113 € ha−1 yr−1 as compared with 72 € ha−1

yr−1 for beech monocultures (Clasen et al., 2011). In addition to

this economic perspective, mixed forests, especially those based

on natural regeneration (forests that are allowed to maintain

natural growth cycles with minimal human intervention),

exhibit ecological advantages over monospecific forests,

including promoting biodiversity and ecosystem functions,

maintaining tree genetic diversity, increasing resilience to

climate change, and enhancing high resistance to biotic and

abiotic hazards (Griess et al., 2012; Almeida et al., 2018;

Ehbrecht et al., 2021). To date, mixed forest ecosystem covers

more than 200 million ha worldwide or about 5% of the global

forest area (FAO and UNEP, 2020). In Germany, the mixed

forest area increased to ~58% of the total forest area in 2012

(Wilke, 2017).

In mixed forest ecosystems, niche partitioning and

competitions (intra- and interspecific competitions) play

important roles in shaping tree species community composition

and diversity. The sources for fungal leaf pathogens are shedding

leaves and/or fungal bodies of pathogenic fungi (SánchezMárquez

et al., 2011; Bayandala et al., 2016). Senescing leaves may attract

diverse fungal functional groups, including fungal plant pathogens

(Tanunchai et al., 2022). However, such knowledge in temperate

tree species, including their taxonomy, assembly processes,

specificity and factors corresponding to their community

composition, is still largely unexplored. For evergreen coniferous

trees, senescing needles shed over years and thus represent
02
continuous input of fungal pathogens to the soil system.

Conversely, senescing needles and leaves of coniferous and

broadleaves deciduous trees mainly shed during autumn,

creating a large seasonal wave of fungal pathogens into the soil

system. Interactions among microbial taxa can be complex as

different taxa can express antagonistic, competitive, or mutualistic

interactions (Montoya et al., 2006; Deng et al., 2012; Tyc et al.,

2014). Investigating interactions among different microbial taxa

within a community and their responses to environmental

changes enables a better understanding of ecological

mechanisms and outcomes (Sheng et al., 2019). To achieve this

comprehensive analytic perspective, ecological network

approaches have been intensively applied to investigate the

complexity of interactions among different microbial taxa

(Montoya et al., 2006; Deng et al., 2012; Toju et al., 2014). In

general, environmental filtering by means of substrate

physicochemical properties is considered as a main process

shaping the community in plant debris (Purahong et al., 2016);

however, the community assembly may be largely explained by

stochastic processes (Abrego, 2021). This issue has never been

addressed for the senescing leaves of diverse temperate

tree species.

Despite the importance of foliar fungal pathogens in regulating

tree diversity and community composition in temperate forests, our

knowledge on their ecology and community assembly remains

limited. Specifically, it remains unclear which factors shape foliar

fungal pathobiome community composition, which processes

(stochastic vs. deterministic) determine their community

assembly, and how their community structure is organized. In

this study, we used a high–resolution molecular approach (Next

Generation Sequencing) to obtain a better understanding of the

fungal pathobiome of healthy-looking senescing leaves and needles

among 12 temperate tree species growing in a managed mixed

forest at the Central Germany. We aimed to determine (i) which

ecological processes determine the pathobiome community

assembly, (ii) how foliar fungal pathobiome communities are

structured, (iii) which factors determine community composition

of the foliar fungal pathogens, and (iv) which tree species that act as

fungal plant pathogen hub in this forest ecosystem.
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Materials and methods

Study site and sampling

The study site is located in a managed mixed forest of

Thuringia, Germany (51°12’N 10°18’E) and is characterized by

mean annual precipitation from 600 to 800 mm, mean annual

temperature from 6 to 7.5°C, and elevations from 100 to 494 m

above sea level. The main soil type is Cambisol on limestone as

bed-rock. The soil pH is weakly acidic (5.1 ± 1.1; mean ± SD). In

October 2019, a minimum of 200-g healthy-looking senescing

leaves and needles of 12 mature tree species (5 true replicates/

tree individual per tree species, in total 60 samples) were

collected in a separate sterile plastic bag with new clean gloves.

In this current study, we characterized the healthy-looking

senescing leaf as green leaves without visible leaf disease

symptoms from branches at the lower part of the crown of the

mature tree (3 years old). These 12 tree species include 8

deciduous broadleaf (including Acer pseudoplatanus, Carpinus

betulus, Fagus sylvatica, Fraxinus excelsior, Populus hybrid,

Prunus avium, Quercus robur, and Tilia cordata), 3 evergreen

(including Picea abies, Pinus sylvestris, and Pseudotsuga

menziesii), and 1 deciduous (Larix decidua) coniferous tree

species. Leaf samples were transported on ice to the laboratory

within 3 h and stored at −80°C for further analysis.
DNA extraction and illumina sequencing

To prepare for deoxyribonucleic acid (DNA) extraction, up to

10 healthy-looking leaves and needles from 5 branches per

individual tree were subsampled. Leaf and needle samples were

washed three times with 0.1% sterile Tween to remove loosely

attached dust particles. The samples were then washed three to

five times using deionized water and incubated for 1 h in sterile

water to remove the Tween bubbles. By washing leaves with

Tween solution, the endophytic and strongly attached epiphytic

microorganisms were subjected to the DNA extraction. Leaf and

needle samples were ground using liquid nitrogen and sterile nails,

homogenized, and stored at −20°C for further analysis. The DNA

extraction of senescing leaves and needles and associated microbes

was performed using DNeasy PowerSoil Kit (Qiagen, Hilden,

Germany) and a Precellys 24 tissue homogenizer (Bertin

Instruments, Montigny-le-Bretonneux, France) according to the

manufacturer’s instructions. The presence and quantity of

genomic DNA was checked using NanoDrop ND-1000

spectrophotometer (Thermo Fisher Scientific, Dreieich,

Germany), and the extracts were stored at −20°C.

Leaf-associated fungi were characterized by fungal internal

transcribed spacer (ITS)-based amplicon sequencing on the

Illumina MiSeq sequencing platform, as outlined previously

(Weißbecker et al., 2020; Tanunchai et al., 2022). To
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was amplified using the fungal primer pair fITS7 [5′-
GTGARTCATCGAATCTTTG-3′] (Ihrmark et al., 2012) and

ITS4 [5′-TCCTCCGCTTATTGATATGC-3′] (White et al., 1990)

with Illumina adapter sequences. Amplifications were performed

using 20-µL reaction volumes with 5× HOT FIRE Pol BlendMaster

Mix (Solis BioDyne, Tartu, Estonia). The amplified products were

visualized by gel electrophoresis and purified using an Agencourt

AMPure XP kit (Beckman Coulter, Krefeld, Germany). Illumina

Nextera XT Indices were added to both ends of the fungal

amplicons. The products from three technical replicates were

then pooled in equimolar concentrations. Paired-end sequencing

(2 × 300 base pair) was performed on the pooled polymerase chain

reaction products using a MiSeq Reagent kit v3 on an Illumina

MiSeq system (Illumina Inc., San Diego, CA, United States) at the

Department of Soil Ecology, Helmholtz Centre for Environmental

Research, Germany. The ITS ribosomal ribonucleic acid (rRNA)

gene sequences are deposited in the National Center for

Biotechnology Information (NCBI) Sequence Read Archive under

the accession number PRJNA753096.
Bioinformatics

The ITS ribosomal DNA (rDNA) sequences corresponding

to the forward and reverse primers were trimmed from the

demultiplexed raw reads using cutadapt (Martin, 2011). Paired-

end sequences were quality-trimmed, filtered for chimeras, and

merged using the DADA2 package (Callahan et al., 2016)

through the dadasnake pipeline (Weißbecker et al., 2020).

Assembled reads fulfilling the following criteria were retained

for further analysis: a minimum length of 70 nucleotides (nt),

quality scores at least equal to 9 with maximum expected error

score of 5 for forward and reverse sequences and no ambiguous

nucleotides. Merging was conducted with an allowance for 2

mismatches and a minimum overlap of 20 nt required for fungal

sequences. High-quality reads of fungi were clustered into 2480

amplicon sequence variants (ASVs) after chimera removal.

Fungal ASVs were classified against the UNITE v7.2 database

(Kõljalg et al., 2013). ASV sets were classified using the Bayesian

classifier (Wang et al., 2007) in the mothur classify.seqs

command with a cut-off of 60. Rare ASVs (singletons), which

may represent artificial sequences, were removed. 2,451 fungal

ASVs with minimum sequencing depths of 21,967 sequences per

sample were obtained. We used a Mantel test based on Bray–

Curtis distance measure with 999 permutations to assess the

correlation between the whole matrix and a rarified matrix for

fungal data sets. The results indicated that the rarefaction dataset

highly represents the whole fungal matrix (RMantel = 0.997, P =

0.001). Among these, 400 ASVs were classified as potential plant

pathogens according to primary lifestyle in FungalTraits

database (Põlme et al., 2020). The information on fungal plant
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pathogenic ASVs with average relative abundances (ranged from

8–67%) and taxonomic information is provided in

Supplementary Table S1. The 400 fungal plant pathogenic

ASVs were again rarified to the minimum read of 1,245,

except one and two replicates of P. avium and P. abies, were

not rarified, to confirm the consistency of the fungal plant

pathogenic ASV richness.
Investigation of the fate of
fungal plant pathogens

We preliminary investigated the fate of plant pathogens in

senescing leaves and needles after 200 and 400 days of the

decomposition. The collected senescing leaves and needles were

oven dried at 25°C for 14 days. Three grams of oven-dried

senescing leaves and needles were filled into a nylon bag (2 mm

mesh, 5 mm holes), placed back under the same tree individuals

(mother tree) and allowed to decompose. After 200 and 400 days

of decomposition, leaf/needle samples were collected in a separate

sterile plastic bag with new clean gloves and transported on ice to

the laboratory within 3 h and stored at −80°C for further analysis.

The decomposing leaf/needle samples were processed with the

same procedures for sample preparation, DNA extraction as well

as bioinformatics as described above.
Leaf physiochemical analyses

To obtain water-leachable components, senescing leaf and

needle samples were shaken in 30 mL milliQ water for 1 h in

falcon tubes, centrifuged for 5 min at 3500 rpm, decanted, and

filtered. The remaining leaf/needle material was dried for two

weeks at 40°C to determine dry weight, which was used as

reference for all subsequent qualifications. Leachate pH was

determined using pH paper with a scale precision of 0.2 units.

Organic nitrogen (Norg) was calculated as the difference: Norg =

Total nitrogen (TN) – mineralized nitrogen (NMin). TN was

analyzed using a sum parameter analyzer with high temperature

combustion and chemiluminescence detection (Mitsubishi TN-

100; a1 envirosciences, Düsseldorf, Germany). For NMin

quantification, a flow injection analyzer (Quikchem QC85S5;

Lachat Instruments, Hach Company, Loveland CO, USA) was

used with corresponding manifolds to measure ammonium

nitrogen NNH+
4
, nitrite nitrogen NNO−

2
, and nitrate- plus nitrite

nitrogen NNO−
3 +NO

−
2
content. Dissolved organic carbon (DOC)

was quantified as non-purgeable organic carbon with a sum

parameter analyzer using high-temperature combustion and

infrared detection (vario TOC cube, Elementar Analysensysteme

GmbH, Langenselbold, Germany). The nutrient content, Ca,

Fe, K, Mg, and P analyses were carried out using inductively
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coupled plasma–optical emission spectrometry “Arcos” (Spectro,

Kleve, Germany) equipped with a 27.12 MHz free-running

LDMOS generator and ORCA optical system. The complete

methods for leaf physiochemical analyses are provided in the

Supplementary Material.
Network analyses and generalist/
specialist determination

The fungal plant pathogenic network analysis was constructed

based on Random Matrix Theory using the molecular ecological

network analysis pipeline (http://ieg4.rccc.ou.edu/mena/).

Spearman rank correlation coefficients was analyzed between

any two pairs of ASVs based on sequencing reads. The intra-

module connectivity value (Zi) and inter-module connectivity

value (Pi) for each node were used to identify keystone species in

the network. For detailed information regarding theories,

algorithms, and procedures, refer to Deng et al., 2012 and Zhou

et al., 2011. The fungal plant pathogenic networks were visualized

using Gephi v0.9.2. The co-occurrence network between tree

species and fungal plant pathogens was visualized in Cytoscape

v. 3.8.0. Specialist/generalist classification of the taxonomic dataset

in this study was performed using EcolUtils package in R version

4.0.4 based on niche width and permutation algorithms. R code

for specialist/generalist classification in this study is provided in

Supplementary Material.
Community assembly analyses

To quantify the relative proportion of deterministic and

stochastic processes in community assembly, the phylogenetic

normalized stochasticity ratio (pNST) and beta nearest taxon

indices (bNTI) based on the null model theory were calculated

using ‘iCAMP’ package in R (Stegen et al., 2013; Ning et al.,

2020; Sun et al., 2021). The fungal ITS gene sequences obtained

by Illumina sequencing have been recently used to construct the

phylogenetic and null model analyses for determining

the assembly processes of fungal communities (Gyeong et al.,

2021; Wang et al., 2022; Zhao et al., 2022). Although 18S nuclear

ribosomal small subunit rRNA gene (SSU) is more appropriate

and commonly applied to construct the phylogenetic tree of

fungi than the ITS gene, it has lower hypervariable domains in

fungi (Schoch et al., 2012). Thus, it had inferior taxonomic

resolution as compared with the ITS. In this current study, we

focus more on the taxonomic identification of fungi, so the ITS

region was chosen as the region for detecting plant pathogenic

fungi. Nevertheless, the ITS regions (full ITS, ITS1, and ITS2)

have been successfully used to construct relatively reliable

phylogenetic tree of many fungal genera (Porter and Brian
frontiersin.org
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Golding, 2011; Dissanayake et al., 2018; Purahong et al., 2019).

Thus, the results from pNST derived from the ITS sequences

should be interpreted with caution. In addition to bNTI,

the Raup-Crick (RCbray) null model based on Bray-Curtis

dissimilarity was further calculated to quantify dispersal-based

stochastic ecological processes generating the turnover of

community composition (Stegen et al., 2015). Briefly, for

pNST index, deterministic and stochastic assembly were

determined when pNST< 50% and pNST > 50%, respectively.

For the bNTI, homogeneous and variable selection are indicated

by bNTI< −2 and bNTI > +2, respectively. The relative

importance of dispersal limitation and homogenizing dispersal

processes were assessed by |bNTI|< 2 but RCbray > +0.95 and

RCbray< −0.95, respectively, and the undominated process was

estimated by |bNTI|< 2 and |RCbray|< 0.95 (Stegen et al., 2015).

Apart from pNST analysis, we have analyzed microbial assembly

based on the taxonomic normalized stochasticity ratio (tNST)

according to Ning et al., 2019.
Statistical analyses

The datasets were tested for normality using the Jarque–Bera

test and for equality of group variances using F-test (for two

datasets) and Levene’s test (for more than two datasets). The

differences among the generalists, and specialists were tested using

Kruskal-Wallis test and one-way analysis of variance (ANOVA)

for the data sets with non- and equality of variance, respectively.

The statistical differences between the generalists and specialist in

each tree species were performed using t-test. The statistical

differences of ASV richness among different tree species were

performed using one-way ANOVA with Tukey’s post-hoc test.

Effects of tree species on fungal plant pathogenic community

composition were tested using non-metric multidimensional

scaling (NMDS), permutational multivariate ANOVA, and

analysis of similarities based on observed relative abundance

and the Bray–Curtis distance measure as well as presence/

absence data and the Jaccard distance measure, over 999

permutations. The relationship between fungal plant pathogenic

community compositions and different factors was analyzed using

a goodness-of-fit statistic based on observed relative abundance

and the Bray–Curtis distance measure as well as presence/absence

data and the Jaccard distance measure. To differentiate the effect

of an individual factor as well as their combining effect, we

performed the variance partitioning analysis. The amounts of

variation in fungal plant pathogenic community compositions,

explained by various factors, were estimated through variation

partitioning using the Vegan package in R. R code for goodness-

of-fit statistic and variance partitioning analysis in this study is
Frontiers in Plant Science 05
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performed using PAST version 2.17 (Hammer et al., 2001), R, and

RStudio version 4.0.4 (RStudio Team, 2019).
Results

Fungal pathobiome characteristics

In this study, the fungal community compositions associated

with healthy-looking leaves and needles of 12 temperate tree

species were analysed (Figure 1). We detected 400 fungal plant

pathogenic ASVs belonging to 130 genera (Supplementary Table

S1). Fungal plant pathogens contributed the highest proportion

among all fungal functional groups, especially in leaves and

needles of P. hybrid, L. decidua, and Q. robur with Leotiomycetes

(represented by Marssonina, Phoma, Meria, and Erysiphe)

contributing up to 99, 87, and 81% of fungal plant pathogens,

respectively (Figure 1). Leaves and needles of other tree species

were dominated by fungal plant pathogenic genera in

Dothideomycetes, including Mycosphaerella , Phoma ,

Alternaria, and Venturia. Among these 400 fungal plant

pathogenic ASVs, 214 ASVs and 16 ASVs revealed

saprotrophic and endophytic lifestyle as secondary lifestyles,

respectively. 75 ASVs have the foliar endophytic interaction

capability (Supplementary Table S1).
Diverse fungal plant pathogens detected
in 12 temperate tree species

In line with the relative abundance data, P. hybrid also

showed the highest percentage of fungal plant pathogenic ASV

richness relative to the total fungal groups, and P. abies revealed

the lowest percentage of ASV richness (Figure 2). Larix decidua

harbored a high relative abundance and the highest fungal plant

pathogenic ASV richness (Figsure 2). In contrast to L. decidua, P.

hybrid revealed the highest relative abundance but the lowest

ASV richness of fungal plant pathogens.
Community compositions and specificity
of fungal plant pathogens

Leaves and needles of 12 temperate tree species harboured

distinct fungal plant pathogenic community compositions based on

both relative abundance and presence/absence data (Figure 3,

Supplementary Figure S1 and Supplementary Tables S2A, B). In

this study, 240 ASVs (accounting for 60% of the total fungal plant
frontiersin.org
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pathogenic ASVs) were specific to one tree species. Only four fungal

plant pathogenic ASVs (Alternaria ASV55, ASV56, ASV86, and

Neoascochyta ASV227) were detected across all 12 temperate tree

species (Figure 3B and Supplementary Table S1). In this current

study, fungal plant pathogenic generalists and specialists showed

significantly different relative abundances and richness across most

studied temperate tree species (Figures 3D, E). The highest relative

abundance of fungal plant pathogenic generalists and specialists was

found in F. sylvatica and P. hybrid, respectively (Figure 3D). A.

pseudoplatanus exhibited the highest ASV richness of fungal plant

pathogenic generalists, followed by C. betulus and L. decidua

(Figure 3E). Remarkably, L. decidua and Q. robur harboured

significantly higher ASV richness of generalists as compared with

specialists, and P. hybrid also harboured similar ASV richness of

generalists and specialists, but 78–95% relative abundance of their

fungal plant pathogens belonged to specialists.
Frontiers in Plant Science 06
Are there any tree species that act
as fungal plant pathogen hub in this
forest ecosystem?

In general, no specific mature tree species were found to

behave as a fungal plant pathogen hub. However, some tree

species harboured significantly more fungal plant pathogens. P.

menziesii harboured the highest number of fungal plant

pathogenic ASVs (97 ASVs), followed by Q. robur (96 ASVs),

L. decidua (95 ASVs), A. pseudoplatanus (81 ASVs), and F.

excelsior (80 ASVs). P. hybrid harboured the lowest number of

fungal plant pathogenic ASVs (29 ASVs). Among 400 fungal

plant pathogenic ASVs, 240 ASVs connected with only one tree

species (Supplementary Figure S2). 156 fungal plant pathogenic

ASVs build network with two to 11 tree species and four ASVs

were detected in all 12 tree species. Furthermore, some tree
A B

D

E F

C

FIGURE 1

Compositions of fungal functional groups (A, B) and fungal plant pathogens (C–F) associated with senescing leaves of 12 temperate tree species
at class (C, D) and genus levels (E,F), considering only classes with ≥ 8 ASVs or relative abundances ≥ 2%. Remaining fungal classes and genera
were pooled as “others”. Analysis based on relative abundance (left panel) and presence/absence data (right panel).
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species harboured significantly more fungal plant pathogenic

generalists, including A. pseudoplatanus (25 ASVs), F. excelsior

(23 ASVs), and Q. robur (22 ASVs).
Assembly processes: Deterministic
vs. stochastic

Analysis using the phylogenetic normalized stochasticity

ratio (pNST) and beta nearest taxon index (bNTI) showed

that the assembly processes of fungal plant pathogens were

highly dominated by stochastic processes (Figure 4). However,

the contribution of stochasticity of fungal plant pathogens in

broadleaf tree species was significantly lower than that in

coniferous tree species. Based on bNTI, the stochastic

assembly processes comprised mainly of undominated
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processes (UP) or ecological drift, homogenizing dispersal

(HP). However, the patterns are different in broadleaf and

coniferous trees. The homogenizing dispersal process

dominated the stochastic assembly processes in broadleaf tree

species and ecological drift in coniferous tree species. The

deterministic assembly processes contributed more in

broadleaf trees (~20% estimated by pNST and ~10% by bNTI)
as compared to coniferous trees (5–10%) (Figure 4).

Deterministic assembly processes were dominated by variable

selection (VS) with a small contribution of homogeneous

selection (HS). We further calculated the normalized

stochasticity ratio based on the taxonomic turnover (tNST).

High tNST value was observed in broadleaved group (P<0.05,

Supplementary Figure S3A). Based on the tNST value, broadleaf

and coniferous trees revealed 36.5% and 28.4% proportions of

stochasticity, respectively (Supplementary Figure S3B).
A B

DC

FIGURE 2

(A) Relative abundance, (B) percentage of ASV richness of fungal plant pathogens in total fungal community, (C) observed, and (D) rarified fungal plant
pathogenic ASV richness. Different lowercase letters indicate significant differences according to one-way ANOVA incorporating Tukey’s post-hoc test.
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A B

D

E

C

FIGURE 3

Fungal plant pathogenic community compositions and their specificity: NMDS ordinations of fungal plant pathogenic community compositions
based on relative abundance and Bray–Curtis distance similarity (A), number of fungal plant pathogenic ASVs detected in various number of tree
species (B), the abundance and the occurrence of generalists and specialists of fungal plant pathogens (C), relative abundance (D), and ASV
richness (E) of fungal plant pathogenic generalists and specialists in each tree species. Generalist and specialist classification refers only to our
taxonomic data from this local scale experiment. Capital and lowercase letters in panels (D, E) indicate statistically significant differences
(Kruskal–Wallis test and ANOVA were performed for the data sets with non- and equality of variance, respectively) among fungal plant
pathogenic specialists (SP) and generalists (GN), respectively. The yellow circle in the front of tree species name indicates statistically significant
differences (t-test) between fungal plant pathogenic generalist and specialist in each tree species.
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Factors determining fungal plant
pathogenic community composition

Based on relative abundance data, the fungal plant

pathogenic community compositions in broadleaf and

coniferous tree species were shaped mainly by tree species

identity (R2 = 0.87–0.88, P = 0.001) (Figure 5). In coniferous

tree species, the pH, latitude, and longitude of each tree

individual were additional primary factors that shaped fungal

plant pathogenic community composition (R2 = 0.71–0.86,

P = 0.001). Leaf nutrients such as C, N, K, Mg, and P

also significantly correlated with fungal plant pathogenic

community composition in coniferous tree species. (Figures 5).

In broadleaf tree species, we also detected correspondence of the

fungal plant pathogenic community composition with pH, Ca,

and P content (Figures 5). Similar pattern of the factors

determining the fungal plant pathogenic community

compositions was found on the presence/absence data. The

tree species identity (R2 = 0.83–0.91, P = 0.001) mainly shaped
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the fungal plant pathogenic community compositions in

broadleaf and coniferous tree species (Supplementary Figure

S4). Leaf/needle water content, pH, latitude, and longitude as

well as leaf nutrients (C, N, K, Mg, and P) were also important

factors that shaped fungal plant pathogenic community

composition (R2 = 0.35–0.91, P = 0.024–0.001).

All studied factors that significantly corresponded with the

fungal plant pathogenic community composition were used in

the variation partitioning analysis. These factors explained 68%

and 92% of variation in relative abundance data of fungal

plant pathogenic community compositions of broadleaf and

coniferous tree species, respectively (Figures 5B, C). In

broadleaf trees, tree species alone explained the highest

variation in fungal plant pathogenic community composition

(78% of the total explainable variance). Nutrients alone

explained 7% of the variation in fungal plant pathogenic

community composition in broadleaf trees and their

combining effect with tree species explained 7%. In coniferous

trees, nutrient abundance alone explained the highest variation
FIGURE 4

Deterministic vs. stochastic assembly processes in broadleaf and coniferous trees based on phylogenetic normalized stochasticity ratio (pNST)
and beta nearest taxon index (bNTI). Stochastic processes: DL, dispersal limitation; UP, undominated processes; HP, homogenizing dispersal;
deterministic processes: VS, variable selection; HS, homogeneous selection. The non-dominant processes (|RCbray|<0.95) were drift and
diversification P < 0.01 = **, P < 0.001 = ***.
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(17% of the total explainable variance), followed by tree species

and pH/water content. Combining effect of nutrients and tree

species explained 13% of the variation in fungal pathogenic

community composition in coniferous trees. Location (latitude

and longitude) alone did not explain the variation in the fungal

plant pathogenic community in coniferous trees. Tree species

identity, nutrients, pH/water content, and their combined effects

explained more than 70% of the explainable variance in both

tree types.

While tree species, nutrients, pH, water content, and

location explained large proportion of variation in fungal
Frontiers in Plant Science 10
plant pathogen community compositions based on relative

abundance data, they explain 25% and 41% of those based on

presence/absence data in broadleaf and coniferous tree

species, respectively (Supplementary Figures S4B, C).

Nevertheless, similar pattern of variation partitioning was

found. In broadleaf trees, tree species alone explained the

highest variation in fungal plant pathogenic community

composition (68% of the total explainable variance),

followed by nutrients (4%). Combining effect of nutrients

and tree species explained 8% of variation in fungal plant

pathogenic community composition. In coniferous trees,
A

B C

FIGURE 5

Goodness-of-fit statistics (R2) of environmental variables fitted to NMDS ordination of fungal plant pathogenic community based on relative abundance
data and Bray–Curtis distance measure (A), Venn diagrams showing the contributions of the factors shaping fungal plant pathogenic community (B, C).
Nutrients evaluated in the analysis of broadleaf trees were Ca and P. Nutrients evaluated in the analysis of coniferous trees were DOC, NO−

2 , Norg, K,
Mg, and P. The number and percentage in the parentheses in the Venn diagram indicate the explained variance and its percentage in the total
explainable variance. *Bold letter indicates statistical significance, ** ND, Not detected.
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nutrient alone also explained the highest variation (12% of

the total explainable variance), followed by tree species and

pH/water content. Combining effect of nutrients and tree

species explained 5% of the variation in fungal pathogenic

community composition in coniferous trees. Location

(latitude and longitude) alone did not explain the variation

in the fungal plant pathogenic community in both broadleaf

and coniferous trees.
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Different co-occurrence network
patterns in broadleaf and
coniferous trees

To evaluate the interactions among fungal plant pathogenic

taxa and the co-occurrence network patterns of both tree types, two

ecological networks for broadleaf and coniferous tree species were

constructed (Figure 6). The main topological parameters in the
A

B

C

FIGURE 6

Taxonomic (A), modular networks (B), and topological roles of each ASVs in the fungal plant pathogenic co-occurrence networks (C) in
broadleaf and coniferous tree species. The green (co-presence, positive) and red links (mutual exclusion, negative) in the co-occurrence
networks represent significant Spearman’s correlations (P<0.05). Each node in Fig. 6a and b represents one ASV. The size of each node is
proportional to the degree. The node color indicates the corresponding taxonomic assignment at the class (A) and modular level (B). The nodes
in Fig. 6c with Zi > 2.5 but Pi< 0.62 are identified as module hubs, and those with Pi > 0.62 but Zi< 2.5 represent connectors. The network hubs
are characterized with Zi > 2.5 and Pi > 0.62, and the peripherals are characterized with Zi< 2.5 and Pi< 0.62 according to Olesen et al., 2007.
Nodes in broadleaf 10 (4 big modules), conifer 4 (3 big modules > 10% of the notes) modules.
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empirical network were higher than in the random network, which

implied a nonrandom pattern. The fungal plant pathogenic network

in coniferous trees was more complex than those in broadleaf trees,

revealing a lower average path distance, average clustering

coefficient, and modularity but higher average degree

(Supplementary Table S3). Notably, the percentage of negative

links (63.5%) in the coniferous network was lower than in

broadleaf trees (75.5%). Furthermore, we detected 10 and four

modules (functional units or subcommunities) in the networks of

broadleaf and coniferous trees, respectively. However, the numbers

of large modules (modules with more than 10% notes) were similar

in both tree types (4 large modules in broadleaf and 3 large modules

in coniferous trees, Figure 6).

Based on Zi and Pi tests, the potential topological roles of the

fungal plant pathogenic taxa were explored (Figure 6C). One

node belonging to Ampelomyces ASV184 was identified as a

module hub in broadleaf trees. We detected seven and nine

connectors belonging to diverse fungal plant pathogenic genera

in the broadleaf and coniferous networks, respectively. The

keystone species (module hub/connectors) were distinct

between the tree types. The fungal plant pathogenic module

hub, Ampelomyces ASV184, was classified as a specialist and

detected solely in C. betulus. Conversely, connectors were

distributed across different tree species. Among them, four

connectors were classified as fungal plant pathogenic

generalists, including Botrytis ASV829, Gibberella ASV1796,

Pseudomassaria ASV1604, and Sphaceloma ASV189.
Fate of fungal plant pathogens

After 200 days of decomposition, 81 out of 130 plant

pathogenic fungal genera were detected in the decomposing

leaves and needles (Figure 7). The proportion of Alternaria

increased from 4% to 49% of the sequence reads of the

considered plant pathogens. Phoma (18%) and Rhizosphaera

(10%) co-dominated along the plant pathogenic fungal genera

along with Alternaria. After 400 days of decomposition, 79 out of

130 plant pathogenic genera continued to colonize the

decomposing leaves and needles (Figure 7). Alternaria (48%) and

Phoma (21%) hyperdominated the sequence read of the 79

plant pathogens.

Discussion

Pathobiome of 12 common temperate
tree species

We successfully accessed the pathobiomes in senescing leaves

and needles of the 12 common temperate tree species, which

allowed us to compare fungal plant pathogen load among

different tree species. Our current study revealed diverse and tree

species distinct fungal plant pathogens associated with senescing
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leaves and needles of the 12 common temperate tree species, which

is appropriate to be considered as the database for foliar fungal

pathogens in Thuringia forest (Supplementary Tables S1, S4). With

the aid of the high-resolution molecular approach (Ilumina MiSeq)

used in this study, our understanding of foliar fungal pathobiome

communities was significantly extended. Despite the fact that our

experiment focused at the local scale, we detected highly diverse and

abundant fungal plant pathogens associated with senescing leaves

and needles of 12 temperate tree species. The majority of these

fungal plant pathogens were species-specific. In F. sylvatica, the

fungal plant pathogenic generalist Mycosphaerella ASV14 (UNITE

name: Mycosphaerella punctiformis) was highly abundant. In A.

pseudoplantanus, diverse fungal plant pathogenic generalists were

detected, including Mycosphaerella ASV14. Mycosphaerella spp.

have been reported to cause leaf spot in different tree species,

including Acer (Funk and Dorworth, 1988), Fraxinus (Wolf and

Davidson, 1941), Fagus (Burke et al., 2020), and Tilia

(Bernadovičová and Ivanová, 2008). In C. butulus, we also

detected a high richness of fungal plant pathogenic generalists

and high relative abundances of Mycosphaerella ASV14 and the

fungal plant pathogenic specialist Erysiphe ASV42 (UNITE name:

Erysiphe arcuata), which has previously been reported as leaf

disease pathogen in C. butulus (Chinan and Mânzu, 2021). Apart

from the previously described hosts of foliar plant pathogens

(airborne pathogen propagules and spore) (Bayandala et al.,

2016), we suggest that fungal plant pathogens inhabiting

senescing leaves can act as an agent to cause foliar disease in

seedlings which is in line with a previous study on contribution of

leaf litter on Mycosphaerella leaf disease (Sánchez Márquez et al.,

2011). In Figure 7, we summarize the aforementioned hosts of foliar

pathogens, which the mature tree uses to regulate seedling density.

Furthermore, we preliminary investigated the fate of these plant

pathogens in senescing leaves and needles during the

decomposition process (Figure 7). In senescing leaves and

needles, fungal pathogenic community composition was

dominated by diverse fungal genera, including Marssonina,

Meria, Erysiphe, Apiognomonia, and Melampsora. After 200 days

of leaf decomposition, the high diversity and relative abundance of

the previously detected foliar fungal plant pathogenic community

are maintained. Nevertheless, the relative abundance of the foliar

pathogens strongly declines after 400 days of decomposition.

Alternaria is hyper-dominant with some contributions of Phoma

at 200 and 400 days. Thus, decomposing leaf litter can be an

important agent causing foliar disease in seedlings and even saplings

over seasons.
Pathobiome community assembly
is highly determined by
stochastic processes

Understanding the process governing fungal plant

pathogenic community assembly is important for identifying
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driving factors. Some studies have focused on environmental

filtering and seek factors to describe the community, but the

community assembly may be largely explained by stochastic

processes (Abrego, 2021). This study demonstrates that the

fungal pathobiome associated with leaves and needles of 12

common temperate tree species are determined mainly by

stochastic processes based on pNST, specifically homogenizing

dispersal and undominated processes (ecological drift). Based on

tNST, deterministic processes play more important role as

compared with stochastic processes. The controversial results

of pNST and tNST were also demonstrated in a previous study

based on bacterial 16S rRNA amplicon (Tai et al., 2020). This

may be due to the calculation of the microbial attributes from
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different dimensions of diversity (including taxonomic,

phylogenetic, functional, etc.). Thus, the results should be

interpreted with caution. Nevertheless, stochasticity based on

the tNST also reveals substantial proportion in governing fungal

plant pathogenic community assembly in both broadleaf (36.5%)

and coniferous trees (28.4%). Tree species is the main factor that

shapes fungal plant pathogenic communities in both broadleaf

and coniferous tree species. The results of negative networks and

stochasticity suggest that the systems in both tree types follow

the colonization–extinction stochasticity assumption

(unpredictability in arrival and establishment of different

species) (Abrego, 2021). This implies that the fungal

pathobiome colonizing the leaf habitat exhibits unpredictable
FIGURE 7

The fate of the 400 fungal pathogenic ASVs associated with senescing leaves and needles. Leaf-associated fungal pathogens at 200 and 400
days were characterized by fungal internal transcribed spacer (ITS)-based amplicon sequencing on the Illumina MiSeq sequencing with the same
bioinformatics.
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systematic variation in species, which can be driven by the

colonization–competition trade-off (Tilman, 1994; Abrego,

2021). We determined the contribution of deterministic

processes, mainly by variable selection (VS). We found that

pH and P level significantly correspond with fungal plant

pathogenic community compositions in both tree types. Other

important factors in broadleaf or coniferous trees are water

content, C, N, and other leaf nutrients. Tree species can also

determine leaf nutrients such as Ca, P, and N. In this study, we

found the importance of both nutrients alone as well as their

combined effect with tree species in explaining the variation in

fungal plant pathogenic community. These factors were

previously reported to shape microbial community

composition associated with decomposing leaf of European

beech in Germany (Purahong et al., 2016). These microbial

macronutrients are important for microbial growth,

reproductivity, and activity (Prescott et al., 1999; Purahong

et al., 2015; Purahong et al., 2016).
Conclusion

Our study is the first to investigate community assembly,

networks, and the complete taxonomy of foliar fungal

pathobiome, which different tree species may use for inter- and

intraspecific competition in mixed temperate forests. Shedding the

foliar fungal pathogens with senescing leaf seems to be an effective

strategy as it can be repeated over years and the healthy mature tree

would not be affected much by their own foliar fungal pathogens.

Future studies should focus on the fate of fungal plant pathogens

(colonization–extinction dynamics) and how their interaction

change during the leaf decomposition process.
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