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As a sessile organism, plants hold elaborate transcriptional regulatory systems 

that allow them to adapt to variable surrounding environments. Current 

understanding of plant regulatory mechanisms is greatly constrained by 

limited knowledge of transcription factor (TF)–DNA interactions. To mitigate 

this problem, a Plant-DTI predictor (Plant DBD-TFBS Interaction) was 

developed here as the first machine-learning model that covered the largest 

experimental datasets of 30 plant TF families, including 7 plant-specific DNA 

binding domain (DBD) types, and their transcription factor binding sites 

(TFBSs). Plant-DTI introduced a novel TFBS feature construction, called TFBS 

base-preference, which enhanced the specificity of TFBS to DBD types. The 

proposed model showed better predictive performance with the TFBS base-

preference than the simple binary representation. Plant-DTI was validated 

with 22 independent ChIP-seq datasets. It accurately predicted the measured 

DBD-TFBS pairs along with their TFBS motifs, and effectively predicted 

interactions of other TFs containing similar DBD types. Comparing to the 

existing state-of-art methods, Plant-DTI prediction showed a figure of merit 

in sensitivity and specificity with respect to the position weight matrix (PWM) 

and TSPTFBS methods. Finally, the proposed Plant-DTI model helped to fill the 

knowledge gap in the regulatory mechanisms of the cassava sucrose synthase 

1 gene (MeSUS1). Plant-DTI predicted MeERF72 as a regulator of MeSUS1 in 

consistence with the yeast one-hybrid (Y1H) experiment. Taken together, 

Plant-DTI would help facilitate the prediction of TF-TFBS and TF-target gene 

(TG) interactions, thereby accelerating the study of transcriptional regulatory 

systems in plant species.
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Introduction

Transcriptional regulation controls the action and activity of 
genes by regulating the time and level of gene expression. A 
punctual expression pattern of genes is a regulatory code 
synchronizing individual biological processes under a particular 
condition, then modulating phenotypes as well as physiological 
responses of an organism (Li et al., 2015; Kumar et al., 2017). 
Extensive studies have been conducted to decipher the 
relationships behind the transcriptional regulatory process, and at 
most are based upon analysis of co-expression patterns (Chen 
et al., 2012; Yu et al., 2015) and DNA footprints (Neph et al., 2012; 
Franco-Zorrilla et  al., 2014; Sullivan et  al., 2014). The former 
approach globally analyzes the association of regulatory genes 
from their individual expression profiles measured by condition-
specific transcriptome, whilst the latter infers the physical 
interaction of transcription factors (TFs) and regulated target 
genes (TGs) through the conserved binding sites. Advanced 
molecular techniques demonstrate that TFs through the DNA 
binding domains (DBDs) specifically bind onto the upstream 
sequence (promoter) of the regulated genes at transcription factor 
binding sites (TFBSs), which are 5–15 bp conserved regions in 
complement with a particular TF. The interactions of TFs via DBD 
and TFBSs have been investigated by both in vitro methods, such 
as electrophoretic mobility shift assay (EMSA), systematic 
evolution of ligands by exponential enrichment (SELEX), protein 
binding microarray (PBM; Berger and Bulyk, 2006), and in vivo 
methods, such as yeast-one-hybrid (Y1H; Ouwerkerk and Meijer, 
2001; Ferraz et al., 2021), and ChIP-seq (Park, 2009). The plethora 
of data on TF-TFBS interactions generated and deposited in 
public databases, for example TRANSFAC (Wingender et  al., 
1996), CIS-BP (Weirauch et  al., 2014), and Plant ChIP-seq 
Database (PCBase; Chow et  al., 2019), has improved our 
knowledge of transcriptional regulation in a broad range of 
eukaryotes. However, they are mostly limited to a small group of 
well-studied organisms such as yeast (Monteiro et  al., 2020), 
humans and mice (Kulakovskiy et  al., 2018), and Arabidopsis 
(Yilmaz et al., 2011).

Computational approaches are widely introduced to exploit 
the wealth of known TF-TFBS interactions, from model organisms 
to the less studied ones. These methods are developed from 
diverse concepts, yet all rely on a universal hypothesis of 
evolutionary conservation. There are two main classes of 
prediction methods: pattern-matching based, and machine-
learning based. Pattern matching-based methods predict TF-TFBS 
interactions based on sequence similarity, whereby the interaction 
of the TF and TFBS is predicted if the query DNA sequence and 
the known TFBS of the TF are alike. The position weight matrix 
(PWM) of interested TF are explored in promoter sequences to 
infer specific binding and regulation of target genes (Kel et al., 
2003; Marinescu et al., 2005; Jayaram et al., 2016). Previous studies 
showed that this kind of pattern-matching based approach 
frequently employed and well applicable to explore TF-TFBS 
interactions in a broad range of organisms (Kel et  al., 2003; 

Marinescu et al., 2005; Turatsinze et al., 2008; Chow et al., 2016; 
Jin et al., 2017); however, the predictions are always constrained 
by the number of data in the collection. Machine-learning based 
methods, on the other hand, make a prediction according to the 
built-on knowledge of the existing data. The prediction criteria are 
formulated from learning information of the available interactions 
of TF-TFBS, also DBD-TFBS, using various approaches. Qian 
et al. (2006) modeled the TF recognition sequences from binary-
based patterns of short TFBS motifs and the TFs with 
corresponding gene ontology using the k-nearest neighbor 
classifier, with approximately 77% model accuracy. Lee et  al. 
(2017) later introduced an SVM model with more features of TFs 
and TFBS properties, improving the accuracy of prediction to 
82%. The model considered the global composition of residues in 
TFs and TFBSs sequences using the composition, transition, and 
distribution of residues in the sequences. A more recent study 
achieved 99% model prediction accuracy by incorporating the 
physicochemical properties of TF proteins, structural 
conformation and bonding potential of TFs and DNA (Khamis 
et  al., 2018). Due to data availability, machine-learning based 
prediction is currently applied to human data at most.

Unlike a typical eukaryote, plant species contain exclusive TF 
families for their special organ development and the peculiar 
response to environmental perturbation (Yamasaki et al., 2013; 
Lehti-Shiu et al., 2017). The TF-TFBS interactions of those are 
relatively little explored, and most of which are identified from 
model species like Arabidopsis and based on pattern-matching 
based approaches. AthaMap is a major source of TF-TFBS 
interactions in Arabidopsis, consisting of 2,458,243 interacting 
pairs from 23 TFs in 13 TF families predicted by pattern matching 
(Steffens et al., 2004). PlantTFDB later extended the inference of 
TF-TG interaction to 132 plants species, including 50,850,582 
interactions of 338 TFs in 45 TF families (Jin et al., 2017). The 
FunTFBS algorithm developed for PlantRegMap to refine the 
TFBS prediction identified 2,493,577 highly probable putative 
TF-TG interactions in 63 plants species (Tian et  al., 2020). 
Machine-learning based prediction has been explored particularly 
for plant species since 2007 (Dai et al., 2007; Cui et al., 2014). 
Specifically, the SVM model was constructed to explore the 
potential TFBSs of auxin response factor (ARF) TFs in Arabidopsis 
using gene co-expression data and information on conserved 
binding site sequences. The model proved effective despite being 
based only on a single family of ARF TFs. The TSPTFBS was 
developed last year as a TFBS prediction tool particularly for plant 
species (Liu et al., 2021). This tool used deep learning to model 
265 Arabidopsis TFs with their 201-bp nucleotide binding 
sequences. The model was outperformed, but could not predict 
candidate TFBSs with their typically size of 5–15 bp (Yu et al., 
2016). While large numbers of interactions have been predicted 
during the past decade, many more are expected to remain 
unknown considering the variety of TFs and TF families identified 
in plant species and the complexity of transcriptional regulation 
in plants (Riechmann et al., 2000; Shiu et al., 2005; Lehti-Shiu 
et  al., 2017). The general lack of information, especially on 
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plant-specific TF-TFBS interactions when compared to other 
eukaryotes, represents a challenge in the attempt to unravel the 
complex transcriptional regulation in plant species.

Here, a machine-learning based predictor, namely Plant-DTI 
(Plant DNA binding domain (DBD) – Transcription factor 
binding site (TFBS) Interaction) was developed to extend the 
resource of TF-TFBS interactions in plant species. Plant-DTI 
provided a rigorous prediction according to three key strengths 
of the model: (i) containing large coverage of experimental 
DBD-TFBS interaction information in plant species, (ii) 
employing the novel proposed feature construction of TFBS, 
which enhanced the specificity of TFBS to DBD types, and (iii) 
proving high predictive performances over existing state-of-art 
methods. Particularly, Plant-DTI model was constructed from 
the DBD-TFBS information of at least 22 plant species in the 
literature, enabling the prediction to cover 30 of the 63 TF 
families in plants and 336 TFBS motifs (Jin et al., 2014; Weirauch 
et al., 2014). As a predictor for plant species, Plant-DTI has the 
advantage of including a large amount of training data compared 
to other existing plant models. In addition, the implemented 
TFBS base-preference feature is an improvement on the 
traditional binary sequence. The predictive performance of 
Plant-DTI was rewarding, with high accuracy, sensitivity, 
precision, and F1-score. The proposed model was finally 
validated and compared to other state-of-art methods using 
independent ChIP-seq, DAP-seq and negative data to consolidate 
its prediction power. At last, Plant-DTI was applied to explore 
the putative TF regulators of sucrose synthase 1 (MeSUS1) gene 
in cassava. MeSUS1 is a crucial sucrolytic enzyme that is believed 
to determine crop yield; however, its regulation, especially at the 
transcriptional level, is little understood compared to other key 
enzymes. Application of Plant-DTI revealed 150 interactions 
(136 novel interactions) of TFs linked to the MeSUS1 gene, 
which connected the transcriptional regulation of this gene to 
the exposed environments. MeSUS1gene expression was 
predicted to be  regulated by various stress-responsive TFs, 
especially TFs in the ERF family which possibly key regulating 
TFs of MeSUS1 in response to stress conditions. Plant-DTI, in 
summary, would help narrow down the knowledge gap on 
TF-TFBS interaction and improve our understanding of 
transcriptional regulation in plant species, especially in less-
studied but strategic staple crops (Lai et al., 2019). The Plant-
DTI1 is implemented as a web application tool and freely.

Materials and methods

Plant DBD-TFBS interactions datasets

The DBD-TFBS interaction were collected from CIS-BP 
database version 1.02 (Weirauch et  al., 2014). It was first 

1 https://bml.kmutt.ac.th/Plant-DTI (Accessed August 05, 2022).

retrieved 786 interactions of 611 TFs and 719 TFBSs based on 
experimental measurement in plant species. The numbers were 
reduced to 424 interactions of 388 TFs and 424 TFBSs, after 
removing the redundant interactions. Considering only 
monotypic-DBD TFs (TFs containing only one DBD type) and 
TFBS with 7–15 bp in length, it finally obtained 343 DBD-TFBS 
interactions (325 TFs, 343 TFBSs) from 22 plant species. Since 
CIS-BP did not provide exact TFBS sequences, here, all 
possible TFBS motif patterns were determined from IUPAC 
TFBS sequences. In total, 3,287,619 non-redundant 
interactions were conjectured for 325 TFs and 343 TFBSs 
(Supplementary File 2).

Modeling DBD-TFBS interactions

TFBS feature representation
In this work, TFBS sequences were represented by two 

different bases: (i) traditional binary representation and (ii) the 
newly proposed ‘TFBS base-preference’ representation.

Binary representation

The TFBS sequences were simply denoted by a series  
of binary numbers given specifically to each nucleotide  
base variety, A – 1000, T – 0100, C – 0010, and G – 0001. For 
example, the ‘CAGCCG’ sequence was represented by 
‘001010000001001000100001’. A feature vector of 343 TFBS motif 
sequences was constructed according to their lengths (L ∈ {7, 8, 
9, …, 15}), then yielded vectors in range of 28 to 60 features 
(4 × L).

TFBS base-preference

The ‘TFBS base-preference’ was developed, herein, as an 
information-contentive representation. Each TFBS motif was 
represented by the probability of having the nucleotide base (A, 
T, C, and G) at a particular position in the TFBS sequence. The 
probability Pj X( )  was calculated for each particular DBD type 
and TFBS length from the existing data of the 343 DBD-TFBS 
interactions in plants (Supplementary Table S3). The number of 
TFBS features for a DBD type ranged from 28 to 60 (4*L) 
depending on their TFBS length. Supplementary Figure S1 
showed an example of TFBS feature construction and 
representation of TFBS base-preference. The probability of the 
nucleotide base X ∈ {A, T, C, G} at jth position was determined 
by the following equation, and the resulting Pj X( )  was 
demonstrated in box plots (Supplementary Table S3).

 
P Xj ( ) =

( )=åi
N

j iP X
N
1 ,

 
(1)

where i is the number of DBD-TFBS interactions (= {1, 2, …, 
N}), and N is the total number of DBD-TFBS interactions for a 
DBD type.
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DBD feature representation
Each DBD sequence was represented by the amino acid 

binding mode preference to DNA from Luscombe (2001) and 
Khamis et al. (2018). The amino acid sequences of DBD were 
denoted by three features according to (1) hb – hydrogen 
bonding interaction, (2) dw – van Der Waal binding 
interaction, and (3) wb – weakly binding interaction. The 
binding mode preference of feature k ∈ {hb, dw, wb} was 
determined as below.

 
Feature n

lk
k= ,

 
(2)

where n is the number of amino acids in feature class k 
contained in DBD length l. The amino acids in each class were as 
follows; hb – consisting of Arg, Lys, His, Ser, Asn, Gln, Asp., and 
Glu, dw consisting of Phe, Pro, Thr, Gly, Ala, Val, Leu, Iso, and Tyr, 
and wb -- consisting of Cys, Met, and Trp.

Combined DBD and TFBS features information
The individual DBD and TFBS features were combined into a 

DBD-TFBS interaction feature vector as shown in Figure 1 (feature 
representation box). There were two types of interaction feature 
vectors, (i) a combined feature of amino acid binding mode preference 
of DBD and binary representation of TFBS, and (ii) a combined 
feature of amino acid binding mode preference of DBD and TFBS base 
preference. The number of features for each DBD-TFBS interaction 
was a summation of those for a paired DBD and TFBS.

Positive and negative data

Positive data
The existing experimental data of DBD-TFBS interaction in 

CIS-BP database was exploited here as a positive dataset. It 
included 3,287,619 non-redundant DBD-TFBS interactions of 325 
TFs. The positive data were separated into nine groups based on 
the TFBS length (7–15 bp).

FIGURE 1

Schematic overview of Plant-DTI model framework.
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Negative data
The negative data of DBD-TFBS interaction was generated 

based on two conceptual bases, (i) random-pair (RP) – random 
permutation of the interacting DBD and TFBS pairs, and (ii) 
random-within (RW) – random permutation of nucleotide bases 
within the TFBS sequence. All generated negative data of 
DBD-TFBS interactions must exclude any known DBD-TFBS 
interactions (positive data).

Random DBD-TFBS pairs (RP)

For RP basis, TF proteins were presumed to recognize their 
TFBSs as the interacting pairs. The negative data set was 
constructed by shuffling pairs of known DBD-TFBS interactions 
in CIS-BP database. The generated negative data was assured no 
positive data contained, while maintained similar data proportion 
to the positive dataset. In this process, 13 TFBSs were excluded 
because their generated negative datasets were not satisfied the 
setting criteria. The RP model, finally, included 330 TFBSs and 313 
TFs (Supplementary Table S1).

Random nucleotides within TFBS sequences (RW)

For RW, TF proteins were presumed to interact with TFBS 
by a recognitive pattern of TFBS sequence. The negative data of 
DBD-TFBS interactions were constructed by a random 
permutation of nucleotide bases within TFBS motif  
sequence. All generated negative data were lastly checked 
against the known DBD-TFBS interactions in CIS-BP database 
to ensure no positive data included and have the same 
proportion as positive data. There were 15 TFBSs removed  
from the model according to their weak negative datasets. In 
total, the RW model included 328 TFBSs and 310 TFs 
(Supplementary Table S1).

Training and test datasets
In overall, the training and test datasets for Plant-DTI model 

construction were consisted of 336 TFBSs and 318 TFs from 22 
plant species. The total modelled data were 3,931,070 and 
2,482,629 interactions for RP and RW models, respectively. The 
model was constructed for each particular TFBS length, where the 
training to test data proportion was set to 70:30 of all data entity 
(see more details in Supplementary Tables S1, S2).

Plant-DTI model construction

To develop Plant-DTI, various combination of model 
components from different TFBS feature representations (binary 
and TFBS base-preference for TFBS feature), inclusion of DBD 
features to TFBS features (combined amino acid binding mode 
preference for DBD and TFBS features), and a variety of machine 
learning classifiers [Naïve Bayes (NB), Random Forest (RF), and 
k-Nearest Neighbor (k-NN)] were primarily tested for the 
optimal construction. All preliminary models were evaluated 
using F1-score (Figure 1). The classifier and feature dataset that 

offered the best performance based on the F1-score were selected 
to construct the Plant-DTI model.

The NB model was the simplest probabilistic classifier 
selected as to accommodate a massive modelled data (Zhang, 
2004; Han et  al., 2012). RF model is an ensemble learning 
classifier, whose performance is basically dependent on number 
of decision trees. The model was first constructed based on a 
default setting of scikit-learn (Pedregosa et  al., 2011). 
Hyperparameter optimization of RF was later performed through 
10-fold cross-validation, where the tree numbers were 
parameterized from 1 to 150. The F1-score based performance of 
RF model was stable with tree numbers ≥100 
(Supplementary Tables S4, S5), thereby this number being used 
as a final model setting. For k-NN classifier model, 10-fold cross-
validation was performed to investigate the optimal number of 
neighbors from 3 to 103 (only odd numbers; 
Supplementary Tables S4, S5) by considering the best F1-score 
given by the model.

Model performance evaluation metrics

The performance of models was measured by various 
predictive indices, including accuracy, sensitivity, precision, 
specificity, and F1-score.

 
Accuracy TP TN

TP TN FP FN
=

+
+ + +  

(3)

 
Sensitivity TP

TP FN
=

+  
(4)

 
Precision TP

TP FP
=

+  
(5)

 
Specificity TN

TN FP
=

+  
(6)

 
F score Precision Sensitivity

Precision Sensitivity
1 2
- =

* *
+  

(7)

TP (true positive) is the correct prediction of the interacted 
DBD and TFBS. TN (true negative) is the correct prediction of 
non-interacted DBD and TFBS. FP (false positive) represents the 
mis-prediction of non-interacted DBD and TFBS. FN (false 
negative) represents the mis-prediction of the interacted DBD 
and TFBS.
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Model validation with independent 
ChIP-seq datasets

The constructed Plant-DTI model was validated its predictive 
performance with 22 independent ChIP-seq data. The TF-TFBS 
interactions measured in Arabidopsis thaliana were retrieved 
from PCBase (Chow et al., 2019) and used as the gold standard for 
our test experiment (Supplementary Data 1.1). The consistency of 
DBD-TFBS interactions from model prediction and ChIP-seq 
measurement was evaluated. For each positive prediction, 
similarity of the interacting TFBS motif predicted from Plant-DTI 
model was examined against the putative TFBS motifs from 
ChIP-seq experiment and MEME-ChIP (Machanick and Bailey, 
2011) using TOMTOM (Gupta et al., 2007).

Comparison of Plant-DTI performance 
with PWM (PlantTFDB) and TSPTFBS 
models

Predictive performance of Plant-DTI model was compared 
with the other state-of-art methods based on the identical gold 
standard datasets (10 ChIP-seq and 57 DAP-seq datasets), and the 
negative data that generated from the low probable TF binding 
regions in Arabidopsis thaliana genome (Supplementary Data 1.2). 
The two state-of-art methods under investigation were (i) PWM 
models from PlantTFDB database and (ii) TSPTFBS, the recently 
published TFBS prediction tool for Plant developed based on 
Deep learning of Arabidopsis DAP-seq data (Liu et al., 2021). All 
models were assessed the prediction capability based on sensitivity 
and specificity indices.

Prediction of MeSUS1 regulators by 
Plant-DTI model

To demonstrate the application of Plant-DTI for predicting 
TF-TG interactions in non-model plant, the promoter sequence 
of cassava sucrose synthase 1 gene (MeSUS1) was retrieved from 
the translation start site (TLS) for 2,000 base pairs. The promoter 
sequence was aligned in a sliding window of 7–15 bp in length and 
reversed to obtain the complementary strand. These sequences 
were used as TFBS queries of MeSUS1. DBD amino acid sequences 
of 1,751 cassava monotypic DBD TF proteins (1,400 genes) were 
retrieved from PlantTFDB database version 4 (Jin et al., 2017). All 
possible DNA sequences of MeSUS1 TFBS and amino acid 
sequence of cassava monotypic DBD TF proteins were paired up 
together and used as input in the Plant-DTI model for predicting 
candidate TFs controlling MeSUS1. To obtain high confidence 
prediction, only the predicted DBD-TFBS interactions with a 
probability value equal to 1 and found in both RP and RW models 
were selected as predicted TFs of MeSUS1. Secondly, TF-TFBS 
interactions of MeSUS1 were predicted relying on the TFBS scan 
method using MEME FIMO (Grant et al., 2011). The 338 PWMs 

of cassava TFs from the PlantTFDB database were scanned on the 
same MeSUS1 gene promoter sequence used as the input of 
Plant-DTI, with a q-value ≤0.05.

Results

Overview of Plant-DTI framework

Plant DBD-TFBS Interaction (Plant-DTI) model was a 
TF-TFBS predictor developed based upon the association of 
DBD and TFBS in plant species. In the model, TFBS base-
preference was created to enhance specificity of the traditional 
sequence representation in form of binary numbers. The new 
representation was more information-contented developed 
based on the probability of having the nucleotide-base at a 
specific sequential position in the TFBS motif 
(Supplementary Table S3). The model was preliminary 
constructed by various combinations of TFBS feature 
representations (binary and TFBS base-preference for TFBS 
feature), inclusion of DBD features to TFBS features (combined 
amino acid binding mode preference for DBD and TFBS 
features), and a variety of machine learning classifiers with their 
optimal parameter setting. The final Plant-DTI configuration 
was proposed according to the outperformed model 
combination (Supplementary Table S6). In conclusion, the 
model was constructed by random forest classifier and 
exhaustive features of both TFBS base-preference and amino 
acid binding mode preference to varying TFBS lengths from 7 
to 15 bp (Figure 1). The performance of Plant-DTI model was 
further measured against the independent test dataset and was 
finally assessed with respect to two state-of-art methods based 
on the same ChIP-seq, DAP-seq, and negative datasets.

Overall characteristics and performance 
of Plant-DTI

Plant-DTI model was developed to boost TF-TFBS 
interaction prediction in plant species. The model was 
constructed by taking into account experimentally generated 
interaction data on DBDs of TF proteins and TFBSs in 
promoters of target genes deposited in CIS-BP database 
version 1.02 (Weirauch et al., 2014). It covered 318 TFs in 30 
TF families found in 22 plant species (Figure  2) with 336 
corresponding TFBSs between 7 and 15 base pairs (bp) in 
length (Supplementary Tables S1, S2). Figure  2 shows that 
Plant-DTI covers about half of entire TF families (30/63) and 
DBD types (26/52) observed in plant species. Moreover, 
Plant-DTI has 7 plant-specific DBD types, TCP, NAM, EIN3, 
DUF573, DUF260, DUF822, and GRAS (marked by red 
asterisks in Figure 2), and 6 plant-dominant DBD types, AP2, 
WRKY, zf-Dof, SBP, B3, FAR1 (marked by blue asterisks in 
Figure  2; Yamasaki et  al., 2013; Lehti-Shiu et  al., 2017), 
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enabling the prediction of their specific interaction with 
promoter sequences of the regulated genes. Thus, Plant-DTI 
has a broader predictive range over other existing models, 
which focus mainly on ARF transcription factors in the B3 
family (Dai et al., 2007; Cui et al., 2014). The extensive data 
coverage makes it a promising TF-TFBS predictor for any 
plant species.

The negative training data of Plant-DTI were generated using 
two different approaches, random pairs (RP) and random within 
(RW; Supplementary Tables S1, S2). The RP sets were simulated 
by shuffling known DBD-TFBS pairs to measure their 
recognition, whereas the RW sets were generated by random 
permutation of nucleotide base sequences within TFBS to assess 
cognitive binding of DBDs to specific DNA patterns (Figure 3A). 
The TFBS sequences were represented by both simple binary 
representation – a series of binary numbers conventionally 
employed in previously published models (Qian et al., 2006, 2007; 
Cai et  al., 2009; Khamis et  al., 2018), and an informative 
representation – TFBS base-preference (Figure 3B). The TFBS 
base-preference, initiated in this work, proved an improvement 
on the basic binary representation with respect to the model 
sensitivity and specificity. The formulated sequence representation 
incorporated peculiarity of the TFBS motifs that makes it more 
favored to the DBD than elsewhere. In this regards, nitrogenous 
bases [adenine (A), cytosine (C), guanine (G), and thymine (T)] 
in the TFBS sequence were converted into positional probability 
given by the analysis of base dominance among the known 
interacting TFBS of each DBD type (see section “Materials and 
Methods,” TFBS feature representation; Supplementary Figure S1; 
Supplementary Table S3).

Interestingly, the models with the TFBS base-preference 
outperformed those with only binary representation in all studied 
classifiers, Naïve Bayes, Random Forest, and k-nearest neighbor 
(Figure 3C; Supplementary Figure S2). By training the models 
with only TFBS information, the models with TFBS base-
preference showed much better performances measured in this 
study (Supplementary Figure S2), especially with the RP negative 
training dataset (Figure 3C, top-left panel), which showed an 
F1-score range of 0.7385–0.9971 depending on the TFBS length, 
compared to the range of 0.223–0.3974 with the binary 
representation. For the RW negative training dataset, the 
difference in model performance was more explicit in models 
with a short TFBS length (<10), and models with the TFBS base-
preference still performed better (Figure 3C, top-right panel). The 
results may be, in effect, the impact of higher information 
amounts in models having a short TFBS length, especially lengths 
of 9 and 10 (Supplementary Table S1). It was shown in all 
predictions that the model with TFBS base-preference had less 
false positive prediction, while increased model sensitivity 
compared to those with binary representation. By training the 
models with combined TFBS and DBD information, performance 
of models with binary representation was immensely improved, 
with comparable performances as the TFBS base-preference 
models in all classifiers used in this study (Figure 3C, bottom 
panel; Supplementary Figure S2). The models were further 
optimized based on the hyperparameter of classifier  
types as presented in Supplementary Tables S4, S5. 
Supplementary Figure S3 shows that the models based on 
random forest (RF) are superior to Naïve Bayes (NB) and 
k-nearest neighbor (k-NN) in terms of accuracy, sensitivity, 

A

B

FIGURE 2

Characteristics of Plant-DTI model based on TF data coverage of 318 TFs in 30 TF families present in 22 plant species (A) TF families and (B) DNA 
binding domains (DBDs), red asterisks are plant-specific DBD types (Yamasaki et al., 2013; Lehti-Shiu et al., 2017), blue asterisks are plant-dominant 
DBD types (Yamasaki et al., 2013; Lehti-Shiu et al., 2017), and black asterisk is the DBD type covered by ARF-models (Dai et al., 2007; Cui et al., 
2014).
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specificity, and precision in all cases, thereby finally selected for 
Plant-DTI model.

In summary, the Plant-DTI model was finally configured 
using the TFBS base-preference representation for TFBS 
sequences, amino acid binding mode preference to DNA for 
DBD sequences and RF classifier. The overall process of 
Plant-DTI model prediction was schematized as in 
Supplementary Figure S4. Overall performance of the 
Plant-DTI predictor was assessed through a hold-out method; 

the results showed that Plant-DTI accurately predicted 
DBD-TFBS interactions in both RP and RW negative data, 
with an average accuracy of 99.63% (99.48% for the RP set and 
99.75% for the RW set) and average area under receiver 
operating characteristic (AUROC) curve of 99.95% (Figure 4). 
Besides the high accuracy, Plant-DTI also showed superior 
performance on sensitivity (99.79%), precision (99.47%), and 
specificity (99.47%) with a minimal false-positive rate of 
0.54% on average (Figure  4; Supplementary Table S6), 

A

B

C

FIGURE 3

Negative data formation and TFBS feature representations in Plant-DTI model; (A) types of negative data formation: random pairs (RP) and random 
within (RW), (B) TFBS feature representation: binary (white bar graph) and TFBS base-preference (black bar graph), and (C) the effect of TFBS 
feature representations on model performance: (top panel) models based on TFBS information and (bottom panel) models based on combined 
DBD and TFBS information. The study was based on random forest model (RF) algorithm.
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suggesting great promise for predicting putative DBD-TFBS  
interactions.

Validation of Plant-DTI by ChIP-seq data

Predictability of Plant-DTI was evaluated against 
DBD-TFBS interactions measured by independent ChIP-seq 
experiments in the Plant ChIP-seq database (PCBase; Chow 
et al., 2019). PCBase contains data on 53 TFs including the 14 
TFs in Plant-DTI model. According to the data availability,  
14 DBD-TFBS interactions (16 interacting pairs, 
Supplementary Figure S5) of 11 TFs were employed for 
Plant-DTI validation. Given the identical set of DBD and TFBS 
sequences, the model could predict 16 corresponding 
interactions at almost all studied thresholds (ranging from >0.5 
to >0.9) in both the RP and RW negative-data models 
(Figure 5A, black bar). In addition, we also considered the TFBS 
motifs pattern consistency (Figure  5A, white bar). The 32 
putative TFBS motifs obtained along with the 32 TFBS-DBD 
interactions predicted by the RP and RW models were compared 

with the 84 patterns of 14 interactions from ChIP-seq data (see 
section “Materials and Methods”; Supplementary Figure S5). At 
a probability threshold >0.7, Plant-DTI was able to predict 23 
(of the total 32, ~70%) putative TFBS motifs of DBDs that were 
highly consistent with patterns from the ChIP-seq experiment 
(identity percentage ≥ 70, coverage percentage ≥ 70, q-value 
≤0.05; Figure 5B). Higher prediction accuracy and precision 
could be obtained by increasing the probability threshold, but 
the improvement was minor at thresholds above 0.7 (Figure 5A; 
Supplementary Figure S6). Similar results were observed in 
both the RP and RW negative data models, so 0.7 was set as the 
default probability threshold for Plant-DTI.

Furthermore, Plant-DTI was tested to assess its ability to predict 
DBD-TFBS interactions specific to DBD types. Eight model-
exclusive TFs from the ChIP-seq experiment with an identical DBD 
range as Plant-DTI were employed in this study 
(Supplementary Figure S7). The putative TFBS motifs for these TFs 
(8 DBD types consisting of NAM, zf-C2H2, bZIP_1, AP2, HLH, 
Homeobox, GRAS, and SRF-TF) were inferred based upon the 
known interaction of TFBS motifs and DBDs in each type. With the 
same set of DBD and TFBS sequences from the ChIP-seq 

FIGURE 4

The performance of Plant-DTI model based on accuracy, sensitivity, precision, and ROC curve on 30% hold-out test set for two types of negative 
data formation: random pairs (RP; top) and random within (RW; bottom).
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experiment, the RP model predicted 33 interactions, while the RW 
model predicted 35 at probability thresholds >0.5. The prediction of 
DBD-TFBS interactions was highly consistent with the ChIP-seq 

measurement when using a probability threshold from >0.5 to >0.8 
and dramatically declined as the model stringency increased over 
0.9, with only 18/33 and 24/35 motifs successfully predicted by the 

A

B

FIGURE 5

Plant-DTI validation by testing for consistency with experimental DBD-TFBS interactions from independent ChIP-seq data containing same TFs as 
model training datasets. (A) The effect of different probability thresholds on the prediction consistency of the interactions (black bar graph) and 
TFBS motif patterns (white bar graph). (B) Comparison of TFBS motifs predicted at DBD-TFBS interaction probability > 0.7 and TFBS motifs from 
the ChIP-seq experiment. Asterisks show the statistical significance level of matched motifs from the experimental DBD-TFBS interactions and 
Plant-DTI predictions, * represents q-value ≤ 0.05 and ** represents q-value ≤ 0.01. Each row shows the information on ChIP-seq motif name 
(Supplementary Table S7), and L shows model length. Heatmap represents the motif sequence coverage and identity of motifs from ChIP-seq data 
and Plant-DTI. Cross (O) represents the predicted TFBSs from Plant-DTI are not consistent with ChIP-seq experiment based on criteria; i) percent 
ChIP-seq coverage < 70 %, ii) percent identity < 70 %, and iii) q-value > 0.05.
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RP and RW models, respectively (Figure 6A, black bar). The 68 
putative TFBS motifs predicted from Plant-DTI were compared 
with the 37 identified in 8 DBD-TFBS interactions by the ChIP-seq 
data (see section “Materials and Methods”;  Supplementary Figure S7). 
Figure 6B showed that the prediction at probability threshold >0.7 

giving optimal results both in terms of DBD-TFBS interactions and 
the consistency in the associated patterns. This analysis 
demonstrated that Plant-DTI could be exploited to extrapolate the 
interaction of TFs and putative TFBS motifs using their DBD-TFBS 
information. To this end, the contribution of Plant-DTI was 

A

B

FIGURE 6

Plant-DTI validation by testing for consistency with experimental DBD-TFBS interactions from independent ChIP-seq data containing same TFs as 
model training datasets. (A) The effect of different probability thresholds on the prediction consistency of the interactions (black bar graph) and 
TFBS motif patterns (white bar graph). (B) Comparison of TFBS motifs predicted at DBD-TFBS interaction probability >0.7 and TFBS motifs from the 
ChIP-seq experiment. Asterisks show the statistical significance level of matched motifs from the experimental DBD-TFBS interactions and Plant-
DTI predictions, * represents q-value ≤0.05 and ** represents q-value ≤0.01. Each row shows the information on ChIP-seq motif name 
(Supplementary Table S7), and L shows model length. Heatmap represents the motif sequence coverage and identity of motifs from ChIP-seq data 
and Plant-DTI. Cross (ϰ) represents the predicted TFBSs from Plant-DTI are not consistent with ChIP-seq experiment based on criteria; (i) percent 
ChIP-seq coverage <70%, (ii) percent identity <70%, and (iii) q-value >0.05. dash (-) represents no predicted TFBSs since out of scope of Plant-DTI.
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highlighted by its potential to predict the interaction of TFs in 
boarder range. Supplementary Figure S8 shows that up to 70% of 
TFs in Arabidopsis, rice, maize and cassava were in prediction range 
of Plant-DTI model, allowing the accessibility to their 
relationship to TGs.

Comparison of Plant-DTI performances 
with state-of-art methods

Predictive performance of Plant-DTI model was contrasted 
with PWM and TSPTFBS models based on 10 TFs from ChIP-seq 
and 57 TFs from DAP-seq experiments. These data were obtained 
from study in a model plant, Arabidopsis thaliana. Table 1 shows 
that Plant-DTI has a merit by having high specificity and 
sensitivity. In the prediction of ChIP-seq data, Plant-DTI has 
highest average specificity (99.54%) among the three methods, 
while showed comparatively high average sensitivity to TSPTFBS 
(94.75%). The TSPTFBS outperformed in model sensitivity but 
has weak specificity. PWM was more balanced optimized between 
sensitivity and specificity, as similar to Plant-DTI, but ours showed 
more superior performance in both terms. The merit of Plant-DTI 
was further ensured by comparative analysis of more extended 
numbers of TFs from DAP-seq experiment. In the prediction of 
57 TFs, Plant-DTI still showed upmost average specificity 
(99.84%) with comparable high average sensitivity (95.36%) with 
TSPTFBS. The results have supported Plant-DTI as a promising 
TF-TFBS predictor, especially for plant species.

Utilization of Plant-DTI to search for 
putative TFs controlling sucrose  
synthase 1 gene in cassava

Plant-DTI assisted in filling the gap of knowledge on gene 
transcriptional regulation. It was employed to predict putative 
TFs of the cassava sucrose synthase 1 gene (MeSUS1). In the 
starch biosynthesis pathway, sucrose synthase (SUS) is one of the 
key sucrolytic enzymes in the reversible conversion of sucrose 
and uridine diphosphate (UDP) into uridine diphosphate glucose 
(UDPG) and fructose. These products are essential carbon 
substrates and intermediate metabolites in a broad range of 
metabolic pathways in plants (Stein and Granot, 2019). 
Manipulation of SUS genes is found to affect the yield of storage 

organs in various plants; for example, overexpression of SUS gene 
in potato leads to an increase in starch accumulation, 
ADP-glucose (ADPG) and UDP-glucose (UDPG) contents, and 
total yield (Baroja-Fernández et al., 2009). Enhancement of SUS 
activity in maize results in increased ADPG and starch in seed 
endosperm (Bahaji et al., 2013). In carrot, SUS gene repression 
decreases UDPG, glucose, fructose, starch, and cellulose contents 
in taproots (Tang and Sturm, 1999). While the importance of the 
SUS gene to crop yields is obvious, the underlying transcriptional 
regulatory mechanism is poorly understood, especially in cassava.

Cassava (Manihot esculenta Crantz) is a well-known staple crop 
whose starchy roots are the main diets for billions of people (Howeler 
et al., 2013). As an easy growing plant loaded with carbohydrates, it 
is a crucial crop for securing food sufficiency by 2050 (Burns et al., 
2010). Sucrose synthase enzymes in cassava were encoded by seven 
MeSUS genes, but only MeSUS1 (Manes.03G044400), MeSUS2 
(Manes.01G221900), and MeSUS4 (Manes.16G090600) were found 
to be highly expressed in storage roots (Huang et al., 2021). MeSUS1 
was expressed the most in cassava storage roots among these MeSUS 
genes (Liu et  al., 2018). Plant-DTI predicted 150 cassava TFs 
belonging to 10 families (WRKY, TALE, MYB-related, HD-ZIP 
GATA, ERF, Dof, C2H2, bZIP, and bHLH) to interact with the 
MeSUS1 promoter (Figure 7). The prediction greatly extended the 
number of putative TFs of MeSUS1 compared to those proposed by 
the traditional TFBS scan method. About 90% of the predicted TFs 
(136 of 150 TFs) here were unable to be identified by the TFBS scan 
(Figure 7A). Among them, MeERF72 TF (Manes.15G009900) was 
experimentally verified by the yeast-one-hybrid experiment (Liu 
et al., 2018). Figure 7B shows that MeSUS1 was likely regulated by a 
large group of the ERF TF family as compared to the others. The ERF 
TFs are typically involved in various kinds of stress responses, which 
may help describe the changes in MeSUS1 expression in response to 
different stress conditions (Zhao et al., 2015; Liu et al., 2018). In 
addition, the putative binding positions of the predicted TFs (by TF 
family) were aligned on the MeSUS1 promoter. The results suggested 
that 200 bp upstream of the translation start site (TLS) was enriched 
with various TFBS motifs, especially for the ERF family (Figure 7C).

Discussion

Plants are another domain of life that is of equal importance 
to microbes and human, but the comprehensive information on 
transcriptional regulation is lacking. The transcriptional 

TABLE 1 Comparison of Plant-DTI, TSPTFBS, and PWM model prediction performance on independence ChIP-seq and DAP-seq dataset.

Experimental data Performance Method Plant-DTI TSPTFBS PWM

  Independent ChIP-seq data Average sensitivity Plant-DTI/TSPTFBS/PWM (4 TFs) 94.75 99.97 45.48

Plant-DTI/PWM (10 TFs) 91.71 – 44.05

Average specificity Plant-DTI/TSPTFBS/PWM (4 TFs) 99.54 5.18 95.61

Plant-DTI/PWM (10 TFs) 99.4 – 97.1

  DAP-seq data Average sensitivity Plant-DTI/TSPTFBS/PWM (57 TFs) 95.36 99.96 70.15

Average specificity Plant-DTI/TSPTFBS/PWM (57 TFs) 99.84 10.08 98.13
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regulatory system of plant species is believed to be  rather 
complicated and contains peculiar elements required for sessile 
organisms to survive under variable surrounding conditions and 
perturbations (Shiu et al., 2005; Sullivan et al., 2014; Lehti-Shiu 
et al., 2017; López-González et al., 2019). In the past decades, 
computational approaches have helped advance the 
understanding of transcriptional regulatory systems through the 
inference of transcriptional regulatory elements and their 
associations in the mechanistic cascade. Despite this, the findings 
were mostly confined by the available data in well-studied 
organisms according to the limitation of the pattern matching-
based methods (Chow et al., 2016, 2019; Jin et al., 2017; Puig 
et al., 2021). Our Plant-DTI predictor resolved the problematic 
constraint by using a machine learning technique to combine the 
current knowledge of transcriptional regulation and available 

data to predict TF-TFBS interactions. The Plant-DTI model 
covered information on DBD types in plant species and large 
numbers of DBD-TFBS interactions from experiments, 
predicting TF-TFBS interactions in roughly half of the TF 
families (30/63) in plants, including 7 plant-specific DBD 
(Figure  2). With this data coverage, Plant-DTI represents a 
promising tool for tackling the lack of TF-TFBS resources in the 
study of transcriptional regulation in plants.

Plant-DTI was rigorously constructed using various classes 
of machine learning algorithms. Hyperparameter optimization 
was performed to ensure optimal predictive performance for each 
method, and the best model was selected for Plant-DTI 
(Supplementary Tables S4, S5). DBD information in Plant-DTI 
model was represented in the form of amino acid mode 
preference to DNA, which was proven an effective format for 

A

B

C

FIGURE 7

Prediction of cassava SUS1 gene TFs using Plant-DTI model. (A) Comparison of TFs of MeSUS1 from Plant-DTI prediction (shown in green), pattern 
matching-based TFBS scan from PlantTFDB database (shown in orange), and experimentally verified MeERF1 physical binding to MeSUS1 gene 
(shown in yellow; Liu et al., 2018). (B) Pie chart showing the number of predicted TFs categorized by TF family. (C) Distribution of TFs and TF 
families of MeSUS1 promoters predicted by Plant-DTI model.
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predicting DBD-TFBS interaction in humans (Khamis et  al., 
2018). For TFBS information, we  introduced TFBS base-
preference as a novel feature reconstruction of the TFBS 
sequence, which helped increase the prediction power of the 
model developed based on binary feature representation 
(Figure 3C). The result highlighted the effectiveness of the TFBS 
base-preference proposed herein from the probability of each 
nucleotide in the TFBS motif found specifically binding to a 
particular DBD type. According to the model configuration, 
Plant-DTI excelled for all evaluating indices (Figure 4). Validation 
of Plant-DTI with independent ChIP-seq datasets confirmed its 
performance in accurately predicting DBD-TFBS interactions 
and their putative TFBS motifs (Figure 5). Intriguingly, Plant-DTI 
showed the capability to predict putative TFBSs for any TF 
members of the modeled DBD types (Figure  6). Moreover, 
Plant-DTI showed great merit for being a promising low false-
positive TF-TFBS predictor. The model had high sensitivity with 
superior specificity than other state-of-art methods based on 
prediction of TFs from ChIP-seq and DAP-seq experiment 
(Table 1).

Application of Plant-DTI model was demonstrated in a study 
of MeSUS gene transcriptional regulation. It has been reported 
that the expression of SUS is highly influenced by the exposed 
environments (Stein and Granot, 2019), especially under stress 
conditions (Zhao et al., 2015; Sheshadri et al., 2016; Liu et al., 
2018). However, the transcriptional regulators responsible for 
connecting environmental signals to the gene expression remain 
incompletely known, and almost of all knowledge relies on 
findings in model organisms such as Arabidopsis. In this work, 
Plant-DTI proposed at least 150 putative TFs (10 families) 
regulating MeSUS1 gene expression. There are 136 TFs predicted 
in addition to the available data from the pattern matching-based 
method, one of which was previously verified by the Y1H 
experiment (Liu et al., 2018; Figure 7A). Our result shows that 
several stress-responsive TF families can regulate MeSUS1, 
including ERF, WRKY, MYB_related, bHLH (Wang et al., 2016; 
Figure 7B). TFs in the ERF family that play vital roles as key 
regulators in responses to many biotic and abiotic stresses (Müller 
and Munné-Bosch, 2015; Fan et al., 2016; Xie et al., 2019) were 
mainly predicted. This result may provide insight into the changes 
in SUS expression in response to stress as reported in plants 
(Tang et  al., 2009; Zhao et  al., 2015; Sheshadri et  al., 2016). 
Besides MeSUS1, Plant-DTI helped reduce ambiguous TF-TFBS 
relationships in plant genomes and was capable of predicting at 
least 70% of associated TFBSs in rice, maize, and cassava 
(Supplementary Figure S8).

While Plant-DTI took into account extensive DBD and 
TFBS information of plant species compared to other models, 
it is currently limited to monotypic DBD TFs. Incorporating 
more types of data, features and domains of knowledge, for 
example, homotypic and heterotypic DBD TFs and structural 
and physicochemical features of TF proteins, would increase 
the predictive power of the model (Cai et al., 2009; Khamis 
et al., 2018). With larger amounts of data, the model may also 

be upgraded with proficient computing techniques for dealing 
with high complexity data such as deep learning to conduct 
robust model prediction. Plant-DTI is expected to provide a 
promising set of putative TF-TFBS interactions according to 
its high specificity, nonetheless, experimental verification is 
still needed to reduce the possible false positive prediction. 
Recently, a few studies have refined the prediction of TF-TFBS 
and TF-TG interactions in plants by integrating many types of 
omics data to gain high confidence in these interactions. 
However, this approach is constrained by the availability of 
omics data mostly only in well-studied plants (Brooks et al., 
2021; Puig et  al., 2021). Once data is available, intensive 
validation with experiments in plants would leap forward the 
model capability.

Conclusion

The Plant-DTI model was developed to predict TF-TFBS 
interactions in plant species and ultimately help advance the 
current understanding of transcriptional regulation in major crop 
plants. It was constructed based on a machine learning approach 
using combined information on DBD and TFBS from 
experimentally derived DBD-TFBS interactions in plants, which 
covered up to half of the plant DBD types, including 7 plant-
specific DBD types. In addition, we presented the novel feature 
construction for TFBS sequence motifs denoted as TFBS base-
preference, which proved an improvement on the traditional 
binary representation. The average accuracy of the model was 
99.63%, and validation was done using 22 independent ChIP-seq 
datasets. Moreover, in comparison with the recent state-of-art 
methods, Plant-DTI showed the great merit through the high 
model sensitivity with superior specificity. In addition, Plant-DTI 
has adjustable DBD-TFBS interaction probability thresholds. This 
allows users to adjust the prediction result based on the preferred 
confidence level. Finally, Plant-DTI was used to explore the TFs 
for MeSUS1, highlighting its prospects for extending the 
information on TF-TFBS interactions and bolstering the 
knowledge of transcriptional regulatory systems, especially in 
crop plants.
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