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Strigolactones mediate plant development, trigger symbiosis with arbuscular

mycorrhizal fungi, are abundant in 80% of the plant kingdom and help plants

gain resistance to environmental stressors. They also induce germination

of parasitic plant seeds that are endemic to various continents, such as

Orobanche in Europe or Asia and Striga in Africa. The genes involved in the

early stages of strigolactones biosynthesis are known in several plants. The

regulatory structure and the latter parts of the pathway, where flux branching

occurs to produce alternative strigolactones, are less well-understood. Here

we present a computational study that collects the available experimental

evidence and proposes alternative biosynthetic pathways that are consistent

with that evidence. Then, we test the alternative pathways through in silico

simulation experiments and compare those experiments to experimental

information. Our results predict the differences in dynamic behavior between

alternative pathway designs. Independent of design, the analysis suggests

that feedback regulation is unlikely to exist in strigolactone biosynthesis. In

addition, our experiments suggest that engineering the pathway to modulate

the production of strigolactones could be most easily achieved by increasing

the flux of β-carotenes going into the biosynthetic pathway. Finally, we find

that changing the ratio of alternative strigolactones produced by the pathway

can be done by changing the activity of the enzymes after the flux branching

points.

KEYWORDS
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Introduction

Strigolactones (SLs) are a group of plant hormones that have pleiotropic effects. They
were initially discovered as a germination stimulant of the parasitic plant Striga (Cook
et al., 1966). Later, it became apparent that they are also responsible for promoting
symbiotic interactions between plant and soil microbes (Akiyama et al., 2005) and
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controlling plant and root growth and development (Gomez-
Roldan et al., 2008; Umehara et al., 2008).

Strigolactones were identified in most cereal crops’ root
exudates and play a crucial role in host-parasite interactions
(Bouwmeester et al., 2003). SLs induce hyphal branching in
arbuscular mycorrhizal (AM) fungi leading to the establishment
of symbiosis. The fungi colonize the root cortex and supply
the root with inorganic nutrients in exchange for carbohydrates
derived from photosynthesis (Akiyama et al., 2005). Aside from
nutrients, AM fungi also contribute to water uptake under
drought stress, apparently by increasing the production of indol
acetic acid (Marulanda et al., 2009).

Several SLs exist, and two of the most important ones
are orobanchol (ORO) and strigol (STR). In addition to their
roles in plant development, ORO mediates the germination
of Orobanche, and STR mediates the germination of Striga.
These are two of the most critical parasitic plants whose
germination is mediated by the SLs present in root cereal
exudates. While Striga parasites are endemic in African soils and
affect 70% of the continent’s cereal crops, Orobanche parasites
are problematic in the Middle East, Europe, and North America,
having important effects on leguminous crops (Bouwmeester
et al., 2003; Yacoubou et al., 2021). With limited agricultural
resources in Sub-Saharan Africa, Striga infestation and draughts
remain essential obstacles to overcome for cereal production in
the continent (Scholes and Press, 2008).

Due to the critical roles of STR and ORO in plant
development and crop yields, it is crucial to elucidate the
biosynthetic steps for the various SLs and understand their
regulation. All-trans-β –carotene (BCAR) is the initial substrate
for the SLs biosynthesis pathway. The initial catalytic steps
that go from BCAR to carlactone (CL) are well-characterized
in cereals (Figure 1). The individual biosynthetic steps from
CL to produce STR or ORO are less clear. Zhang et al.
(2014) reported that rice MAX1 homolog Os900 and Os1400
catalyze alternative steps that transform CL either into ent-2′-
epi-5-deoxystrigol (STR) or ORO. In concurrent experiments,
Yoneyama et al. (2018) only detect that Arabidopsis MAX1,
Os900, and Os1400 convert CL to carlactonic acid (CLA), which
is then converted into 4-deoxyorobanchol (DO), suggesting that
MAX1 can catalyze at least three of the steps that transform
CLA into either STR or ORO. Clarifying the most likely reaction
steps in this section of the ORO and STR biosynthetic pathway
enables targeted and more effective genome manipulation
toward potentiating the production of either STR or ORO.

Mathematical modeling provides a set of tools that can be
helpful to differentiate between alternative reaction structures
of a pathway. When significant amounts of quantitative data
are available, statistical methods and optimization can be used
to find relationships between variable and assign probabilities
to alternative reaction structures (Shah et al., 2009; Guillén-
Gosálbez et al., 2013; Su et al., 2013; Wang et al., 2022). If, on
the other hand, no quantitative information is available, Boolean

networks provide a reasonable approach to distinguish between
alternative pathway structures (Mehra et al., 2004; Dealy et al.,
2005; Schwab et al., 2020).

In the middle ground where, as is our case, some
information is available, differential equation models provide
a good formalism to work with for structure comparison.
In general, alternative models for the same pathway can be
constructed (Alves and Savageau, 2000; Igoshin et al., 2008;
Alves et al., 2021). Then, their dynamics can be characterized
and compared to experimental observations to elucidate which
pathway structure is consistent with experimental observations
(Alves et al., 2004a,b; Alves and Sorribas, 2007). As such, models
can be essential tools to predict undetermined phenomena,
test hypotheses, and evaluate the potential consequences of
alternative actions (Torres and Santos, 2015). This methodology
can help differentiate the dynamic behavior of alternative
mechanisms involved in the production of SLs in plants. In
this study, we will apply this methodology to construct two
alternative models for the biosynthesis of STR and ORO that
are consistent with the experimental observations reported
above. We then interrogate the models by performing in silico
experiments to identify potential differences in their dynamic
behavior of the alternative models. The differences between
the two pathways in relation to producing ORO and STR can
be used to propose additional experiments and leverage this
information to further clarify the structure and regulation of SLs
biosynthesis.

Materials and methods

Pathway reconstruction

The available experimental information is consistent with
two alternative structures for the SLs biosynthesis pathway,
as described in the Section “Introduction.” A conceptual
representation of each alternative is illustrated in Figure 1.

The core pathway of strigolactone biosynthesis is consensual
among several studies (Alder et al., 2012; Waters et al., 2012;
Zhang et al., 2014; Yoneyama et al., 2018; Mashiguchi et al.,
2021) and common to both alternative models (Figure 1A).
This core of reactions describes the transformation of all-trans-
β-carotene (BCAR) into carlactone (CL). The individual steps of
the core are illustrated in Figure 1A. Healthy plants can provide
a supply of BCAR to the strigolactone biosynthesis pathway. As
such, we assume that the plant produces BCAR at a constant
rate, k0. This constant rate can be modulated to account for
the variability in BCAR availability observed in plants. BCAR
is used by β –carotene isomerase Dwarf27 (D27) to make 9-cis-
β-carotene (CISB) (Alder et al., 2012). Then, carotenoid cleavage
dioxygenase 7 (CCD7) cleaves CISB into all-trans-β –apo-10′-
carotenal (CTNL) and β –ionone. Subsequently, the enzyme
CCD8 converts CTNL into CL.
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FIGURE 1

Alternative pathways for the biosynthesis of strigolactones in cereals. (A) Biosynthetic pathway of strigolactones from all-trans-β –carotene
(BCAR) to be catalyzed by D27 to produce 9-cis-β –carotene (CISB). Then CCD7 will catalyze CISB to obtain 9-cis-β –apo-10′-carotenal
(CTNL), which will be further catalyzed to carlactone (CL) by CCD8. (B) Then we assume that MAX1 will catalyze CL to produce
orobanchol-type (ORO) and strigol-type (STR). (C) CL is further catalyzed by MAX1 to carlactonic acid (CLA). CLA is converted and distributed to
4-deoxyorobanchol (DO) by MAX1 and ORO and 5-deoxystrigol (5DS) by ABA. Then DO is further converted into orobanchol. The boxes
represent metabolite concentration, and the arrows are enzyme reactions, where the substrate (beginning of the arrow) transforms into a
product (end of the arrow). Solid arrows indicate experimentally confirmed enzymes involved in the catalysis. Dashed arrows indicate the maize
enzyme with the highest homology to those catalyzing the reaction in other cereals. Model AB (AC) couples modules A and B (C). Parameters:
influx of BCAR (k0), proportion of orobanchol-type (ω), turnover number (kcati), Michaelis-Menten’s constant (KMi) with respect to enzyme
concentration i = D27, CCD7, CCD8, MAX1, ABA.

We know less about the individual steps that convert CL into
the subsequent intermediates of SL biosynthesis. The simplest
scenario (Figure 1B) consistent with available experimental
information is to consider that a single multi-step P450 enzyme
uses CL and synthesizes STR and ORO (Zhang et al., 2014).

Here, we introduce a parameter 0 ≤ ω ≤ 1. In the
absence of additional experimental information, this parameter
determines which percentage of flux f = VmaxMAX1[CL]

KM MAX1+[CL] is

drawn from the CL pool to produce ORO (ω × f ) and
which goes to STR [(1− ω) × f ]. The model also assumes
that ORO and STR diffuse away from the production
site at a rate that is proportional to their respective
concentrations. The proportionality constants for this diffusion
are defined by k.

Several studies suggest that the lower part of the biosynthetic
SL pathway may be different (Figure 1C). It is known
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that CL is converted to carlactonic acid (CLA) by MAX1
in Arabidopsis thaliana (CYP711A1/AtMAX1) and Oryza
sativa (CYP711A2/Os900 and CYP711A3/Os1400) (Yoneyama
et al., 2018). Moreover, CLA is further converted to 4-
deoxyorobanchol (DO) by CYP711A2. Then, DO is converted
into orobanchol by CYP711A3 (Yoneyama et al., 2018). In
parallel, CLA is converted to ORO in cowpea and tomato by
CYP722 (Wakabayashi et al., 2019). Furthermore, CYP722S
seems to convert CLA into a strigol in cotton (Wakabayashi
et al., 2020). In maize, the closest sequence ortholog for
CYP722C is abscisic acid 8′-hydroxylase (ABA8HD).

Because ABA8HD can potentially catalyze the alternative
conversion of CLA into either ORO or STR, we introduce
a parameter 0 ≤ φ ≤ 1. This parameter determines which
percentage of flux f ∗ = VmaxABA [CLA]

KM ABA+[CLA] is drawn from the CLA
pool to produce ORO (φ × f ∗) and which is used to produce
STR [(1− φ) × f ∗].

TABLE 1 Parameter values for Model AB.

Notation Original values Unit References and
organism

k0 1× 10−8* mM s−1

kcatD27A 68 s−1 (Harrison et al.,
2015) Rice

D27 1.06× 10−7* mM (Waters et al., 2012)
Arabidopsis

KMD27 0.26* mM (Harrison et al.,
2015)
Rice

kcatD27B 34 s−1 (Harrison et al.,
2015)
Rice

kcatCCD7 26000 s−1

CCD7 1.06× 10−7 mM (Waters et al., 2012)
Arabidopsis

KMCCD8 0.0087 mM (Harrison et al.,
2015)
Rice

kcatCCD8 0.18 s−1 (Harrison et al.,
2015)
Rice

CCD8 1.06× 10−6* mM (Waters et al., 2012)
Arabidopsis

KMCCD8 0.0092 mM (Harrison et al.,
2015)
Rice

ω 0.5 –

VmaxMAX1 6.08× 10−6 mM/s

KMMAX1 0.0005 mM (Waters et al., 2012)
Arabidopsis

k 1 s−1

*The values for these parameters were adjusted to keep BCAR concentrations within
experimentally determined values and maintain steady state stability (Supplementary
Figure 1). Values found in the literature are: k0 = 3.7 × 10−14 , D27 = 1.06 × 10−8 ,
KMD27 = 0.00026, CCD8 = 1.06× 10−7 .

Model building and assembly

The mathematical model was built based on the two
alternative pathways presented in Figure 1. We coupled the
core pathway (Figure 1A) to the use of CL by MAX1 to
synthesize the formation of both strigol-type and orobanchol-
type strigolactones (Figure 1B). This created the first model
(Model AB hereafter). On the other hand, Model AC was
created by coupling the core pathway with the pathway shown
in Figure 1C, which is based on several experimental studies
(Yoneyama et al., 2018; Wakabayashi et al., 2019, 2020). Here,
CL was used to synthesize CLA. CLA is then transformed
into ORO and STR.

All the reactions are described using a Michaelis-Menten
approximation kcat i[i][S]

KMi+[S] . In this approximation, the flux of

TABLE 2 Parameter values for Model AC.

Notation Original values Unit References

k0 1× 10−8* mM

kcatD27A 68 s−1 (Harrison et al.,
2015) Rice

D27 1.06× 10−7* mM (Waters et al., 2012)
Arabidopsis

KMD27 0.26* mM (Harrison et al.,
2015)
Rice

kcatD27B 34 s−1 (Harrison et al.,
2015)
Rice

kcatCCD7 26000 s−1

CCD7 1.06× 10−7 mM (Waters et al., 2012)
Arabidopsis

KMCCD7 0.0087 mM (Harrison et al.,
2015)
Rice

kcatCCD8 0.18 s−1 (Harrison et al.,
2015)
Rice

CCD8 1.06× 10−6* mM (Waters et al., 2012)
Arabidopsis

KMCCD8 0.0092 mM (Harrison et al.,
2015)
Rice

VmaxMAX1 6.08× 10−6 mM/s

KMMAX1 0.0005 mM (Waters et al., 2012)
Arabidopsis

VmaxABA8HD 3.8× 10−9 mM/s (Cutler et al., 2000)
Arabidopsis

KMABA8HD 0.016 mM (Cutler et al., 2000)
Arabidopsis

k 1 s−1

*The values for these parameters were adjusted to keep BCAR concentrations within
experimentally determined values and maintain steady state stability (Supplementary
Figure 2). Values found in the literature are: k0 = 3.7 × 10−14 , D27 = 1.06 × 10−8 ,
KMD27 = 0.00026, CCD8 = 1.06× 10−7 .
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each process depends on the concentrations of substrate [S]
and enzyme [i]. The parameters in the equation are the
turnover number kcat i, and the Michaelis-Menten constant KMi,
where i is any of the enzymes in the pathway (that is i =
[D27, CCD7, CCD8, MAX1, ABA8HD]). Note that Vmaxi,
the maximum reaction rate, is equivalent to the product of kcat i
and [i]. Equation 1 shows the system of ordinary differential
equations (ODEs) that describe the dynamics of the core
pathway:[

BĊAR
]
=

k0 −
kcat D27A [D27] [BCAR]
KM D27 + [BCAR]

+
kcat D27B [D27] [CISB]
KM D27 + [CISB][

CİSB
]
=

kcat D27A [D27] [BCAR]
KM D27 + [BCAR]

−
kcat D27B [D27] [CISB]
KM D27 + [CISB]

−
kcat CCD7 [CCD7] [CISB]

KM CCD7 + [CISB]
(1)

[
CṪNL

]
=

kcat CCD7[CCD7] [CISB]
KM CCD7 + [CISB]

−
kcat CCD8[CCD8][CTNL]

KM CCD8+ [CTNL][
ĊL
]
=

kcat CCD8 [CCD8] [CTNL]
KM CCD8 + [CTNL]

−
VmaxMAX1[CL]
KM MAX1 + [CL]

Next, Equation 2 describes the dynamics of the series of
processes shown in Figure 1B:[

OṘO
]
= ω

VmaxMAX1[CL]
KM MAX1 + [CL]

− k[ORO]

[
SṪR

]
= (1− ω)

VmaxMAX1 [CL]
KM MAX1 + [CL]

− k[STR] (2)

Then, Equation 3 describes the dynamics of the series of
processes described in Figure 1C:

[
CL̇A

]
=

VmaxMAX1 [CL]
KM MAX1 + [CL]

−
VmaxMAX1 [CLA]
KM MAX1 + [CLA]

−
VmaxABA8HD [CLA]
KM ABA8HD + [CLA][
ḊO

]
=

VmaxMAX1 [CLA]
KM MAX1 + [CLA]

−
VmaxMAX1 [DO]
KM MAX1 + [DO]

(3)

[
OṘO

]
=φ

VmaxABA8HD [CLA]
KM ABA8HD+[CLA]

+
VmaxMAX1 [DO]
KM MAX1+[DO]

− k[ORO]

[
SṪR

]
= (1− φ)

VmaxABA8HD [CLA]
KM ABA8HD + [CLA]

− k[STR]

By combining Equations 1, 2, we obtain the ODEs that
describe the dynamic behavior of Model AB. Combining
Equations 1, 3, generates the ODEs that characterize the
dynamic behavior of Model AC. Given that the pathway
isn’t fully established, data for parameter estimation were
obtained from different plants in several databases. We started
with BRENDA (Chang et al., 2021) and complemented the
information in that database by searching the primary literature.
We provide the parameter values for the various processes

in Table 1, together with the experimental references used to
estimate those parameters. Parameter values for the models
were obtained from the literature (Cutler et al., 2000; Waters
et al., 2012; Harrison et al., 2015). Given that the quantitative
information available for the pathway is limited, we made
several approximations to estimate parameter values that are not
available in the literature (Tables 1, 2). As a result, and while we
had maize in focus while modeling, the models are expected to
be a reasonable representation of SL biosynthesis in cereals.

Including feedback regulation in the
model

Negative feedback by pathway intermediates or products
regulates the flux going through most biosynthetic pathways.
The most common form of feedback regulation is overall
feedback, also known as end-product inhibition, where the
final product of the pathway inhibits the reaction of the first
enzyme. In addition, when a biosynthetic pathway is branched,
it is also typical that the metabolite at the branching point
inhibits the first reaction of the pathway and that the final
product of each branch inhibits the reaction of the branch and,
sometimes, activates the first reaction of the opposite branch
(Alves and Savageau, 2000). To the best of our knowledge, no
such feedback is known to occur in strigolactone biosynthesis.
Because this could be a consequence of the pathway being poorly
characterized, we wanted to test the effect of potential feedback
on the dynamics of the alternative models.

To describe potential feedback regulation in the system
and in the absence of specific mechanistic information,
we use the power-law formalism. This formalism allows
us to mathematically approximate the dynamic effect of a
variable on a process (Alves et al., 2008). We consider
overall feedback inhibition, in which the end-product of
the pathway inhibits the initial reaction in the pathway
(Alves and Savageau, 2000). In our case, that is the reaction
driven by D27, producing CISB from BCAR. The possibility
of feedback regulated by the metabolite in the branching
point (CL) is also included. Thus, we have the feedback
regulated by CL, ORO, and STR added to Equation 1
by multiplying [CL]fcl l, [ORO]foro1, and [STR]fstr1 into the
expression kcat D27A[D27][BCAR]

KM D27 +[BCAR] .
We also considered the possibility of other potential

feedback interactions. First, we allowed ORO and STR to
inhibit the reaction catalyzed by MAX1 (this enzyme uses
CL to produce ORO and STR). This was implemented
by multiplying either [ORO]foro2 or [STR]fstr2 to the
expressions that describe the direct production of ORO or
STR, respectively. The feedback parameters are allowed to
range from –1 to 0 (for negative feedback; 0 to 1 if it were
positive feedback). This excludes cooperativity. Sometimes,
kinetic orders beyond one are necessary for some qualitative
behaviors to appear.
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This leads to the ODEs described in Equations 4, 5:[
BĊAR

]
=

k0 −
kcat D27A [D27] [BCAR]
KM D27 + [BCAR]

[CL]fcl [ORO]foro1 [STR]fstr1

+
kcat D27B [D27] [CISB]
KM D27 + [CISB][

CİSB
]
=

kcat D27A [D27] [BCAR]
KM D27 + [BCAR]

[CL]fcl [ORO]foro1 [STR]fstr1

−
kcat D27B [D27] [CISB]
KM D27 + [CISB]

−
kcat CCD7 [CCD7] [CISB]

KM CCD7 + [CISB]
(4)[

CṪNL
]
=

kcat CCD7 [CCD7] [CISB]
KM CCD7 + [CISB]

−
kcat CCD8 [CCD8] [CTNL]

KM CCD8 + [CTNL][
ĊL
]
=

kcat CCD8 [CCD8] [CTNL]
KM CCD8 + [CTNL]

−ω
VmaxMAX1 [CL]
KM MAX1 + [CL]

[ORO]foro2

− (1− ω)
VmaxMAX1 [CL]
KM MAX1 + [CL]

[STR]fstr2

[
OṘO

]
= ω

VmaxMAX1 [CL]
KM MAX1 + [CL]

[ORO]foro2 − k[ORO] (5)

[
SṪR

]
= (1− ω)

VmaxMAX1 [CL]
KM MAX1 + [CL]

[STR]fstr2 − k[STR]

Furthermore, we also considered the possibility that ORO
and STR could regulate the fluxes directly after the branching
points from CLA in model AC. In the same model, we also
consider the possibility that CLA could negatively regulate the
initial reaction of the pathway catalyzed by D27. The dynamics
of these feedbacks are described by Equation 6:[

CL̇A
]
=

VmaxMAX1 [CL]
KM MAX1 + [CL]

−
VmaxMAX1 [CLA]
KM MAX1 + [CLA]

[ORO]foro4

−φ
VmaxABA [CLA]
KM ABA + [CLA]

[ORO]foro3

− (1− φ)
VmaxABA [CLA]
KM ABA + [CLA]

[STR]fstr3

[
ḊO

]
=

VmaxMAX1 [CLA]
KM MAX1 + [CLA]

[ORO]foro4

−
VmaxMAX1 [DO]
KM MAX1 + [DO]

(6)

[
OṘO

]
= φ

VmaxABA [CLA]
KM ABA + [CLA]

[ORO]foro3

+
VmaxMAX1 [DO]
KM MAX1 + [DO]

− k[ORO]

[
SṪR

]
= (1− φ)

VmaxABA8HD [CLA]
KM ABA8HD + [CLA]

[
SṪR

]fstr3
− k[STR]

Quality control of models

We evaluated the quality of the resulting models. In brief,
biological systems are robust to changes in parameter values,
and models that are representative of physiological situations
should have low sensitivities to most parameters (Savageau,
1975). In addition, the steady-state generated by these models
needs to be stable (Savageau, 1976). Thus, the fundamental
quality indicators of models are that they produce stable and
robust steady states. We tested all our models using these
indicators as described below. Figure 2 summarizes the process
of model building and improvement.

Stability analysis
Steady state stability can be determined by analyzing the

eigenvalue of the Jacobian matrix. First, we get the partial
derivative of each equation with respect to dependent variables
to get the Jacobian matrix. Next, we solve for the eigenvalue of
the Jacobian matrix in which it is stable for negative eigenvalue
and unstable for positive eigenvalue.

Sensitivity analysis
By definition, sensitivity analysis measures how much a

variable changes if one of the parameters in the system is
varied by a certain amount (Voit, 2013). The robustness of
a steady state can be determined through sensitivity analysis.
The more sensitive a variable is to a parameter change, the less
robust the system is.

Sensitivity analysis identifies regions in the model where
minor inaccuracies in parameter values can lead to almost
unpredictable results. Consequently, this analysis also allowed
us to identify components of the model that may be problematic
due to unusually high sensitivity values (Savageau, 1975; Voit,
2013). In addition, this analysis allowed us to understand how
the variables of the system depended on its parameters, therefore
providing information about potentially helpful and relevant
regulatory targets.

Mathematically, the sensitivity of a variable to a parameter
can be calculated from

S̄
(
X, p

)
=
∂X/X
∂p/p

=
∂ logX
∂ log p

. (7)

We performed a sensitivity analysis on all our models, as
described in Comas et al. (2016).

Software

The model was constructed using COPASI (Hoops et al.,
2006) and EasyModel (Bartolomé et al., 2019). It was further
analyzed using Mathematica (Wolfram Research Inc, 2021)
to stabilize the system, conduct sensitivity analysis, and scan
parameters. The code that generates the models and the
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FIGURE 2

Workflow for model building and validation. First, we translate the conceptual models described in Figure 1 into systems of ordinary differential
equations (ODEs). Second, we validate the models by comparing their behavior to known experimental results. Where inconsistent, we adjusted
the influx of BCAR (which is represented by k0) to reach the appropriate experimental levels. If this leads to unstable steady states, we further
optimize parameters to maintain the substrate close to experimentally compatible levels and stabilize the steady state.

figures can be downloaded from https://www.dropbox.com/s/
9u77nj5mgp12e1w/Supplementary%20Data%20S1.rar?dl=0 as
a Mathematica notebook.

Results

Data-driven model improvement

We built the alternative models using parameter values
collected from various plants (Table 1). As such, and in order to
describe the situation in maize more accurately, the parameter
values needed adjustment. To do so, we gathered quantitative
experimental data in maize for metabolites in the pathway and
then tested to see the minimal changes in parameter values
that would allow the model to generate those metabolite levels
while maintaining a stable and robust steady state, which are
hallmarks of good model quality.

We only found experimental measurements for BCAR in
white maize lines (Zhu et al., 2008). Zhu et al. (2008) reported
that the BCAR concentration in the South African elite white
maize variety of M37W ranges from 10−4 (wild-type maize) to
10−1 (maize genetically transformed to produce carotenoids).
The models using the basal parameter values can only produce

half of the experimentally measured BCAR. Thus, to better
approximate reality, the flux accounting for the production
of BCAR (which is represented by k0) must be increased in
the models. Yet, increasing k0 by an amount that produces
the appropriate levels of BCAR leads to an unstable steady
state (Figure 2). This is shown by the real parts of eigenvalues
becoming positive after a certain threshold for a given parameter
(Supplementary Figures 1, 2). For example, increasing the
influx of BCAR above 10−8 will make the eigenvalue suddenly
increase and approach a positive value hence resulting in an
unstable system (Supplementary Figures 1A, 2A).

As such, we needed to determine which parameters could
reasonably be adjusted to stabilize the steady state of the
alternative models while maintaining BCAR levels that are
consistent with experimental observation.

Theory-driven model improvement

Stabilizing the steady state of the models and making
the metabolite concentrations consistent with experimentally
determined concentrations were done in two ways. First, we
identified the parameters whose values could be changed to
make the levels of BCAR consistent with experimental levels
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while stabilizing the steady state. Then, we investigated if there
might be potential feedback regulatory loops that have yet to
be experimentally characterized and could help in stabilizing
the steady state.

Parameter adjustments
To stabilize the steady state of the alternative models

we scanned the values for each parameter independently
over six orders of magnitude, as described in methods
and summarized in Figure 2. For each set of parameter
values, we calculated the steady state of the model and the
eigenvalues of that steady state to determine its stability
(Supplementary Figures 1, 2). All eigenvalues should have
negative real parts for stable steady states and thus represent
physiological situations.

Supplementary Figure 1 shows the real part of the greatest
eigenvalue changes as each parameter changes. This analysis
revealed that changing the parameter values of k0, D27, KMD27,
and CCD8 to those given in Table 1 provides the minimum
intervention parameter set that stabilizes the steady state of
Model AB while maintaining BCAR levels that are consistent
with experimental determinations. The same goes for Model

AC, where the parameter values inTable 2 are within the bounds
of stability presented in Supplementary Figure 2.

Feedback regulation
Inhibitory feedback regulation is prevalent in biosynthetic

pathways (Alves and Savageau, 2000). Still, we found no
reported evidence for such regulation in SL biosynthesis.
However, such a type of regulation is known to stabilize steady
states (Alves and Savageau, 2000). As such, we investigated the
possibility that, while yet unknown, such feedback could be
present in the system. To do so, we performed the following
in silico experiment.

First, we created the alternative models described in
Figure 1. Then, for each of the models, we tested the effect
of adding feedback loops, one at a time, on the steady-state
stability and levels of BCAR, as portrayed in Figure 3. This
was done by setting boundaries to the strength of the feedback
effect on each reaction. We represent this feedback strength by
the f parameters in Equations 4-6: f = −1 represents strong
feedback, while f = 0 represents no feedback. Then, we scan
this interval with jumps of 0.01 and calculate the steady state
of the model for each set of parameter values. Finally, for each

FIGURE 3

Effect of overall feedback regulation on strigolactone biosynthesis. Hypothetical inhibitory feedback was added to the models and the steady
state was calculated. Feedback regulation is tested from –1 (strong negative feedback) to 0 (no feedback). Tested feedback combinations in
Model AB: AB1, AB2, AB3, AB1 + AB4, AB2 + AB5, AB1 + AB2, AB1 + AB3, and AB2 + AB3. Tested feedback combinations in Model AC: AC3, AC1,
AC2, AC2 + AC3, AC1 + AC4, AC2 + AC5, AC2 + AC6, AC1 + AC2, and AC1 + AC3. We find that maintaining experimental BCAR levels and stable
steady state requires the absence of inhibitory feedback. See Supplementary Figures 3–6 for details.
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calculated steady state we check for stability and to determine
whether BCAR levels are within the experimentally determined
range of 10−4 to 10−1 (Zhu et al., 2008).

We test Models AB and AC for the dynamic effect that the
possible existence of negative feedback (Alves and Savageau,
2000) to the first reaction from the end-products (ORO and
STR) and branch point metabolites (CL or CLA) might have on
the dynamics of the system. Figure 3 schematically illustrates
all inhibitory feedback interactions we tested and qualitatively
summarizes the effect of those feedback interactions on the
dynamics of the models. Supplementary Figures 3, 4 show
the impact of the various feedback interactions on steady
state stability and BCAR concentration. By and large, if the
feedback strength increases, the concentration of BCAR is
either unaffected or decreases well below experimental levels.
Similarly, weak feedback interactions either have no effect or
decrease the stability of the steady state. As the strength of the
feedback increases, that stability becomes similar to that of the
basal models with no feedback.

We also analyzed the effect that the simultaneous existence
of two feedback interactions at the same time would have
in the dynamics of the models. Results are shown in
Supplementary Figures 5, 6. Combining feedback interactions
lead to qualitatively the same result as in applying only the
individual feedback.

Finally, we note that we constrained the parameters
of Models AB and AC to understand if evolution could
achieve stable steady states and maintain BCAR levels in
the presence of feedback. To do so we adjusted the rate
constant of the reaction to which we added the feedback,
in order to maintain the same steady state flux. Then, we
recalculated the eigenvalues of this constrained system. We
observed that the stability of the steady state decreases as
the feedback strength increases, as was the case for the
unconstrained simulations (Supplementary Figures 7, 8).
Together, these results strongly suggest that inhibitory
feedback regulation of the enzyme activity should not be
present in the pathway.

FIGURE 4

Sensitivity of metabolite concentrations to changes in parameter values for Model AB. Blue indicates that increasing the parameter by 1% will
increase the metabolite concentration by more than 1%, while yellow indicates that increasing the parameter by 1% will decrease the metabolite
concentration by at least 1%.

FIGURE 5

Sensitivity of metabolite concentrations to changes in parameter values for Model AC. Blue indicates that increasing the parameter by 1% will
increase the metabolite concentration by 1%, while yellow indicates that increasing the parameter by 1% will decrease the metabolite
concentration more than 1%.
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Model analysis

Local sensitivity analysis
We performed a sensitivity analysis of the two models

as described in the methods. The results are summarized in
Figures 4, 5 (see Supplementary Tables 1, 2 for full results).

We found that in both models, all concentrations are directly
proportional to the rate constant of the BCAR production
reaction. The substrate concentration of each reaction is, in
general, inversely proportional to the values of kcat , Vmax,
and enzyme concentration of that reaction. That concentration
is also directly proportional to the KM of the reaction. The
sensitivity of the reaction products to the same parameters is
negligible. We also find that the amount of each strigolactones
is proportional to the branching parameter ω in Equation 5.
If ω increases, ORO increases, and STR decreases in direct
proportion to the change in ω .

Each concentration has small sensitivities to all other
parameters in Model AB. In contrast, in Model AC, we
find that the concentrations of CL, CLA, DO, STR strongly
depend on parameters KMMAX1 and VmaxMAX1. In addition,
only the concentration of STR is sensitive to KMABA8HD

and VmaxABA8HD. However, the effect of KMABA8HD and

VmaxABA8HD on STR is the opposite. The concentration of STR
is inversely proportional to KMABA8HD and directly proportional
to VmaxABA8HD.

To understand if the local sensitivity analysis we performed
could be extrapolated to a global sensitivity analysis we scanned
each parameter by at least four orders of magnitude about its
normal value, calculating the new steady state values. For Model
AB, in all cases, we found that metabolites changed as predicted
from the local sensitivity analysis (Supplementary Table 1). We
note that changing the value of the bifurcation parameter ω has
the strongest effect on the balance of STR/ORO that is produced.
As ω approaches 1 (0), only ORO (STR) is produced (Figure 6).
For Model AC, we also found that the global sensitivity analysis
is consistent with the local sensitivity analysis.

A striking difference between Models AB and AC is that
the bifurcation parameter [ω in Equation 5 for model AB and
φ in Equation 6 for model AC] has a weaker effect on the
ratio STR/ORO being produced in Model AC (Figure 6). The
concentration of ORO in Model AC is less sensitive to parameter
changes than in Model AB, as it ranges only from 10−8·3 to 10−8

despite considerable changes in the KM ’s and Vmax’s of both
MAX1 and ABA8HD. This provides a differentiating feature
between Models AB and AC. Moreover, Figure 7 shows the

FIGURE 6

Effect of changing the fraction of flux going from BCAR to strigol-type or orobanchol-type of strigolactones in Models AB and AC. Model
AB—Production of ORO and STR as a function of the flux branching parameter ω and diffusion of strigolactones, represented by k. Model
AC—Production of ORO and STR as a function of the flux branching parameter φ and diffusion of strigolactones, represented by k. Panel (A,B)
are semi-log plots (where y-axis is in log) while panel (C,D) are log-log plots.
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effect of all the parameters involved in MAX1 and ABA8HD on
the metabolite concentrations of CLA, DO, ORO, and STR.

Discussion

While mathematical modeling has been around for decades,
it only recently became a cornerstone on which policymaking
extensively relies due to the pandemic caused by the SARS-
CoV-2 virus. This type of modeling provides a description of
biological systems that can be accurately interrogated through
simulation to reveal the differences in the dynamic behavior
of alternative mechanisms, even before those differences can
be measured directly (Schwiening, 2012). This can help
in predicting how alternative designs for a network or
pathway will affect the dynamic behavior of the system
being modeled, which might help in reconstructing less well-
known molecular pathways. However, despite several successful
works, its application is still in the early stages in plants
(Schwiening, 2012).

A complete characterization of the strigolactone
biosynthesis pathway is still lacking. While the initial steps
of the pathway are clear, the complete set of individual
reactions in the SL production pathway(s) remains unclear.
We combined available experimental information with
mathematical modeling to investigate how possible alternative

structures for the pathway would affect the dynamics of SL
biosynthesis. Building the models required understanding
the essential features of SL biosynthesis. The first part of the
pathway is well-established (Alder et al., 2012). Still, there
is limited knowledge regarding the individual reaction steps
and enzymes that transform CL or CLA into SL and/or ORO.
After extensive literature analysis, we identified two possible
alternative pathways that are consistent with experimental
information. These are represented by models AB and AC in
Figure 1. Model AB is a more straightforward pathway, where
the flux branching between ORO and STR is proposed to occur
at the level of CL (as portrayed in Figure 1B). In contrast,
Model AC was built based on evidence that CL is converted
into CLA (Abe et al., 2014), ORO, and STR. In addition, Model
AC includes an additional flux branch that produces only
ORO (Yoneyama et al., 2018; Yoneyama and Brewer, 2021).
Cytochrome P450 enzymes catalyze reactions in both pathways.
Often, these enzymes have broad specificity in plants. We then
used simulation to identify commonalities and differences in
the dynamic behavior of the alternative models.

Both models predict that the most significant effect on the
production of ORO and STR is achieved by modifying the influx
of BCAR into the pathway (Supplementary Figures 7–11 and
Supplementary Tables 1, 2), rather than changing the amount
of enzyme in any intermediate step of the pathway. In addition,
changing the ratio of ORO vs. STR produced in the pathway

FIGURE 7

Effect of parameter values from the enzyme reactions driven by MAX1 [left panel (A,C)] and ABA [right panel (B,D)] on the metabolic
concentrations of CLA, DO, ORO, and STR in Model AC. All plots are in log-log plane.
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can be achieved by modulating the activity of enzymes after
the branching points represented in Figure 1, as illustrated in
Figures 6, 7.

Commonalities between the dynamic behavior stop here.
The details about the best strategies for modulating differential
production STR and ORO differ between models AB and AC.
Model AB predicts concentration ranges for STR and ORO that
can be similar to each other. In model AB it is possible to divert
all flux toward the synthesis of either STR or ORO (Figure 6).
In contrast, in model AC, ORO is produced at approximately
the same rate, independently of the flux branching. In contrast,
Model AC predicts that ORO concentration can only change
over less than one order of magnitude and is orders of
magnitude higher than that of STR, which can change over five
orders of magnitude.

Another difference is that model AB points to changing
the specificity of MAX1 as the primary determinant of the
ratio between STR and ORO being produced (Figures 6, 7).
Model AC suggests that changing the amount of ABA8HD
enzyme is also essential to determining the balance between
the concentrations of STR and ORO (Figures 6, 7). Thus,
modulating the expression of MAX1 and ABA8HD in the plant
and measuring the effects on the production of STR and ORO
could elucidate which of the two models is closer to reality.

These differences can be used in future research to
experimentally differentiate the alternative pathways. Once the
correct pathway is identified, the model can then be used to rank
potential genetic modifications that could change the ratio of
STR/ORO and decrease the risk of inducing germination of local
parasitic plants.

An interesting aspect of SL biosynthesis is that, while many
biosynthesis pathways have negative feedback from their final
product to the first enzyme of the pathway (overall feedback),
this feedback seems to be absent in SL biosynthesis. When
this was investigated, it became apparent that if biochemical
regulation exists, it is superseded by circadian regulation (Pan
et al., 2009; Khan et al., 2010). Still, feedback regulation of
enzyme activity by intermediates or end products of a pathway
provides many metabolic advantages (Alves and Savageau,
2000). As such, it seemed plausible that such feedback might
exist and not have been observed yet. Thus, we tested what effect
we could expect inhibitory feedback regulation to have in the
dynamics of SL biosynthesis.

Surprisingly, our results strongly suggest that inhibitory
feedback regulation does not exist in the SL biosynthetic
pathway. The existence of that feedback regulation would create
unstable steady states that would make it hard for the plants
to develop properly. In addition, they would decrease the
concentration of pathway substrate to levels well below those
observed experimentally by Zhu et al. (2008). We observe the
same type of behavior when combining possible alternative
feedback inhibitory interactions. Thus, unlike amino acid
biosynthesis, in which negative feedback regulation of the flux

by the amino acid creates a pathway that is driven by demand, SL
biosynthesis is driven by the supply of substrate to the pathway.

Carotenoids are the substrate of the SL biosynthesis
pathway. They are also precursors of other developmental
hormones, of photo-protection and photosynthetic pigments
(Nisar et al., 2015). Thus, from an evolutionary point of view, it
makes sense that the biosynthesis of SL hormones that regulate
plant development are supply driven, because the pathway
substrate availability is also linked to the plant’s ability to
synthesize other molecules that are important in later stages of
its development.

Future perspective

Results obtained from the mathematical model implied
that modulating strigolactone levels in cereals is possible by
increasing the substrate levels of the pathway. Changing the
ratio of STR/ORO produced could be achieved by modulating
enzyme activities after the flux branching that leads to each
strigolactone type. Our results strongly suggest that feedback
regulation does not exist in the pathway, as it is not
possible to reach experimental BCAR concentrations while
simultaneously reaching a stable steady state. In addition,
the next step in our study is to couple strigolactone
biosynthesis to root development and build a combined model
considering the pleiotropic effects of strigolactone to root
growth and development.
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