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Timely and accurate pre-harvest estimates of maize yield are vital for agricultural

management. Although many remote sensing approaches have been developed to

estimate maize yields, few have been tested under lodging conditions. Thus, the

feasibility of existing approaches under lodging conditions and the influence of

lodging on maize yield estimates both remain unclear. To address this situation, this

study develops a lodging index to quantify the degree of lodging. The index is based on

RGB and multispectral images obtained from a low-altitude unmanned aerial vehicle

and proves to be an important predictor variable in a random forest regression (RFR)

model for accurately estimating maize yield after lodging. The results show that (1) the

lodging index accurately describes the degree of lodging of each maize plot, (2) the

yield-estimation model that incorporates the lodging index provides slightly more

accurate yield estimates than without the lodging index at three important growth

stages of maize (tasseling, milking, denting), and (3) the RFR model with lodging index

applied at the denting (R5) stage yields the best performance of the three growth

stages, with R2 = 0.859, a root mean square error (RMSE) of 1086.412 kg/ha, and a

relative RMSE of 13.1%. This study thus provides valuable insight into the precise

estimation of crop yield and demonstra\tes that incorporating a lodging stress-related

variable into the model leads to accurate and robust estimates of crop grain yield.

KEYWORDS

remote sensing, maize yield, lodging levels, random forest regression, UAV images
1 Introduction

Given the population growth, the demand for food supplies is increasing all over the

world (Mishra et al., 2021). Furthermore, limited arable land and frequent extreme weather

events have resulted in significant stress on food security. Maize, one of the most important

grain crops in the world, is a staple grain crop in China (Jin et al., 2020), where 273 million
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tons were harvested in 2021, accounting for 40% of global grain

production. Timely, accurate, and nondestructive pre-harvest

estimation of maize yield is vital for the authorities to formulate

corresponding regulation policies and ensure the stability of grain

prices and food security (Yu et al., 2020; Feng et al., 2021; Wu et al.,

2021). Such estimates also facilitate the development of

precision agriculture.

Remote sensing technology can quickly and accurately obtain

wall-to-wall information on the land surface and has been widely used

to estimate the yield of various food crops (Ju et al., 2021;

Maimaitijiang et al., 2021; Nagy et al., 2021). However, satellite

remote sensing is often limited by low spatial resolution, long

revisit period, and cloudy weather, which prevents image

acquisition at certain time points (Xu et al., 2021a). The

development of unmanned aerial vehicles (UAVs) provides a way

to solve these problems (Peng et al., 2021). As a new tool of

information acquisition, UAV remote sensing has irreplaceable

advantages in agricultural production (Duan et al., 2021), achieving

accurate results with low cost, convenient operation, high spatial-

temporal resolution and more (Tao et al., 2020; Wang et al., 2021).

Two main methods exist for crop yield estimation based on UAV

remote sensing: data-assimilation methods and statistical models.

Data assimilation methods involve crop growth models, which

simulate crop growth, development, and yield by combining crop

and environment parameters, such as crop species, soil-plant

dynamics, water status, and meteorological data (Palosuo et al.,

2011; Wu et al., 2021). Assimilating remote sensing data with crop

growth models, including WOFOST (van Diepen et al., 1989),

AquaCrop (Steduto et al., 2009), DSSAT (Jones et al., 2003), and

SWAP (Van Dam et al., 1997), have achieved good results in crop

yield estimation. However, these models require a set of biotic and

abiotic parameters for model calibration (Kang and Özdoğan, 2019),

which undoubtedly increases the complexity of the model because

some of the parameters are difficult to obtain. In addition, a certain

amount of error exists in most of the environment data acquired from

remote sensing data. Consequently, the applicability of the data-

assimilation methods is limited in large-scale-yield modeling (Zhang

et al., 2019). Statistical models are the earliest and simplest methods to

estimate crop yield and are favored by numerous researchers. The

basis of statistical models is to establish a linear or nonlinear

regression between remote sensing data and measured crop yield

(Duan et al., 2017; Zhou et al., 2017). Crop yield estimated by this

approach does not address the physiological mechanisms that

determine plant growth (Crane-Droesch, 2018), so fewer auxiliary

measurements are required. Statistical models to estimate crop yield

can be further divided into two categories: linear and nonlinear

models. The linear models directly construct the relationship

between vegetation indices and crop yield based on linear

regressions. However, empirical relationships between crop yield

and estimators (e.g., vegetation indices, canopy height, and canopy

coverage) usually present nonlinearities (Johnson et al., 2016). Given

the generally high degree of autocorrelation of these estimators, yield-

estimation models using these variables over time are prone to

overfitting. In view of these limitations, machine-learning
Frontiers in Plant Science 02
algorithms were developed to better deal with nonlinearities and

reduce overfitting, which is the second type of statistical model. The

most successful machine-learning methods for yield estimation

include random forest regression (RFR) (Wan et al., 2020; Li et al.,

2021), support vector regression (Shafiee et al., 2021), and partial least

squares regression (Rischbeck et al., 2016).

Estimating crop yield based on statistical models usually uses

spectral, structural, and textural information. Spectral vegetation

indices derived from multispectral or hyperspectral data are closely

related to some vegetation parameters, such as leaf area index (Tan

et al., 2020), green biomass (Li et al., 2020), and crop yield (Panek and

Gozdowski, 2021). They describe the average tonal variations in

various bands. Structural information such as canopy height and

canopy coverage have been used to depict the physiological and

geometric characteristics of vegetation and are good indicators of

plant growth and crop yield (Malambo et al., 2018). Texture

information, characterized by the spatial distribution of tonal

variations within a band (Haralick et al., 1973), highlights the

structural and geometric features of the plant canopy. Numerous

previous studies have estimated crop biomass and yield based on

texture (Zheng et al., 2018; Yue et al., 2019; Maimaitijiang et al., 2020).

Most studies have focused on using these three common predictors

for maize-yield estimates (Rischbeck et al., 2016; Wan et al., 2020).

However, few studies have considered how lodging affects crop yield

estimation, despite lodging being a common occurrence during the

growing season. When lodging occurs, the photosynthetic capacity

and dry matter production capacity decrease (Luo et al., 2022), and

the transport of water, nutrients, and carbohydrates through the

xylem and phloem is cut off (Kashiwagi et al., 2015). During the 12-

leaf stage, stalk and root lodging can reduce maize yield by 14% and

28%, respectively (Xue et al., 2017). Every 1% increase in lodging

reduces maize yield by an average of 108 kg/ha (Liu et al., 2021). As a

result, lodging leads to the loss of crop yield and the reduction of grain

quality (Tan et al., 2021). Therefore, lodging may affect yield

estimates. To improve crop yield, studies on maize lodging have

investigated the factors that cause or affect lodging and have screened

lodging-resistant varieties (Chen et al., 2021; Li et al., 2022). In studies

of crop yield estimation using agricultural remote sensing, the crop-

yield response to lodging has been widely discussed (Acreche and

Slafer, 2011; Mi et al., 2011). However, few investigations have

focused on how lodging affects model performance and robustness

(Chauhan et al., 2019).

To accurately estimate maize yield after lodging, we develop

herein a lodging index to represent the degree of lodging of each

plot. In addition, we propose a method to estimate maize yield based

on spectral features, structural features, texture features, and the

lodging index extracted from UAV-based RGB and multispectral

images. The analyses were conducted at three different maize growth

stages (tasseling stage, milking stage, and denting stage). The specific

objectives of this study are (1) to develop an index that represents the

degree of maize lodging, (2) to explore how the lodging index

correlates with the current model used to estimate maize yield, and

(3) to develop a method to accurately estimate maize yield under

lodging conditions.
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2 Materials and methods

2.1 Study area and experimental setup

The study area was located at the Xinxiang Experimental Station

of the Chinese Academy of Agricultural Sciences (35°7′51.6″N, 113°
45′58″E; elevation 75 m), Henan Province in China (Figure 1).

Xinxiang County is in the North China Plain and has a warm

continental monsoon climate characterized by four distinct seasons.

The main crop grown in the summer is maize. The average annual

precipitation and temperature are 560.6 mm and 14.3 °C, respectively.

The average annual precipitation is unevenly distributed, being

mostly concentrated between June and September, when about 75%

of the annual rainfall occurs.

Maize was planted in 132 plots with different varieties and

fertilizer treatments (Figure 1) to ensure the generalizability of the

proposed method and avoid overfitting. In the variety experiment, 98

maize varieties with different genotypes and lodging resistance were

planted, each in a 3 m × 10 m plot. The same fertilizer treatment was

applied in each plot. In the nitrogen-treatment experiment, two maize

varieties widely planted in north China (JNK728 and ZD958) were

planted in 34 plots, with varied fertilizer treatment (0–400 kg/ha) and

application time (from before sowing to the silking stage). In all the

plots, urea (CH4N2O) was used as nitrogen source. The planting

density was 75 000 plants/ha, with a row spacing of 60 cm, and a plant

spacing of 23 cm.
2.2 Data acquisition

2.2.1 UAV images acquisition
This study used a DJI M600 pro UAV (Figure 2A, DJI Innovation

Co., Ltd., Shenzhen, China) equipped with a Sony a7RII and a
Frontiers in Plant Science 03
RedEdge-MX camera to collect RGB images and multispectral

images, respectively (Figure 2B). The Sony a7RII digital camera

uses a complementary 35.9 × 24.0 mm2 metal-oxide semiconductor

sensor with a resolution of 42.4 million pixels. The RedEdge-MX

multispectral camera includes five bands (blue or B, green or G, red or

R, red edge or RE, and near-infrared or NIR) within the spectral

region of 400–1000 nm. The details of each sensor are given

in Table 1.

UAV images of summer maize were collected in 2020 at the stages

of tasseling (VT), milking (R3), and denting (R5). Three flight

missions were undertaken at 30 m height and a speed of 2.1 m/s.

Each flight mission took about 30 minutes. The lateral and forward

overlaps were 80% and 90%, respectively. Each flight campaign was

conducted during clear and sunny weather between 12 p.m. and 2

p.m. to reduce the impact on image quality of cloud cover and

changes in solar zenith angle. To calibrate the multispectral camera,

the FieldSpec 4s spectroradiometer (Analytical Spectral Devices,

Boulder, Colorado, USA) was used to measure the reflectivity of

tarpaulins with six different colors (gray, red, white, green, blue, and

black) at various wavelengths in the study area (Figure 2C). The

spectral range of the spectrometer was from 350 to 2500 nm, each

color tarp was measured ten times during the UAV flight and the

average was taken as the reflectance result of the corresponding

calibration tarp. The six color tarpaulins were placed in the field

perpendicular to the flight path, allowing their reflectance data to be

acquired during the UAV flight. Meanwhile, to facilitate the

georegistration of images, 12 ground control points (GCPs) were

evenly marked around the plots (Figure 1).

2.2.2 Collection of yield data
The yield of the 132 plots was measured by using the following

procedure: For each plot, all maize plants in six 5-m-long rows were

harvested. Ten maize ears of representative size and weight were
FIGURE 1

Study area location and layout of the experimental site.
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selected for indoor measurement of water content and grain weight.

The relative water content of the grain was measured with a PM-

8188-A Grain Moisture Meter (Kett Electric Laboratory Co., Ltd.,

Tokyo, Japan). Finally, the grain yield at 14% water content of each

plot was calculated and is shown in Figure 3. The lowest yield

(1291.08 kg/ha) was from plot 69. The highest yield (13781.02 kg/

ha) was from plot 117.
2.3 Image preprocessing

The orthoimages of RGB and multispectral data were generated

using the Agisoft PhotoScan software (version 1.4.5, Agisoft LLC, St.

Petersburg, Russia), facilitated by the GPS and IMU (Inertial

Measurement Unit) data recorded by the UAV flight control system.

Georegistration of the orthoimages obtained at different times was

conducted so that the positional displacements were removed, and the

images were geographically well aligned. This step was done by the

ArcGIS software (version 10.4, Environmental Systems Research

Institute, Inc., Redlands, CA, USA) according to the 12 GCPs (Figure 1).

For the multispectral images, radiometric correction was conducted

to convert image digital number (DN) values into reflectance to extract

spectral information. Linear, quadratic, exponential, logarithmic, and

power functions were used to fit the relationship between the DN values

of six color tarpaulins (Figure 2C) extracted from the images and their

reflectance based on the FieldSpec 4s spectroradiometer measurements.

The optimal functions were used to separately calibrate each band in each

growth stage (Figure 4). The exponential function was selected for the
Frontiers in Plant Science 04
blue band in the VT and R5 stages, and for the green band in the R5

stage, with R2 reaching 0.93, 0.95, and 0.98, respectively. The quadratic

function, with R2 varying from 0.93 to 0.99. The overall workflow of this

study is shown in Figure 5, including the acquisition of indicators, the

establishment of models, and the research objectives.
2.4 Features extraction from multimodal
images

Integrating multimodal features for crop yield estimation has been

validated in previous studies (Rischbeck et al., 2016; Feng et al., 2020;

Ramadanningrum et al., 2020). Estimating maize yields by integrating

spectral, structural, and textural information can provide more

information related to yield and overcome the inherent asymptotic

saturation of single canopy features (Maimaitijiang et al., 2017). In this

study, the lodging information was also considered.

2.4.1 Canopy spectral information
The spectral characteristics of crops are affected mainly by the

absorption, reflection, and transmission of electromagnetic radiation

caused by the physiological structure of plants, which makes spectral

indices good predictors of crop yield (Berger et al., 2020; Yang et al.,

2021). In this study, radiometrically calibrated multispectral images

were used to extract the canopy spectral features. Fourteen spectral

indices that have been widely used in yield estimation were selected

(Sui et al., 2018; Maimaitijiang et al., 2020), as shown in Table 2. The

extraction was implemented in the ArcGIS software.
TABLE 1 Basic parameters of the sensors mounted on the UAV.

Sensor name Sony a7RII RedEdge-MX

Sensor type RGB (Red-Green-Blue) Multispectral

Dimension (mm) 126.9×95.7×60.3 87×59×45.4

Spectral region (mm) N/A Blue:0.475,
Green:0.560,
Red:0.668,
Red-edge:0.717,
Near-infrared:0.842

Resolution (pixels) 7952×5304 1280×960

Focal length (mm) 70 5.4

Mass (g) 625 231.9
FIGURE 2

The UAV platform and sensors: (A) DJI M600 pro, (B) Sony a7RII and MicaSense RedEdge-MX, and (C) six tarpaulins of different colors.
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2.4.2 Canopy structure information
The canopy-structure information is directly related to light use

efficiency (Xu et al., 2021b), which contains independent information

from spectral and texture feature (Stanton et al., 2017). Two

indicators, canopy coverage (CC) and canopy height (CH), were

extracted to characterize the structure of the maize. Both were

extracted from the UAV-RGB images.

Canopy height was extracted by generating a crop height model

(CHM) from UAV high-resolution RGB images. At each of the three

growth stages, the structure-from-motion (SfM) algorithm was

implemented in Agisoft PhotoScan software to create a three-

dimensional (3D) points cloud and a digital surface model (DSM)

(Xie and Yang, 2020). In addition, a bare-earth digital elevation model

(DEM) was created based on photogrammetric 3D point clouds

generated before maize emergence (Maimaitijiang et al., 2019).

Subsequently, the CHM was calculated by subtracting DEM from

DSM using the raster calculator tool in the ArcGIS software.

The calculation of CC depends on the correct recognition of crop

pixels from among the background (soil and weeds). Previous studies

have shown that vegetation and soil can be separated based on indices

calculated from RGB images, such as the color index of vegetation

extraction (CIVE), excess green index (ExG), and excess green minus

excess red (ExG − ExR) (Hamuda et al., 2016; Castillo-Martıńez et al.,

2020). In this study, the CIVE [Eq. (1)] is used with a threshold

interval set at [−28, 5]. The CC is thus expressed as the fraction of

maize canopy pixels to all pixels in the sampled plot [Eq. (2)]:

CIVE = 0:441R − 0:811G + 0:385B + 18:787 (1)

CC =
Pmaize

Ptotal
� 100% (2)

where Pmaize is the number of maize canopy pixels the plot, and

Ptotal is the total number of pixels in the plot.

2.4.3 Canopy texture information
Canopy texture can provide additional information related to

spatial canopy architecture and spectral characteristics (Xu et al.,

2022). The inclusion of texture features can reduce the bias of yield

estimates beyond what is possible using spectral indices alone; this is

helpful for early monitoring of grain yield (Wang et al., 2021). In this
Frontiers in Plant Science 05
study, texture features were extracted from UAV-RGB images based

on the gray-level co-occurrence matrix (GLCM), which is a popular

method to extract texture features (Mohanaiah et al., 2013). This step

was implemented in the ENVI software (version 5.3; Esri Inc.) with a

window size of 7 × 7. The meanings and formulas (Haralick et al.,

1973) of the texture indices are presented in Table 3.
2.4.4 Lodging stress information
Around August 3, 2020 (tasseling stage), a sudden rainstorm

accompanied by strong winds (wind force level 5 to 6) hit the

experiment site, resulting in varying degrees of lodging in the maize

plots. The distribution and degree of lodging were investigated in the field

the day after. Different degrees of lodging occurred in the same plot at the

pixel level. In this study, the lodging degree at the pixel level was extracted

as per Wang (2021) and then divided into three categories: no lodging

(NL), light lodging (LL), and severe lodging (SL). NL means that the

maize remained upright, and the angle between the plant and the ground

was between 0° and 30°. LL means that the angle between the maize plant

and the ground was 30° to 60°. SLmeans that themaize plant was close to

or completely on the ground. An index representing the degree of lodging

of each plot was developed based on the pixel-level degree of lodging and

the lodging area in each plot. The calculation was implemented in the

ArcGIS software. The formula for calculating the lodging index is

LI =o3
i=1LDi � Si (3)

where LI is the lodging index of a plot, LDi is the pixel-level

lodging degree, and Si is the area fraction of lodging degree i in

the plot.
2.5 Random forest regression algorithm

We selected the RFR machine-learning algorithm because it has

already produced accurate and robust estimates of crop yield (Aghighi

et al., 2018; Cai et al., 2019). The RFR algorithm is an ensemble

method that uses bootstrap sampling. Multiple samples are extracted

from the original sample with replacement, each bootstrap sample is

modeled by a decision tree, and then multiple decision trees are

combined by voting to determine the final estimation (Breiman,
FIGURE 3

Bar plot showing the measured maize yield in the sampling plots.
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2001). Because multiple different decision trees are integrated, RFR is

robust against overfitting (Yu et al., 2016).

The RFR models were implemented using Python version 3.7

(Google Inc., Mountain View, California, USA). The number of RFR

decision trees was set to 100, the number of seeds used by the random

number generator was set to 15, and the maximum depth of the

decision tree was determined so that each leaf is “pure” or until all

leaves contain less than the minimum number of samples needed to

split the internal nodes. The other parameters used the default

settings of the Python sklearn package.

To ensure a fair and comprehensive evaluation of the constructed

model, we randomly selected 80% of the samples of the measured
Frontiers in Plant Science 06
maize yields to train the model and used the remaining 20% to

determine the accuracy of the yield estimates produced by

this method.
2.6 Assessment of model accuracy

Three evaluation indicators were used to test the model accuracy:

the coefficient of determination R2, the root mean square error

(RMSE), and relative RMSE (rRMSE). These evaluation metrics are

calculated as follows:
A

B

D

E

C

FIGURE 4

Multispectral radiometric calibration fitting models. (A) blue band, (B) green band, (C) red band, (D) red-edge band, and (E) near-infrared band.
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R2 = 1 −
o
n

i=1
Xmodel,i − Xobs

� �2

o
n

i=1
Xobs,i − Xobs

� �2 (4)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
Xmodel,i − Xobs,i

� �2

n

vuuut
(5)
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rRMSE =
RMSE

Xobs
� 100% (6)

where Xmodel,i and Xobs, i are the estimated yield and observed

yield for plot i, respectively, Xobs is the average of the observed yields,

and n is the number of samples.
FIGURE 5

Workflow for preprocessing, feature extraction, model building, and target research using multimodal data.
TABLE 2 Definitions of the features extracted from multispectral imagery.

Spectral index Formula References

Normalized difference vegetation index NDVI=(NIR−R)/(NIR+R) (Rouse et al., 1974)

Ratio vegetation index RVI=NIR/R (Tucker, 1979)

Green-red vegetation index GRVI=(G−R)/(G+R) (Tucker, 1979)

Optimized soil adjusted vegetation index OSAVI=(NIR−R)/(NIR−R+L)(L=0.16) (Rondeaux et al., 1996)

Normalized difference red-edge NDRE=(NIR−RE)/(NIR+RE) (Gitelson and Merzlyak, 1997)

Modified chlorophyll absorption in reflectance index MCARI=[(RE−R)−0.2∗(RE−G)]∗(RE/R) (Daughtry et al., 2000)

Transformed chlorophyll absorption in reflectance index TCARI=3∗[(RE−R)−0.2∗(RE−G)∗(RE/R)] (Haboudane et al., 2002)

Green normalized difference vegetation index GNDVI=(NIR−G)/(NIR+G) (Gitelson et al., 2003)

Wide dynamic range vegetation index WDRVI=(a∗NIR−R)/(a∗NIR+R)(a=0.12) (Gitelson, 2004)

Green chlorophyll index GCI=(NIR/G)−1 (Gitelson et al., 2005)

Red-edge chlorophyll index RECI=(NIR/RE)−1 (Gitelson et al., 2005)

Two-band enhanced vegetation index EVI2=2.5∗(NIR−R)/(NIR+2.4∗R+1) (Jiang et al., 2008)

Normalized difference red-edge index NDREI=(RE−G)/(RE+G) (Hassan et al., 2018)
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3 Results

3.1 Construction of lodging index

The pixel-level map of lodging degree (Figure 6) for each test

plot is derived from the pixel-size degree of lodging extracted by

Wang (2021). The classification accuracy of using the random

forest classifier for lodging degree at pixel size is 86.96%; for more

details, see Wang (2021). The result shows that the degree of

lodging differs at different positions within the same plot.

Therefore, it is hard to describe the degree of lodging of the plot

only by lodging area or the lodging degree at pixel size. The

lodging index of each plot is shown in Figure 7, where a larger

lodging index indicates a greater degree of lodging in the plot, and

a lower degree of lodging means that the lodging degree of the plot

is lighter. The lodging degree of each plot represented by the

lodging index (Figure 7) is consistent with the spatial distribution

of the pixel-level lodging degree (Figure 6). Thus, the lodging

index is used to analyze how lodging affects yield estimates.

To further describe the relationship between the lodging index

and yield, we plot the measured yield versus the lodging index in

Figure 8. There was no obvious increasing or decreasing trend in the

measured maize yield with increasing lodging index.
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3.2 Estimation of maize yield without
lodging index

Differences appear in the estimated maize yield in different

growth stages, and the yield-estimation model identifies the optimal

harvest time. The results show that the models developed based on

UAV images obtained at different growth stages perform at various

levels (Figure 9). The model developed at the R5 stage performs best,

with R2 = 0.806, RMSE = 1106.67 kg/ha, and rRMSE = 13.4%. The

model developed at the VT stage performs the worst, with R2 = 0.170,

RMSE = 1799.01 kg/ha, and rRMSE = 21.7%. The results indicate that

models developed at later growth stages perform better than models

developed at early growth stages, which is consistent with previous

results (Johansen et al., 2020; Li et al., 2021).

To further explore whether lodging affects yield estimation, the

deviation between the estimated and measured yields is plotted as a

function of lodging index. As shown in Figure 10, no clear

relationship appears between the estimation error and the lodging

index. Large estimation errors appear mainly in plots with small

lodging index or larger lodging index. In addition, at all three growth

stages of maize, the yield of plots with a small degree of lodging tends

to be underestimated with respect to the actual yield, whereas the

yield of the plots with severe lodging degree is clearly overestimated.
TABLE 3 Meanings and formulas of the selected texture indices based on GLCM.

Texture index Formula Meaning

Mean mi = o
N−1

i,j=0

i(Pi,j)

mj = o
N−1

i,j=0

j(Pi,j)

Average gray level in the window.

Variance si = o
N−1

i,j=0

Pi,j(i − mi)
2

sj = o
N−1

i,j=0

Pi,j(j − mj)
2

Variance of gray level in the window.

Homogeneity
HOM = o

N−1

i,j=0

Pi,j=½1 + (i − j)2� Measure of the homogeneity across the window.

Contrast
CON = o

N−1

i,j=0

Pi,j(i − j)2
Metric of the local change in pixel value between adjacent pixels.

Dissimilarity
DIS = o

N−1

i,j=0

Pi,jji − jj Metric that reflects the difference in grayscale.

Entropy
ENT = o

N−1

i,j=0

Pi,j( − ln Pi,j)
Measure of the disorder across an image.

Angular Second Moment
ASM = o

N−1

i,j=0

P2
i,j

Metric of the uniformity of the image gray level distribution.

Correlation
COR = o

N−1

i,j=0

Pi,j½(i − mi)(j − mj)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s 2

i )(s 2
j )

q
� Metric of linearity between adjacent pixels.

From Hall-Beyer (2017); Park and Guldmann (2020), and Haralick et al. (1973).
N is the number of gray levels. i and j are the column and row labels of the GLCM, respectively. Pi,j is the probability that values i and j appear in the adjacent pixels of the original image within the
window that defines the neighborhood. m is the mean and s is the standard deviation, defined by the GLCM mean and the GLCM variance equation in the table.
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FIGURE 7

Distribution of lodging index for each plot.
FIGURE 6

Distribution of pixel-level degree of maize lodging.
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The results indicate that the yield estimates are influenced by lodging.

Thus, lodging must be considered to accurately estimate yields under

lodging conditions.
3.3 Accurate estimation of maize yield with
lodging index

Figure 11 shows the yield estimated by integrating into the model

the canopy spectral, structural, and textural information and the

lodging index. For the model developed at the same growth stage, the

model including the lodging index performs better than without the

lodging index. For models including the lodging index, a model

developed at the later growth stages performs better than a model

developed at early growth stages, which performs similarly to a model

without the lodging index. For a model developed at the VT stage, R2

increases from 0.170 to 0.242 and the RMSE decreases from 1799.01

to 1700.60 kg/ha. For a model developed at the R3 stage, R2 increases

from 0.434 to 0.533 and the RMSE decreases from 1466.87 to 1401.75

kg/ha. For a model developed at the VT stage, R2 increases from 0.806

to 0.859 and the RMSE decreases from 1106.67 to 1086.41 kg/ha.

These results indicate that the lodging index is a useful variable for

accurately estimating maize yield when lodging occurs.

To test the importance of the lodging index in yield estimation,

Figure 12 shows the relationship between the residual of the

estimation model (i.e., the estimated yield minus the measured

yield) and the lodging index. Upon integrating the lodging index
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into the maize yield estimation model for all three maize growth

stages, plots with a low (high) lodging index experience more (less)

overestimation but less (more) underestimation. In addition, the

estimation residuals are smaller at the R5 stage than at the VT and

R3 stages, although adding the lodging index. In general, adding

lodging information to the model reduces the underestimation of

yield in areas of slight lodging and reduces overestimation in areas of

severe lodging, so the model performs better in the early stage after

lodging than in the later stage.
4 Discussion

The construction of the lodging index should consider not only

the degree of lodging but also the lodging area (Kendall et al., 2017).

The lodging index proposed herein integrates the pixel-level degree of

lodging and the fraction of the lodging area in the plot. The calculated

lodging index well characterizes the degree of lodging of each plot (cf.

Figures 6, 7), but subtle differences still exist where the lodging degree

is underestimated. In addition, the lodging index represents the entire

plot, but omits details within plots. Future work should construct a

lodging index that represents more comprehensively the lodging

situation of each community.

This study uses the spectral, structural, and textural information

of the maize canopy to estimate maize yields. The model developed at

the R5 stage has R2 = 0.806, RMSE = 1106.67 kg/ha, and rRMSE =

13.4%, which is consistent with previous studies (Rischbeck et al.,
A B C

FIGURE 9

Estimation of maize yield by integrating multimodal data, but without considering the lodging index, at the (A) tasseling stage (VT), (B) milking stage (R3),
and (C) denting stage (R5).
FIGURE 8

One-to-one correspondence between the lodging index and the measured yield of each plot.
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A B C

FIGURE 11

Maize yield estimated by integrating multimodal data with lodging index at the (A) tasseling stage (VT), (B) milking stage (R3), and (C) denting stage (R5).
A

B

C

FIGURE 10

Residuals of yields estimated without considering the lodging index at the (A) tasseling stage (VT), (B) milking stage (R3), and (C) denting stage (R5).
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2016; Feng et al., 2020; Ramadanningrum et al., 2020). Integrating the

lodging index with canopy spectral, structural, and textural

information improves maize-yield estimates (Figures 8, 10) because

lodging occurred in the field. The main reason for these results may be

that the lodging index constructed herein provides useful information

about the degree of lodging of each plot under natural conditions.

The variable importance at different growth stages presented in

Figure 13 also shows that the CC and lodging index are important for

estimating maize yields at all three growth stages. This shows that the

lodging index may offer additional information associated with the

growth status of maize. In addition, different variables are not

screened to improve the performance of the model. Previous

studies have shown that a strong linear correlation exists between

vegetation indices, whereas each variable produces different effects on
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retrieving vegetation parameters (Zeng et al., 2022). Therefore,

multiple variables must be integrated to estimate yield with

better accuracy.

The improved accuracy of yield estimation in the VT and R3

stages is slightly greater than that in the R5 stage, indicating a

decreased response of maize plants to lodging as they grow. This is

consistent with the varying importance at different growth stages

presented in Figure 13. The importance of the lodging index in RFR

modeling decreases as the growth stage approaches maturity. Such

decreases may be attributed to the natural self-recovery of maize

plants and the manual measures taken. The self-recovery of maize

plants could change the canopy characteristics (Hu et al., 2021),

which leads to less difference between lodged and non-lodged plants.

Moreover, manual measures were applied within 3 days after lodging
A

B

C

FIGURE 12

Estimation bias between measured yield and estimated yield, at the (A) tasseling stage (VT), (B) milking stage (R3), and (C) denting stage (R5).
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occurred to help the maize plants return to the upright state. These

measures may also reduce the influence of lodging on yields and

thereby weaken the effect of the lodging index on yield estimation. In

addition, the response of maize plants to lodging decreases with the

growth of maize plants. In this study, all experimental plots were

analyzed together to verify the stability of the model, and the role of

lodging in yield estimation in a variety of experiments and nitrogen

treatments was not considered. Thus, future studies should take this

into consideration.

Regardless of whether the lodging index is included in the yield

estimation model, the model developed in the R5 stage is the most

accurate of the three growth stages, and the model developed in VT

stage is the least accurate. The main reason for this result may be that

pollination does not start at the VT stage, and many factors can later

affect the development of seeds. For example, the canopy

characteristics might change with the rapid growth of the crop after

lodging occurs due to the self-recovery of maize (Han et al., 2018). As

the maize plants grow closer to harvesting, the development of seeds

the canopy characteristics tend to stabilize (Song et al., 2016), which

would improve the correlation between the final grain yields and the

canopy characteristics. Therefore, estimating crop yield at the early

growth stage produces greater error than estimating crop yield at later

growth stages.
5 Conclusion

In this study, the RGB andmultispectral images obtained from a low-

altitude UAV are used to estimate the grain yield of various varieties of

maize with different nitrogen fertilization treatments. The canopy

spectral, structural, and textural information were integrated into the
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RFR algorithm for estimating maize yield. In addition, to study how

lodging affects yield estimation, a lodging index was developed to

quantify the degree of lodging of each plot. The results lead to the

following main conclusions: (1) The lodging index developed herein

accurately quantifies the degree of lodging of each plot. (2) Including the

lodging index into the yield-estimation model leads to more accurate

crop yield estimates, and the model performs better in the early stage of

maize growth than that in the later stage of maize growth. (3) The maize

yield can be accurately estimated by integrating spectral, structural,

textural, and structure information of the maize canopy with the

lodging index, especially in the R5 stage, which gives R2 = 0.859,

RMSE = 1086.41 kg/ha, and rRMSE = 13.1%, followed by the R3

stage, with the VT stage producing the least accurate yield estimates.

Future efforts to improve UAV-based maize-yield estimation

under various lodging conditions should focus on developing a

more comprehensive lodging index, exploring how lodging affects

yield estimation, and seeking new ways to integrate lodging

information into yield estimation.
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