
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Daniel Cozzolino,
Centre for Nutrition and Food
Sciences, University of Queensland,
Australia

REVIEWED BY

Liang Gong,
Shanghai Jiao Tong University, China
Marcin Wozniak,
Silesian University of Technology,
Poland

*CORRESPONDENCE

Hyongsuk Kim
hskim@jbnu.ac.kr
Sang Jun Lee
sj.lee@jbnu.ac.kr

SPECIALTY SECTION

This article was submitted to
Technical Advances in Plant Science,
a section of the journal
Frontiers in Plant Science

RECEIVED 01 July 2022
ACCEPTED 15 September 2022

PUBLISHED 06 October 2022

CITATION

Ilyas T, Jin H, Siddique MI, Lee SJ,
Kim H and Chua L (2022) DIANA: A
deep learning-based paprika plant
disease and pest phenotyping system
with disease severity analysis.
Front. Plant Sci. 13:983625.
doi: 10.3389/fpls.2022.983625

COPYRIGHT

© 2022 Ilyas, Jin, Siddique, Lee, Kim and
Chua. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 06 October 2022

DOI 10.3389/fpls.2022.983625
DIANA: A deep learning-based
paprika plant disease and pest
phenotyping system with
disease severity analysis

Talha Ilyas1,2, Hyungjun Jin1,2, Muhammad Irfan Siddique3,4,
Sang Jun Lee2*, Hyongsuk Kim1,2* and Leon Chua5

1Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju-si, South Korea,
2Division of Electronic and Information Engineering, Jeonbuk National University, Jeonju-si, South
Korea, 3Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National
University, Seoul, South Korea, 4Department of Horticultural Science, North Carolina State
University, Mountain Horticultural Crops Research and Extension Center, Mills River, United States,
5Department of Electrical Engineering and Computer Sciences, University of California at Berkeley,
Berkeley, CA, United States
The emergence of deep neural networks has allowed the development of fully

automated and efficient diagnostic systems for plant disease and pest

phenotyping. Although previous approaches have proven to be promising, they

are limited, especially in real-life scenarios, to properly diagnose and characterize

the problem. In this work, we propose a framework which besides recognizing

and localizing various plant abnormalities also informs the user about the severity

of the diseases infecting the plant. By taking a single image as input, our algorithm

is able to generate detailed descriptive phrases (user-defined) that display the

location, severity stage, and visual attributes of all the abnormalities that are

present in the image. Our framework is composed of three main components.

One of them is a detector that accurately and efficiently recognizes and localizes

the abnormalities in plants by extracting region-based anomaly features using a

deep neural network-based feature extractor. The second one is an encoder–

decoder network that performs pixel-level analysis to generate abnormality-

specific severity levels. Lastly is an integration unit which aggregates the

information of these units and assigns unique IDs to all the detected anomaly

instances, thus generating descriptive sentences describing the location, severity,

and class of anomalies infecting plants. We discuss two possible ways of utilizing

the abovementioned units in a single framework. We evaluate and analyze the

efficacy of both approaches on newly constructed diverse paprika disease and

pest recognition datasets, comprising six anomaly categories along with 11

different severity levels. Our algorithm achieves mean average precision of

91.7% for the abnormality detection task and a mean panoptic quality score of

70.78% for severity level prediction. Our algorithm provides a practical and cost-

efficient solution to farmers that facilitates proper handling of crops.

KEYWORDS

plant phenotyping, disease severity analysis, diseases and pests recognition,
detection, deep learning
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1 Introduction
In the agricultural sector, plant diseases are responsible for

major economic losses worldwide, affecting a country’s revenue

and the livelihood of its people (Savary et al., 2012). They link

directly to the sustainable food production and safety.

Accurate, precise, and reliable quantification of disease

severity and intensity is one of the main challenges in plant

phytopathology (Pethybridge and Nelson, 2015; Donatelli

et al., 2017). A reliable and precise assessment of plant

diseases and their intensity (severity) can help in pesticidal

management, disease forecast, crop loss modeling, and

spatiotemporal modeling of epidemics (Gaunt, 1995; Kranz

and Rotem, 2012). There exist three different techniques for

plant disease recognition, i.e., chemical, manual, and optical.

Chemical techniques involve the use of various chemicals and

analysis of their reaction to a particular pathogen to identify

diseases (Alvarez, 2004; Chaerani and Voorrips, 2006;

Gutiérrez-Aguirre et al., 2009). The second method for plant

disease inspection is related to manual labor (Bock et al., 2010;

Martinelli et al., 2015). In these methods, detection is done by

field experts via visual (manual) analysis of abnormal plant

regions. Due to advances in machine learning and computer

vision, the plant disease phenotyping trend is shifting toward

optical identification. Digital optical phenotyping consists of

two steps. The first step involves disease-specific feature

extraction (from digital images) via either hand-crafted

feature-based (Lowe, 2004; Dalal and Triggs, 2005) methods

or deep learning-based methods (Krizhevsky et al., 2012;

Szegedy et al., 2017; Tan and Le, 2019). The second step

involves classification of the disease based on the extracted

features. The application of deep learning methods has risen

considerably with the advent of media and technology. Along

with it, the need for fast and accurate approaches is rising for

better and more reliable results.

Each methodology for plant disease phenotyping has its own

potential pitfalls. For instance, manual plant assessment is time

consuming, labor extensive, and prone to human error and

uncertainty. Being a human activity, the precision and accuracy

of the analysis drops due to fatigue and the physically (and

mentally) tiring nature of the assessment task (Nutter Jr et al.,

1991). Moreover, a single (intra) field expert or a team (inter) of

experts while assessing plant diseases can provide completely

different assessments of the same sample depending upon their

visual analysis (Nutter Jr et al., 1993). This introduces a large

variability in inter and intra rater (field expert) assessment of

different plant diseases which reduces the overall reliability

diagnosis. Chemical-based methods can be regarded as

destructive methods for analyzing plant diseases, because they

entail a chemical analysis of the diseased region of the plant or

removal of the infected leaf from the plant, and tests on it are

performed in an isolated environment inside the laboratory
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(Alvarez, 2004; Chaerani and Voorrips, 2006; Gutiérrez-

Aguirre et al., 2009).

The process of optical disease phenotyping is a non-

destructive method that involves the use of digital plant

images. These images are used to extract features that are then

used to classify the type of disease infecting the plant. Feature

extraction is performed by either deep learning-based methods

or hand-crafted feature-based methods. In hand-crafted feature-

based methods, the performance is highly dependent upon the

features implied during the development of the algorithm by a

field expert (Dalal and Triggs, 2005; Nanni et al., 2017), whereas

in the case of deep learning-based feature extractors, more

robust and adaptive features can be learned on the fly, making

these methods superior to the hand-crafted-based feature

methods. Furthermore, plant diseases can have different visual

traits even within the same class, due to different pathogens

attacking at several locations and causing different stage

infections. This results in several interclass and intra-

class variations in the appearance of the different diseases,

making the optical plant disease phenotyping task even

more challenging.

Recent studies in plant disease phenotyping have shown

considerable progress. The accuracy of these frameworks

depends heavily on the extraction and selection of apparent

disease features. We can divide the recent works into three

categories: (a) image-based disease classification, (b) pixel-level

classification of abnormalities in plants, and (c) region-based

classification and localization of plant anomalies. The first

method predicts if an image contains an object of interest or

object class (i.e., what), the second method entails a pixel-wise

classification of plant image into healthy and non-healthy

regions (i.e., what and where), and the third gives information

on the classes and locations of all abnormal instances (i.e., what

and where) present in the image. These approaches have limited

capacities in terms of delivering an accurate assessment of

disease symptoms in plants.

In this work, we take a step further toward deep plant

phenotyping tools by proposing a system that can generate

user-friendly specific descriptive phrases, which describes the

location (where), severity (intensity), and type (what) of all

abnormalities present in the plant. The main contributions of

this paper can be summarized as follows.
1. For the identification and evaluation of the severity of

paprika plant diseases, a powerful end-to-end trainable

deep learning system is proposed.

2. To notify the farmer of the plant’s present health status,

our proposed algorithm produces user-friendly phrases.

3. A new dataset for diagnosing paprika plant disease is

introduced. Our dataset includes disease-specific labels

of six different paprika plant diseases, along with their

11 severity stages of infection, in contrast to existing

datasets in literature which only provide disease-specific
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labels. A comparison of the proposed dataset’s features

with existing plant disease databases is shown in Table 1.

4. To the best of our knowledge, we are the first ones to

analyze various severity stages of plant diseases via deep

learning-based methods.
Figure 1 gives a graphical abstract on the key difference

between recent approaches and our proposed approach. To

achieve our goal, we propose a hybrid deep learning-based

disease analyzer (DIANA), which combines two state-of-the-

art CNNs in one framework to generate global descriptive

sentences. Our proposed approach consists of three main units:
• The disease detector and localizer (DDL) unit, which

should localize and classify different types of

abnormalities (disease and pest damage) present in the

plant precisely and efficiently.

• The disease severity analyzer (DSA) unit, which should

recognize the intensity of the diseases present in the

plant by analyzing local regions provided by the DDL.

• Information from both these units combined by an

integration unit (IU) to generate specific sentences

which provide a full description of anomalies present

in the plant. Each sentence contains information

regarding the intensity and type of abnormality

detected at a particular location on plant. Figure 1D

depicts the goal of our network.
Finally, our framework generates a set of fine-segmented

regions, bounding boxes, and specific phrases that describe the

type and intensity of the damage present in plant. Considering

how the aforementioned three units can be combined to deliver

results, there are two possible strategies. In this article, we go

over both techniques. See System overview for details.
2 Related work

Plant disease detection is a critical and important topic

which has been explored throughout the years in context of
tiers in Plant Science 03
deep learning-based plant phenotyping. It is driven by the need

to produce high-quality, nutritious food and to reduce economic

losses. However, cost-effectiveness, usability, accuracy, and

reliability are some desirable characteristics that must be taken

into account when developing such systems (Gehring and Tu,

2011; Dhaka et al., 2021; Jagtiani, 2021). Recent deep learning

studies have addressed the automated diagnosis of plant diseases

in several plant species in non-destructive ways. The approaches

can be mainly classified into two types: (a) image-based disease

recognition (classification) and (b) region-based disease

recognition (localization and classification).
2.1 Image-based disease recognition

In the case of image-based disease detection, features

pertaining to a specific disease are extracted from an image

using CNN, and based upon these features, the detected disease

is assigned a class. Some recent applications include

recognition of different diseases in several crops, like banana

(Amara et al., 2017), apple (Liu et al., 2017), tomato (Fuentes

et al., 2018; Liu and Wang, 2020), cucumber (Kawasaki et al.,

2015), strawberry (Nie et al., 2019), and pearl millet (Kundu

et al., 2021). Deep learning-based models can serve as powerful

feature extractors for various computer vision tasks. Recently,

deep learning techniques have dominated the PlantCLEF

challenge (Goëau et al., 2014). Choi (2015) used Inception

Net (Szegedy et al., 2015) to classify 1,000 plant species in the

PlantCLEF challenge and won the PlantCLEF 2015 challenge.

Ghazi et al. (2017) combined the two state-of-the art deep

neural networks (NNs) and achieved even higher validation

accuracy. Mohanty et al. (2016) classified 26 different types of

diseases in 14 crop species using Inception Net (Szegedy et al.,

2015) and AlexNet (Krizhevsky et al., 2012). They also showed

that particular diseases in a crop can be efficiently detected

using transfer learning (Huang et al., 2017b). However, one

major disadvantage of this work was that its analysis was based

solely on in-lab (inside laboratory) images, not under real field

conditions. Consequently, their experiments did not cover all
TABLE 1 Summary of a few datasets available in literature for plant disease recognition.

Author (year) Plant Background Environment Disease categories Severity stages Framework Backbone

Fuentes et al. (2017) Tomato Complex Outdoor 9 – Faster-RCNN VGG-16

Kundu et al. (2021) Peral Millet Complex Outdoor 2 – CNN Inception-ResNet

Liu and Wang (2020) Tomato Complex Outdoor 12 – YOLO DarkNet-53

Amara et al. (2017) Banana Simple – 3 CNN LeNet

Kawasaki et al. (2015) Cucumber Simple – 3 – CNN Custom

Zhong and Zhao (2020) Apple Simple Indoor 6 – CNN DenseNet-121

Nie et al. (2019) Strawberry Simple Outdoor 4 Faster-RCNN ResNet-50

Proposed Paprika Complex Outdoor 6 11 DIANA EfficientNet-B3
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the variables. Ferentinos (2018) performed an interesting

experiment while classifying 58 different plant diseases of 25

distinct plants. They collected two separate sets of images, one

containing in-lab images and the other containing field images

(images collected in real-field scenarios). Their experiments

showed that while using in-lab images, the system was able to

achieve a high accuracy of 99.53%. However, the test accuracy

dropped considerably while using field images. This

experiment showed that the disease classification is

s ignificantly harder and more complex under real

field situations.
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2.2 Region-based disease recognition

On the other hand, region-based disease detectors can detect

multiple instances of distinct or the same disease in an image,

based upon the features obtained from different regions of the

image. It is also worth mentioning that, even though

aforementioned techniques serve as valuable tools for feature

extraction and classifying different diseases present in images,

their performance is quite limited under real-field conditions

(Ferentinos, 2018; Hussain et al., 2021). These methods do not

cover all the variables constituting real-world scenarios like
A B

DC

FIGURE 1

Key differences between different frameworks of plant disease phenotyping. (A) Image-based disease classification. (B) Pixel-level classification
of plant abnormalities. (C) Region-based classification and localization of plant anomalies. (D) Our proposed Disease Severity Analysis task,
which provides more detailed information regarding all anomalies detected in the plant. The color pallet in (C, D) shows the colors given to a
severity level of a specific disease throughout this paper. Best viewed in color.
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disease severity, presence of multiple abnormalities in the same

sample, complex background, and nearby objects. In contrast,

some recent region-based disease detectors have shown good

performance in real-field settings. Arsenovic et al. (2019)

collected 79,265 images and constructed a large-scale plant

disease dataset. They proposed a two-stage plant disease net

(PD-Net) which further consists of two subnetworks PD-Net1

and PD-Net2. PD-Net1 uses the YOLO (Redmon et al., 2016)

algorithm to detect plant leaves and PD-Net 2 to classify the

leaves into different categories. Under real-field conditions, their

method was able to achieve a 91.6% mean average precision

(mAP) for the detection task and 93.67% accuracy for the

classification task. Jiang et al. (2019) proposed a real-time

system for apple plant disease and pest recognition. Szegedy

et al. (2015) and Szegedy et al. (2017) incorporated Inception-

Module, and Liu et al. (2016) incorporated rainbow

concatenation with a single-stage object detector (SSD); they

were able to achieve a 78.8% mAP, with a detection speed of

23.13 frames per second (FPS). They constructed their apple leaf

disease dataset using both in-lab and real-field images, thus

considering all the variables of real-field scenario. Nie et al.

(2019) proposed a unique method for detecting strawberry

verticillium wilt. Instead of directly classifying the whole plant

as having verticillium wilt or not, they first classified and

detected young petioles and leaves in the image and then used

the detected components to decide whether the whole plant is

infected or not. They further improved their accuracy by adding

an attention mechanism in Faster-RCNN’s (Ren et al., 2015)

backbone and was able to achieve a mAP of 77.54%. Tian et al.

(2019) made substantial changes in the YOLO-v3 (Redmon and

Farhadi, 2018) architecture to detect anthracnose damage in

apple plants. They were able to achieve a 95.57% mAP by

changing the backbone of YOLO-v3 with Dense-Net (Huang

et al., 2017a) and also optimizing feature extraction layer of

YOLO-v3.

Fuentes et al. (2017) proposed three different architectures,

i.e., Faster-RCNN, SSD, and R-FCN (Dai et al., 2016), for tomato

plant disease and pest localization and classification and

compared their performance before and after applying

different data augmentation techniques. The best results of

83.06% mAP were obtained by Faster-RCNN having a VGG-

16 backbone. Their experiments showed that having a good

backbone and using appropriate data augmentation techniques

can boost the network’s performance by more than 25% (mAP).

Fuentes et al. (2018) further improved their results to 96% on the

tomato anomaly detection task while using the same architecture

(i.e., Faster-RCNN with VGG-16 backbone). For improving

their results, they proposed a simple yet effective strategy by

the name of Refinement Filter Bank whose task was to remove

false positives from the network’s predictions. The Refinement

Filter Bank consisted of independently trained CNNs (one for

each class); each CNN was tasked with removing misclassified
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samples from its corresponding class. Fuentes et al. (2019)

developed a framework that is capable of not only efficiently

detecting plant anomalies (92.21% mAP) but also describing the

location and class of the disease in a human-readable format.

Their framework consisted of a combination of Faster-RCNN

(for detecting anomalies) and multiple long–short-term memory

(LSTM) units. Liu and Wang (2020) proposed an improved

YOLO v3 architecture for detecting 12 different diseases in

tomato plants. They were able to achieve a 96.91% mAP even

without the use of the Refinement Filter Bank (Fuentes et al.,

2018) while retaining a processing speed of 49 FPS.
2.3 Plant disease severity assessment

Although the aforementioned works showed remarkable

performance in plant disease and pest detection task, none of

them focused on analyzing the intensity of the detected infection

in plants, whereas a reliable and accurate evaluation of plant

disease intensity can aid in pesticidal control, disease forecasting,

spatiotemporal epidemic modeling, yield-loss prediction, crop

damage management, etc. Despite the importance of the disease

severity analysis (DSA) task, little research has been conducted

in this field. Wang et al. (2017) separated apple black rot images

from the PlantVillage (Hughes and Salathé, 2015) dataset. They

further subclassified these images into four classes depending

upon the severity of black rot disease with the help of field

experts. The classification accuracy of Inception Net on the

whole PlantVillage dataset is about 98.24% (Mohanty et al.,

2016). In contrast to the DSA task, even after fine-tuning Wang

et al. were only able to achieve 83% accuracy on this newly

annotated dataset. Their experiments showed fine-grained DSA

task is substantially more difficult than simple classification of

different diseases since in this case there exists a high intra-class

similarity and low interclass variance (Xie et al., 2015).

Moreover, Pukkela and Borra (2018) summarized the findings

of various machine-learning-based plant DSA systems. They

also outlined popular metrics used in classical DSA tasks to

measure the performance of an algorithm, e.g., ratio of infected

area (RIA), lesion color index (LCI), damage severity index

(DSI), and infection per region (IPR). Shrivastava et al. (2015)

proposed a system which performs segmentation via classical

color thresholding and then performed morphological filtering

operations to detect foliar diseases in soybean plants. Mahlein

et al. (2012) proposed the use of hyperspectral imaging for the

DSA task along with other image processing algorithms. Li et al.

(2013) employed image thresholding techniques to obtain the

infected tissue area of the leaf and then calculated the RIA to

estimate the disease severity.

All the DSA strategies listed above do not consider the

following common occurrences of real-field scenarios in

their analysis:
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• The background (BG) of images will be cluttered and

complex in real life.

• The infected leaves might be partially occluded by

surrounding objects like crop stalks, tree branches, and

fruits.

• The effect of different lighting conditions such as

weather, and angle differences on the appearance of

the infected area of the plant.

• Fuzzy boundaries between healthy and infected parts of

the leaf.

• In various phases of development (severity stages), and

even in various locations, the same disease can have

completely different characteristics.

• Multiple instances of similar or different diseases and

pests might appear at the same location at the same time.

• In cases when dead leaves are in close proximity to the

infected leaves, it can be quite challenging to differentiate

between them.
We take all the abovementioned scenarios into account

while developing our framework disease severity analysis

(DIANA), for simultaneous disease recognition, localization,

and severity analysis. We perform detailed experiments to

analyze the performance of our proposed unified network in

real-life scenarios both quantitatively and qualitatively. For

quantitative analysis, we use three state-of-the-art metrics

mean average precisions (mAPs), mean panoptic quality

(mPQ), and mean intersection over union (mIOU) to evaluate

its robustness. As for qualitative analysis, we show multiple cases

where our network successfully detected the location, category,

and severity of the disease in complex and cluttered

surroundings. Our paprika plant dataset is also collected under

real-field conditions, with different lightings and from different

farms across Republic of Korea.
3 Materials and methods

3.1 Dataset construction

The demand for paprika worldwide is over 50,000 tons per

year, and the number is continuously increasing. Paprika,

tomato, tobacco, and potato are all members of the Solanaceae

family (Shah et al., 2013). Paprika being susceptible to various

diseases, including potato virus Y, cucumber mosaic, and

tobacco mosaic viruses, affecting these other plants, makes it

crucial. As a result, these crops are not ideal for a 3-year rotation

and should not be planted near paprika. However, its demand is

increasing; many farmers in Southern Africa are converting

from tobacco to paprika, which may have an impact on

pricing and production (Aminifard et al., 2010). Due to the

aforementioned reasons, we considered paprika crop for the
tiers in Plant Science 06
development and evaluation of our disease severity analysis

framework (DD-RCNN).

3.1.1 Data acquisition
Paprika images were collected from several farms across

Jeonju-si District, Jeollabuk-do, Republic of Korea, during the

growing season 2019. The data acquisition was carried out using

a 24.1-megapixel Canon EOS 200D-based platform with a

CMOS sensor. All the images contain diverse background

artifacts as well as other objects found in the field. Moreover,

images captured during different time periods, under varying

lightings and weather conditions, would help to make data more

generalized and representative of real-field scenarios. Overall,

our collected dataset has the following characteristics:
• Different resolution and aspect ratio images.

• Samples at several severity (intensity) stages of infection.

• Different infected areas of plants including stem, leaves,

and fruits are captured.

• Varying plant sizes.

• Background artifacts of the farmhouse and surrounding

objects.
Following the above protocol, we acquired 6,000 raw images.

The images were saved in JPEG format at a high resolution, to

avoid being limited in available resolution at subsequent

processing stages.

3.1.2 Data analysis and distribution
We started with primary data filtering and removed the

images which were blurred. After the primary filtering step, we

ended up with 5,900 raw images. Out of the total dataset

available, we randomly split data into two. One split has 80%

data for training and validation, and the second split contains

20% data for testing. The detailed statistical distribution of

dataset is given in Table 2. Stages 1 to 4 correspond to the

severity level of the disease (explained shortly).

Then, with the help offield experts, we analyzed the data and

were able to find six abnormalities in the collected dataset of

paprika. Figure 2 shows the anomalies present in the paprika

dataset. Among six abnormalities, four were bacterial of fungal

diseases like (a) blossom end rot, (b) powdery mildew, (c) gray

mold, and (d) Cercospora leaf spots (henceforth referred to as

Cercospora for simplicity). The remaining two abnormalities

were caused by insects and pests. We labeled them as follows: (a)

snails and slugs and (b) spider mite. Some representative

instances belonging to each class are shown in Figure 2.

In the second stage of data processing, we further

subclassified the viral and fungal diseases, with the help of field

experts, depending on the intensity of the damage visible on the

plant leaves or fruits. We subclassified the data into a maximum

of four stages of severity (from 1 to 4). While subclassifying the
frontiersin.org
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FIGURE 2

Representative instances of each class (A) blossom end rot, (B) gray mold, (C) powdery mildew, (D) snails and slugs, (E) spider mite, and
(F) Cercospora.
TABLE 2 Statistical distribution of the paprika plant disease dataset.

Class Annotated instances Proportion (%) Class Annotated instances Proportion (%)

Blossom end rot 7,631 Powdery mildew 7,635

Gray mold 6,046 Cercospora 14,238

Snails and slugs 8,668 – Spider mite 5,677 –
Frontiers in Plant S
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disease according to their severity, the following pointers

were considered.

3.1.2.1 Blossom end rot

This disorder’s initial symptom is a small, water-soaked

discoloration on the fruit’s blossom end (stage 1). The lesions

typically become sunken into the fruit as they grow larger,

turning leathery and dark brown or black (stage 2). Bacteria

and fungus may infiltrate the lesion over time, causing a soft,

watery rot (stage 3) (Neave, 2018; Hansen, 2020).
Frontiers in Plant Science 08
3.1.2.2 Powdery mildew

Powdery mildew is a fungal disease; when paprika gets

infected by it, fluffy colonies appear on the top surface of

the leaf as the first sign. Because the fungus infects the

plant through the stomata, and there are more stomata

on the underside of the leaf, the fluffy colonies appear

predominantly on the underside of the leaf in pepper. Yellow

dots may be seen on the upper side (stage 1). The fluffy colonies

emerge on the upper surface of the leaves when the intensity

increases (stage 2) (Koppert).
FIGURE 3

Image showing visual differences of various severity stages belonging to the diseases present in the paprika dataset.
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3.1.2.3 Gray mold

The symptoms start as a light-brown, water-soaked, slimy

lesion on wounded fruit, petals, or senescing leaves (stage 1), and

slowly the afflicted areas turn dark-brownish-gray and powdery-

looking as spores form (stage2) (Schwartz et al., 2005).

3.1.2.4 Cercospora

The leaves exhibit small, circular, or irregular dark-brown

spots, with or without white centers (stage 1). As the spots

enlarge in size, the center becomes light brown surrounded by

dark-brown rings (stage 2). After that, spots coalesce to form

large irregular patterns (stage 3). In extreme cases, the coalescing

spots create a hole in the leaf (Stage 4) (Kohler et al., 1997).

Some typical cases belonging to each severity stage are

shown in Figure 3. To improve the performance of the

proposed framework, we employ various custom data

augmentation techniques for training our network, details of

which can be found in the supplementary materials provided.
4 System overview

In this work, we take a step further toward deep plant disease

phenotyping tools by proposing a system that can generate user-

friendly and meaningful descriptive sentences which describe

the location (where), severity (intensity), and type (what) of all

abnormalities present in the plant. Our main goal is to locate and

recognize the intensity (severity) level of different plant diseases,

specifically for our newly constructed paprika plant dataset.
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Considering how the aforementioned three units, i.e., DDL,

DSA, and IU, can be combined to deliver results, there are two

possible strategies. In this article, we go over both techniques.
4.1 Proposed approach

Our proposed approach combines the DDL and DSA units

in a single framework such that both can be trained in an end-to-

end fashion and their learnings complement one another,

producing a better and more consistent performance. The

overall diagram of the proposed framework is shown in Figure 4.

In the following subsections, first, we describe the disease

detector and localizer (DDL) unit and then explain the

construction of the disease severity analyzer (DSA) unit.

Finally, we describe how the integration unit works to

integrate predictions and generate meaningful phrases.

4.1.1 Disease detector and localizer unit
The goal of the DDL unit is to detect and recognize the type

and location of disease and pest candidates in the image. To

detect our target, we must first properly locate the box in which

it is contained, as well as determine the class to which it belongs.

The proposed DDL unit consists of a CNN backbone to extract

robust multiscale features and a feature network for cross-scale

feature fusion for generating reliable and precise predictions,

constituting an object detector (OD) pipeline. These cross-scale

weighted features are also shared with the DSA unit (explained

in next section) for joint optimization and robust predictions.
FIGURE 4

Overall architecture of the DIANA framework. The whole framework is end-to-end trainable.
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For extracting robust multiscale features, we utilize

EfficientNet-B3 as the backbone of our DDL unit. The width

(number of channels), depth (number of layers), and resolution

(input resolution) of the network are calculated using the

compound scaling method (Tan et al., 2020). Each block of

EfficentNet-B3 consists of inverted residual blocks (Sandler

et al., 2018) further enhanced by squeeze-excitation modules

(Hu et al., 2018). We refer to these modules as SE-MobileNetv2

throughout this paper. The complete architecture of EfficentNet-

B3 is shown in Figure 4. From EfficientNet-B3, feature maps are

extracted at seven different levels, namely, {C0, C1, …, C6}; here

the subscript represents the convolutional block from which the

feature maps are coming.

Cb= 1,2,…,7f g =  N XHin ,Win ,Cin

� �
(1)

Here N represents the EfficnetNet-B3 network, X is the input

tensor having dimensions Hin,Win, Cinand Cb is the output of the

bth block of CNN, such that Cb ∈RH
b
,W

b
,C
b Hb,Wb, Cbbeing the

dimensions of features output by bth block. These multiscale

feature maps output by EfficnetNet-B3 are first passed through a

single 3 × 3, stride=1 conv layer (i.e., f1
3×3 to limit the number of

channels to a constant value of Cbifpn.

Ĉ b= 1,2,…,6f g =  f 3�3
1 Cb= 1,2,…,6f g

� �
(2)

Where Ĉb={1,2,…6} ∈R〈H
b
,W

b
,C
bifpn

〉. After channel reduction,

these multiscaled features are sent to the bREGt al., 2020) for

weighted feature fusion. As different-level features contribute

unequally to the output feature map (Ilyas et al., 2022), therefore,

at each level BiFPN recalibrates the features according to their

importance and fuse them together. Each BiFPN outputs Pl-

recalibrated feature maps, where l is the number of the pyramid

level.

Pl= 1,2,…,6f g =  BiFPN Ĉ b 〈Hb ,Wb ,Cbifpn 〉

� �
(3)

where Pl∈RHl,Wl,Cbifpn and Hl,Wl, Cbifpn are the dimensions

of the feature maps output by the lth-level pyramid. As BiFPN

do not change the spatial resolution of the input feature maps at

any level, in our network, l = b or all pyramid levels. In the

proposed architecture, the BiFPN layer is repeated Mbifpn times.

Each BiFPN level has two fully convolutional subnetworks

(FCNs) linked to it, which utilize these recalibrated feature maps

(Pl) to generate class predictions and to regress from anchor

boxes to ground-truth boxes. Each subnetwork shares its

parameters across all pyramid levels.
4.1.1.1 Class prediction subnetwork

It applies Mclass 3 × 3 conv layers to the input feature map of

pyramid level l, having a constant width (i.e., number of

channels) of Cbifpn. Each convolutional layer is followed by a

ReLu activation, except the last 3 × 3 conv layer which predicts

the probability of plant anomaly occurrence for each of the Na
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anchors and Ncls disease categories at each spatial location by

applying sigmoid activation at its output (see Figure 4).

4.1.1.2 Box regression subnetwork

This network regresses the offset from each anchor box to a

nearby ground-truth plant anomaly box. This network is

identical to the classification subnetwork except the final layer

which predicts four outputs for each anchor (Na) at each spatial

location (see Figure 4). These four outputs (i.e., {x,y,w,h}) predict

the relative offset between the anchor and the ground-truth box

for each of Na anchor per spatial location.

The output of both these subnetworks is passed onto the

integration unit to generate final results.

4.1.2 Disease severity analyzer unit
The purpose of the DSA unit is to recognize the intensity of

all the diseases present in the plant. For this task, we fully

integrate an encoder–decoder architecture with the DDL unit,

which probes the recalibrated multiscale feature maps output by

the last BiFPN layer at each corresponding encoder stage, for

severity-level prediction (see Figure 4).

The proposed DSA unit is built upon on insights from state-

of-the-art (SOAT) encoder–decoder architectures (Chen et al.,

2017; Peng et al., 2017; Ilyas et al., 2021). The encoder is made up

of four encoding stages. Each stage consists of a SE-MobileNet-

v2 block followed by a single 3 × 3, stride=2 conv layer, to

process and reduce the spatial dimensions of incoming features.

In addition to the output of the previous encoder block, the next

block also takes input from the corresponding same-resolution

BiFPN layer (Pl). In each block, the output is calculated as

follows.

©En =  f 3�3
2 F En−1 Pnð Þ½ �,  n ∈ 2, 3, 4f g (4)

where F represents SE-MobileNetv2 and © represents the

concatenation operation. Here, E1 is calculated from the 0th

convolutional block of EfficnetNet-B3 as

E1H02 ,
,W0
2 ,C0

=  f 3�3
2 C0H0,W0,C0

� �
(5)

Where, H0, W0, C0 represents the spatial dimensions of the

0th convolution block of EfficenNet-B3. At the end of the

encoder, the feature maps are processed through a parallel

dilation convolution (PDC) module (Ilyas et al., 2021), which

probes feature maps at various dilation rates for aggregating

global and local contexts.

To modulate the information flow between encoder and

decoder, we incorporate the dense attention modules (DAM)

(Ilyas et al., 2021) on skip connections between them. The

decoder of the DSA unit also consists of four stages. An SE-

MobileNetv2 module and a bilinear upsampling operation make

up each decoder block. Every decoder block Dn∈ {3,2,1} takes two

sets of feature maps as an input, one from the output of the

previous layer and the other from the corresponding attention
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module (i.e., DAM). Inside each decoder block, the output is

calculated as follows.

©Dn = U
⌢
F Dn+1 DAMnð Þ½ �,  n ∈ 3, 2, 1f g (6)

where U
⌢
represents bilinear upsampling operation and D4 is

simply the output PDC module. The output of the final decoder

block is processed through Mseg 3 × 3 conv layers and is then

upsampled four times to generate the final segmentation maps

having dimensions Hin, Win, Nss where Nss is the number of

severity stages present in the dataset. These segmentation maps

are then passed to the integration unit for further processing.

Both DDL and DSA units are jointly optimized and trained

in an end-to-end fashion such that both complement each other

and boost the overall performance. Detailed experiments are

performed to validate our claims in Results and discussion.

4.1.3 Integration unit
The integration unit combines the outputs of the DDL and

DSA units. The DDL unit locates and identifies each anomalous

instance that exists in a plant. The DSA unit generates severity-

specific fine-grained semantic masks, which shows the severity

stages of all diseases detected in plant. The integration unit

serves three primary purposes: (1) it integrates three distinct

forms of information and remaps it onto the original images, (2)

it assigns unique IDs to each detected severity stage inside a

bounding box, and (3) it creates (user-specified) descriptive

words, providing the user with information on the type,

location, and intensity of all diseases found in the plant. The

whole process is self-contained and automated, allowing the

system to produce results quickly. The whole process of

the integration unit is summarized in Figure 5.
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4.2 Naïve approach

In this approach, one might consider training a separate

object detector (DDL unit) for recognition and localization of

plant diseases and then using these discovered disease regions to

feed into a classification network (pixel- or region-wise) to

determine their severity, i.e., DSA unit. There are two main

problems with this type of approach
i. Both networks must be trained independently.

ii. The framework’s two halves cannot communicate with

one another. As a result, they cannot enhance one

another’s learning or the results.
We explore using the following design strategies to build a

naïve framework that is just a patchwork of preexisting off-the-

shelf object detection and segmentation networks in order to

properly compare the naïve approach with our proposed

approach. A flow diagram of the naïve framework is shown

in Figure 6.

4.2.1 Naïve DDL unit
Here, we consider a number of object recognition (OD)

frameworks that can be tailored to fit with different

combinations of CNN backbones (ResNet (He et al., 2016;

Howard et al., 2017), MobileNet, etc.) and feature networks

[FPN (Lin et al., 2017), PAN (Liu et al., 2018), BiFPN (Tan et al.,

2020)] in order to detect anomalies and pinpoint where in the

image they are located. Six SOTA OD pipelines were taken into

consideration for trials based on their great performance and

robustness. We experimented with numerous combinations of
FIGURE 5

Overview of the process being performed by the integration unit.
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baseline feature extractors and different feature networks in each

OD pipeline. It would enable conducting exhaustive evaluation

experiments to contrast the effectiveness of the suggested

methods with naïve ones.

4.2.2 Naïve DSA unit
In the naïve framework, the purpose of the DSA unit is to

recognize the intensity of all the diseases present in the plant by

analyzing local regions provided by the DDL unit. We utilize a

fully convolutional encoder–decoder network for this task,

which performs a pixel-wise classification of the suspicious

regions of plants and categorizes them according to their

predicted disease severity stages. For this task, we utilize the

architecture proposed in Ilyas et al. (2021) due to its superior

performance on the plant disease recognition task and low

memory footprint.

Further, we employ the same decoupled architecture of DDL

and DSA units, as described in the previous section, for a

performance comparison of both approaches (decoupled vs.

coupled), to demonstrate how superior our proposed alternative

is to the naïve approach, see Results and discussion for details.

Once the naïve DDL unit outputs a set of category-specific

bounding boxes, we first extract the image regions pertaining to

these bounding boxes. Then, we adapt the sizes of these regions

to a fixed scale of 256 × 256, without preserving the aspect ratio.

These rescaled regions are then passed through the naïve DSA

unit to obtain fine segmentation maps. We then first resize these

fixed-scale segmented regions back to their original resolution

and remap them back onto the original image, as shown in

Figure 6, before entering the integration unit.
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Since there is no learning happening within the integration

unit, the same integration unit is also employed for the

naïve approach.
4.3 Experimental setup

Experiments are conducted using our paprika plant dataset,

which includes six annotated disease and pest categories, as well

as 11 disease severity stages in total. Our dataset is partitioned

into 70% training, 10% validation, and 20% testing sets to

conduct the experiments. The training and validation sets are

used for training and hyperparameter selection, respectively,

while the testing set is used to evaluate the results on unseen

data. The results reported here are an average of three

independent runs; in each run, data are randomly split among

train, validation, and test sets. All the experiments for the

training and testing of our system are done on a Linux-based

server with an intel Core i9-9940X 3.3-GHz processor having 3

NVIDIA RTX-2080 GPUs (for training) and 1 NVIDIA RTX-

1080 GPU (for testing). The input resolution for all the models

was selected based on available MS-COCO-pretrained weights.

All the models were trained for 100K iterations. The detailed

design specifications for our proposed disease analyzer (DIANA)

are shown in Table 3. Training and validation losses of all output

components in the DIANA framework are shown in Figure 7.

All the curves show a similar trend, which means each

component of the framework is learning its specific task

jointly and smoothly.
FIGURE 6

Flow diagram of the naïve framework. The overall architecture is composed of three main units. The DDL unit for generating reliable bounding
boxes locating plant abnormalities. The DSA unit for analyzing and predicting intensity levels of abnormalities. An integration unit which
combines the outcomes of both units to generate final detailed predictions.
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4.4 Evaluation metrics

Our algorithm typically takes one image as input and

outputs a set of disease regions along with severity levels. To

effectively estimate anomaly categories and their location in the

image, we employ three benchmark evaluation metrics to gauge

the system’s performance. Both COCO-style and PASCAL-style

mean average precisions (mAPs) are used as evaluation criteria

for DDL tasks. Both classification accuracy and localization

precision are measured by the mAP. We used a threshold of

50% to evaluate the intersection over union during localization.

In contrast, for the evaluation of the DSA task, we use two

benchmark metrics mean intersection over union (mIOU) and

mean panoptic quality (mPQ). Panoptic quality (Kirillov et al.,

2019) can be seen as a combination of two different quality

metrics called detection quality and segmentation quality. The
Frontiers in Plant Science 13
panoptic quality is defined as

PQ =
TPj j

TPj j + 1
2 FPj j + 1

2 FNj j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Detection Quality  DQð Þ

� o(x,y)∈TPIoU(x, y)

TPj j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Segmentation Quality  SQð Þ

(7)

Where, x represents the ground-truth segment and y

represents the network’s prediction. From Equation 2, we can

see that detection quality (DQ) is the F1 score which is actually

the harmonic mean of precision and recall is used to evaluate

instance detections, whereas segmentation quality (SQ)

evaluates how close each detected instance is to its matched

ground truth. Here, IOU measures how much the predicted

segment (y) overlaps with the ground-truth segment (x). It is

given by the following equation.

IOU =
x ∩ y
x ∪ y

(8)
5 Results and discussion

In this section, we assess the performance of the proposed

approach for analyzing the severity of plant diseases. We arrange

the experiments to support our statements.
5.1 Data augmentation

We leverage data augmentation to provide additional sample

points in the dataset, lowering CNN generalization errors and

boosting the network’s robustness toward unseen data. By

preventing overfitting, data augmentation regulates the time

period (and number of iterations) for which deep neural

networks are trained. The summary of various data

augmentation techniques is provided in Table 4. The results

indicate that not every augmentation strategy improves

performance. Some augmentation methods, such as changing

the color temperature of the image and adding noise, have a

negative impact on performance. Therefore, for subsequent
A B DC

FIGURE 7

Loss curves of the DIANA framework. (A) Total loss, (B) classification loss, (C) localization loss, and (D) segmentation loss.
TABLE 3 Specifications and hyperparameter settings for the DIANA
framework.

Value Specification

DDL unit

• Mbifpn 3 –

• Cbifpn 224 –

• Mbox 4 –

• Mclass 4 –

• Na 4 –

• Ncls 6 –

• Lcls Focal loss a = 0.25; g = 1.8

• Lreg Smooth L1 loss –

DSA unit

• Mseg 2 –

• Nss 11 –

• Lseg Focal Tversky loss a = 0.3; b=0.7; g = 4

Hyperparameters

• Learning rate 0.08 Cosine decay, Warmup iterations 0-3K

• Optimizer SGD Momentum = 0.9

• Weight decay L2 0.0005

• Dropout Vanilla 0.3

• Batch size 3 –
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experiments, we only utilize augmentation approaches that

boost network performance.
5.2 Evaluation of the DDL task

We use the mean average precision (mAP) for the evaluation

of all naïve DDL units (off-the-shelf ODs) and decoupled and

coupled DDL units, i.e., DDL units decoupled/coupled with the

DSA unit. The detailed results are reported in Table 5. As can be

seen from Table 5, in the naïve framework, between two stage

detectors, the Faster-RCNN architecture with the Inception-Res-

Net backbone gives the best performance, whereas in the case of

single-stage detectors, YOLOv5-x and Efficient-Det D3 performs

on par with the Faster-RCNN’s top-performing variant. Table 5

shows that the results achieved by our proposed framework,

which was trained jointly for the DDL and DSA tasks, are

superior to those of all other networks. Additionally, the same

DDL unit when decoupled (decoupled DDL) and trained

separately from the DSA unit showed performance equal to

that of off-the-shelf ODs (naïve approach).

In small object scenarios, performance analysis is crucial for

various stages of diseases and pests having various sizes. Our

proposed DIANA framework improves the detection rate of

small objects by more than 10% as compared to the naïve

approaches. In order to verify the detection effect of different-

size anomaly regions, we define three different sizes of anomaly

regions in our dataset. The anomaly sizes were divided into three

subcategories: (i) small having area<322 pixels, (ii) medium

having area between [322, 922] pixels, and (iii) large anomalies

with area >922 pixels. We calculate the average precision (AP) of
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all different-sized objects, and the results are displayed in

Figure 8. From Figure 8, it can be clearly seen that jointly

training the DDL unit with the DSA unit greatly improves the

detection rate of different-sized objects. As the DSA unit

performs pixel-level classification on the varying-size feature

maps along with incoming features from BiFPN, it also boosts

the detection performance at levels of the feature pyramid.

We also plot the precision recall (PR) curve (Figures 9C, D)

and confusion matrix (Figures 10C, D) of decoupled and

coupled DDL units, to analyze the class-wise performance of

the network. The PR curve also shows that the anomalies that

have multiple instances inside a bounding box, e.g., powdery

mildew, snail, and slugs, are most difficult to detect. As can also

be seen in Table 5, simply increasing the CNN’s depth had a bad

effect on the performance of the DDL task. Therefore, a

framework that can extract reliable fine-grained multiscale

features is needed rather than a network with increased depth.

Furthermore, the confusion matrix demonstrates that training

the DDL and DSA units jointly (coupled) decreases interclass

confusion as well as total false positives and false negatives,

especially in the case of the Cercospora class.
5.3 Evaluation of the DSA task

The detailed evaluation results for the DSA task on the

paprika plant disease dataset are presented in Table 6. From

Table 6, it is obvious that the DIANA frameworks outperform all

the naïve-framework algorithms due to a global understanding

of the task as a whole. The mean intersection over union

(mIOU) metric only tells how much a predicted segment of a
TABLE 4 Effect of data augmentation on the performance of the DDL unit.

Augmentation Parameters mAP (%)

Baseline – 75.38

Geometric

• Random flip (left, right) probability = 0.9 78.4

• Color temperature t = [1,100, 10,000] 71.6

• Scale x = [0.8, 1.2]; y = [0.8, 1.2] 79.83

• Translate x = [0.2, 0.2]; y = [0.2, 0.2] 76.1

• Rotate angle = [-30, 30] 77.4

Distortion

• Median blur k = [3, 7] 70.31

• Additive Gaussian noise z = [0.0, 12.75] 74.69

• Additive Gaussian blur sigma = [0, 1] 69.98

• Add to (hue, saturation, brightness) a = [-8,15] 76.5

• Channel shuffle probability = 0.55 78.76

Advanced

• Cut and paste (Ghiasi et al., 2021) obj_count = [5, 10] 81.97

• Mosaic (Bochkovskiy et al., 2020) rows = [1,2]; columns = [1,2] 80.43
fro
Faster-RCNN with ResNet-50 is used for all these experiments. Green color represents improvement from baseline, and blue color represents reduced performance from baseline.
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TABLE 5 DDL-unit performance on the Paprika Plant Disease Dataset (PASCAL VOC style AP).

Framework Architecture Backbone Feature network FLOPs Params (M) Speed (ms) Batch size Input
resolution

Pascal style average precision

APBR APCP APGM APPM APSS APSM mAP0.5

42 65 16 1,024 × 1,024 0.8806 0.8583 0.8697 0.7436 0.7854 0.8249 0.8271

60 72 8 1,024 × 1,024 0.8641 0.8250 0.8585 0.4055 0.5541 0.7972 0.7174

– 236 6 1,024 × 1,024 0.9092 0.8723 0.8640 0.7881 0.8465 0.8319 0.8520

52.5 14 16 416 × 416 0.8919 0.8685 0.8677 0.7812 0.8177 0.8321 0.8432

280 28 16 512 × 512 0.8597 0.8526 0.8518 0.6984 0.8060 0.82 0.8147

7.2 10 16 416 × 416 0.866 0.8460 0.85 0.7591 0.7744 0.8196 0.8192

88.4 20 16 512 × 512 0.8987 0.8913 0.8667 0.7817 0.8169 0.8336 0.8482

42 32 640 × 640 0.7924 0.8042 0.8168 0.6738 0.699 0.8181 0.7647

46 32 640 × 640 0.7957 0.7955 0.8203 0.7067 0.7005 0.8053 0.7707

34 87 16 1,024 × 1,024 0.8392 0.8495 0.8087 0.7522 0.8219 0.8364 0.818

53 104 6 1,024 × 1,024 0.8366 0.8016 0.8024 0.6842 0.7611 0.8341 0.7867

– 197 6 1,024 × 1,024 0.7836 0.7003 0.3496 0.5132 0.6404 0.6400 0.6045

3.9 39 32 512 × 512 0.8741 0.8410 0.8227 0.7453 0.7828 0.8287 0.8158

6.6 54 24 640 × 640 0.8954 0.8541 0.8445 0.7890 0.779 0.8412 0.8338

12 95 8 896 × 896 0.9048 0.8556 0.8421 0.7946 0.8074 0.8421 0.8411

12 95 8 896 × 896 0.8978 0.8670 0.8538 0.7786 0.8166 0.8664 0.8467

13.37 121 24 640 × 640 0.9203 0.904 0.9351 0.9048 0.8786 0.9626 0.9176

ework using an additional CNN to combine multiscale features on top of the baseline backbone feature extractor, e.g., FPN or BiFPN. All models are
required in billion (B) or in million (M); parameters are measured in million and speed measure in milliseconds (ms) provided only one instance of
ows the image’s input size and is decided based on the available pretrained weight’s (trained on COCO data). Green represents the highest score naïve
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Naïve framework Faster-RCNN ResNet-50 – 180B

ResNet-101 – 246B

Incep-ResNet – –

YOLOv4 CSPDarkNet53 PAN 119M

CSPDarkNet53-p7 PAN –

YOLOv5 CSPDarkNet53-s PAN 16M

CSPDarkNet53-x PAN 219M

SSD MobileNet-V2 –

MobileNet-V2 FPN

Retina-Net ResNet-50 FPN 97B

ResNet-101 FPN 127B

Center-Net HourGlass-104 – –

Efficient-Det EfficientNet B0 BiFPN 2.5B

EfficientNet B1 BiFPN 6.1B

EfficientNet B3 BiFPN 25B

DIANA Decoupled DDL EfficientNet B3 BiFPN 25B

Coupled DDL EfficientNet B3 BiFPN 17B

Results show the performance of both frameworks, i.e., naïve and DIANA. The feature network shows a fra
trained and tested using the same protocol and on the same system. FLOPs show floating point operations
data is available. Batch size is decided on the basis of available resources (GPUmemory). Input resolution sh
framework, and blue represents the highest score achieved with DIANA.
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specific class overlaps with the ground-truth segment of that

class. In contrast, the mPQ metric is the combination of both

segmentation quality (showing overlap of segments) and

detection quality (showing correct detection of classes),

making it a stricter, more versatile, and reliable metric to

evaluate the network’s performance. Table 7 displays the per-

class values of mPQ and mIOU for both decoupled and coupled
Frontiers in Plant Science 16
DSA units. Table 7 makes it evident that our system performs

well for the DSA task on both evaluation metrics, with higher

per-class performance.

To analyze the results in Table 7 further, we plot the

confusion matrix (Figures 10A, B) and precision recall curve

(Figures 9A, B) for both decoupled and coupled DSA units on

the DSA task. As can be seen from the confusion matrix in
FIGURE 8

Effect of object size (anomaly region) on performance of proposed approaches.
A B

DC

FIGURE 9

Precision-recall curves. (A) Decoupled DSA unit, (B) coupled DSA unit, (C) decoupled DDL unit, and (D) coupled DDL unit.
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A B

DC

FIGURE 10

Confusion matrices. (A) Decoupled DSA unit, (B) coupled DSA unit, (C) decoupled DDL unit, and (D) coupled DDL unit.
TABLE 6 Evaluation of performance on the DSA task of both frameworks.

Framework Model mIOU (%) mPQ (%) FLOPs (B) Param. (M) Speed (ms)

Naïve framework U-Net (Ronneberger et al., 2015) 68.7 45.4 60.5 4.65 31.2

DeepLab_v2 (Chen et al., 2014) 71.05 47.3 24.03 3.09 20

DeepLab_v3+ (Chen et al., 2017) 70.37 46.8 12.07 1.2 20.5

DAM (Ilyas et al., 2021) 72.91 50.23 12.3 1.26 18.8

DIANA decoupled-DSA 72.48 51.63 13.47 1.37 16.4

coupled-DSA 87.7 70.78 – – 121
Frontiers in Plant Scie
nce
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We report class-wise and average (averaged over all classes) mIOU and mPQ.
TABLE 7 Class-wise performance of coupled and decoupled DSA units.

Architecture Metric br1 br2 br3 gm1 gm2 pm1 pm2 cp1 cp2 cp3 cp4 Mean

Decoupled DSA mIOU 75.5 77.8 78.5 65.1 67.4 54.3 51.0 70.9 80.6 81.4 80.3 72.48

mPQ 69.9 67.6 71.1 63.2 47.6 50.2 43.0 38.3 48.4 52.5 51.2 51.63

Coupled DSA mIOU 87.0 91.2 92.9 91.2 88.7 79.7 80.1 83.9 92.6 89.6 88.6 87.77

mPQ 81.8 79.7 83.5 84.5 67.8 71.3 69.0 41.8 65.8 68.3 65.1 70.78
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Figure 10A, even though the network is doing well in classifying

the disease stages, there still exists some intra-class confusion,

e.g., in the case of Cercospora (cp), the confusion is clearly visible

between stage 1 (cp1) and stage 3 (cp3). We believe this is

because there exists a huge intra-class variability in the

Cercospora class, making it difficult to distinguish one severity

stage form another. From Figure 10B, it can be seen that this

intra-class confusion is significantly reduced while using the

coupled DSA unit to generate severity predictions.
5.4 Ablation studies

It can be seen from Figure 4 that while coupling the DDL

and DSA units into one framework, feature maps from all

pyramid levels of the final BiFPN layer are not passed onto the

DSA unit. To investigate the impact of skip connections between

a particular feature pyramid level (Pl) and its corresponding

encoder stage (En), we carried out four independent

experiments. The four possible configurations of such skip

connections are shown in Table 8. The results are summarized

in Table 9. The performance significantly increased from the

baseline in the first experiment, by connecting all feature

pyramid levels with all associated encoder stages utilizing the

element-wise addition. The network performance then

continued to improve when the coupling method from

experiment 2 was used, but the computational load and

memory footprint also considerably increased due to feature

concatenation. We then followed the coupling strategies

outlined in experiments 3 and 4 of Table 8 and found that

experiment 4 yielded best results with the smallest

computational and memory footprint. Therefore, we adopted

that strategy for coupling the DDL unit with the DSA unit.
5.5 Qualitative results

This section presents qualitative evidence of the proposed

framework’s ability to produce accurate and reliable predictions

given an image. We also show a few examples where the DIANA

framework performs better than a naïve approach.

First, we may infer from Figure 11 the effects of joint

optimization of the framework on both tasks. For instance, in
Frontiers in Plant Science 18
Figure 11 column (b), we can see that all the instances of

Cercospora and gray mold disease are labeled correctly (green

box), and the naïve DDL unit detected each instance correctly

(red box). If we had not taken into account the disease severity

levels, this would have been adequate. However, as stated earlier

a single bounding box might contain diseases of varying degrees

of severity. Therefore, a pixel-level subclassification of every

detected region is necessary to prevent intra-subclass confusion.

The left most bounding box contains two different stages of

Cercospora disease (i.e., cp2 and cp3). The naïve DDL unit is

unable to distinguish between two distinct subclass instances of

the same class because of the hazy boundary between them.

Whereas the DIANA framework due to its additional pixel-level

subclassification branch successfully separates both instances, it

also improves the performance of its coupled DDL unit.

Moreover, as can be seen from column (a), (c), and (b) of

Figure 11, the naïve DDL unit generates a lot of false positives

and negatives than the coupled DDL unit.

Some example of instances of the coupled DSA unit are

shown in Figure 12. Rows (a, b, c, d) in Figure 8 show that the

coupled DSA unit can accurately detect and classify severity

stages of different diseases present in the dataset. However, due

to the complexity and high intra-subclass similarity of disease

severity stages, the network sometimes fails to produce desired

results. As shown in row (e) of Figure 12, in a single disease

instance separated by a branch, one part is labeled as br3

(blossom end rot at stage 3) and another is labeled as br2.

This kind of misclassification happens due to a reduced effective

receptive field of network. The second issue is field-specific

knowledge. Gray mold (gm) and Cercospora (cp) have similar

visual and textural characteristics, as shown in Figures 2, 3, but

Cercospora can develop anywhere on the leaf, whereas gray

mold only appears at the leaf’s edges. Because there is no optimal

way to encode this type of information in a CNN, the network

tends to confuse these two categories as evident by results in

Figures 10A and row (f) of Figure 12. Moreover, in the case

powdery mildew (pm), sometimes powdery colonies or yellow

lesions that appear on the leaf’s surface do not have a clear

boundary which makes it difficult for the network to generate

well-defined segmented regions as shown in rows (g) and (h)

of Figure 12.

Next, we display the final output of DIANA; with an image

given as input, it generates a set of bounding boxes that localize the
TABLE 8 Possible ways of the coupling DDL unit with the DSA unit.

Exp. 1 Exp. 2 Exp. 3 Exp. 4

P1 !E1
P2 !E2
P3 + P4 !E3
P5 + P6!E4

P1 !E1
P2 !E2
P3

© P4 !E3
P5

© P6!E4

P1 !E1
P2 !E2
P3 !E3
P5 !E4

P1 !E1
P2 !E2
P4 !E3
P6!E4
Here, Pl represents the lth pyramid level, and En represents the nth encoder block.
TABLE 9 Ablation experiments for different coupling strategies.

Baseline Exp.1 Exp.2 Exp.3 Exp.4 mIOU (%) mPQ (%)

✓ 72.48 51.63

✓ ✓ 79.34 67.18

✓ ✓ 85.98 69.74

✓ ✓ 77.6 65.39

✓ ✓ 87.77 70.78
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anomalies, class types associated with the bounding boxes, and

finally pixel-wise subclassified regions that display the severity

stages of disease detected inside bounding boxes. For easier

visualization and understanding of the results, we display the
Frontiers in Plant Science 19
images in the following format. First is the input image with

ground-truth labels overlaid over it; second is the network’s

prediction with unique IDs assigned to all the detected disease

instances by integration unit and finally a disease severity analysis
A B DC

FIGURE 11

Comparison of qualitative results for coupled and decoupled DDL units.
A

B

D

E

F

G

H

C

FIGURE 12

Visual results for disease severity analysis (DSA unit). The first column in each group displays input image patches, the second column displays
ground-truth labels, and the third column shows predicted segmentation masks. The blue box at the side shows the color pallet used.
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window which displays key phrases describing the detected

instances in the images with references to the assigned IDs. The

color given to each phrase is related to the color pallet used for

assigning colors to different disease severity stages as shown in

Figure 12. Figure 13 shows the visual output of DIANA, and

Figure 9 shows the output of the framework in case when only

insect or pest damage was detected. More visual predictions are

provided as supplementary material.

Figure 14 demonstrates that under a variety of real-world

circumstances, our system can identify and categorize multiple

diseases, as well as the phases of each disease’s severity. We also

demonstrate certain instances in which our framework encounters

issues when categorizing the stages of disease severity. For example,

the last row of Figure 14 shows that while the network was able to

identify the disease category, it occasionally failed to identify

powdery mildew instances because there are so many little, fluffy

colonies with hazy borders. In cases when only insect–pest damage

is found in the images, the inputs are not processed by the coupled

DSA unit to save computational time; such examples are shown in

Figure 13 and the second row of Figure 14. As for the cases when

both viral–fungal and insect–pest damages are detected on the

plant, the coupled DSA unit is operated normally to get severity

analysis, as shown in the second row of Figure 14.
5.6 Inference time vs. accuracy

To conclude, we provide a summary of DIANA’s

performance in comparison to other state-of-the-art object
Frontiers in Plant Science 20
detectors in terms of inference time and accuracy achieved.

For a fair comparison, the inference speed of all the ODs is

measured under the same settings, i.e., on the same machine

with an input batch size of 1. Figure 15 shows the plot of

inference time vs. model accuracy in terms of mean average

precision. It can be seen clearly from Figure 15 that our custom

augmentation pipeline improves the network’s performance

considerably. One thing worth mentioning here is that the

specifications of both coupled units were considered when

calculating the inference time, parameters, and FLOPs

for DIANA.
6 Conclusion

We proposed an efficient disease severity analysis system in

this study that can recognize and localize numerous plant

diseases and pest damage, as well as provide the intensity of

the diseases affecting the plant in the form of appropriate user-

defined descriptive phrases. Our framework consists of three

main units: (i) the first one being the DDL unit which accurately

identifies and localizes all the anomalies affecting the plant, (ii)

the second unit termed as the DSA unit which provides a reliable

analysis of disease severities affecting the plant, and (iii) finally

an integration unit which combines information from both these

units and assigns unique IDs to all the detected anomaly

instances along with generating the descriptive sentences,

informing users about the current condition of the plant. We

also discussed two possible approaches for combining these

units into a single framework: one being a naïve approach in
FIGURE 13

Visual results of DIANA in case only insect of pest damage is detected.
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which neither of the three units communicate with each other,

and another being the one in which two units are jointly trained

and optimized in an end-to-end fashion for their respective

tasks, resulting in a final disease analyzer (DIANA) framework.

For this work, we also constructed a new dataset named paprika
Frontiers in Plant Science 21
plant disease dataset, which includes three kinds of information,

i.e., location, type, and severity of the abnormalities infecting

the plant.

We conducted detailed ablation and evaluation experiments

to verify and compare the performance of both approaches. We
FIGURE 14

Visual results of DIANA on the paprika plant disease dataset. (A) Input image with ground-truth labels overlaid, (B) network output with unique
ID assigned to each detected abnormal instance, and (C) severity analysis window displaying diagnosis results in user-friendly phrases. Each
phrase states with an integer showing ID of the disease instance followed by the severity stage of the detected disease and finally the class of
the detected disease.
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also compared the performance of two coupled units in DIANA

separately with other top-performing models. For performance

evaluation, we used three benchmark metrics, i.e., mAP, mIOU,

and mPQ, and our network achieved 91.7%, 87.7%, and 70.78%

scores, respectively. Moreover, in comparison to previous works,

our system provides a more detailed and objective analysis of

diseases infecting the plant. We introduced a reliable and cost-

efficient tool that provides users (farmers) with technology that

aids in crop management. We believe that this methodology will

serve as a reference guide for future research in precision

agriculture, as well as the construction of more effective

monitoring systems to manage plant abnormalities, since the

application can be easily extended to other field crops.
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FIGURE 15

Inference time vs. model accuracy (mAP): all values are calculated using the same setup under the same conditions. Time is calculated in
milliseconds (ms), and average precision is Pascal VOC style mAP at the 0.5 IoU threshold.
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(2021). Revise-net: Exploiting reverse attention mechanism for salient object
detection. Remote Sens. 13, 4941. doi: 10.3390/rs13234941

Ilyas, T., Mannan, Z. I., Khan, A., Azam, S., Kim, H., and De Boer, F. (2022).
TSFD-net: Tissue specific feature distillation network for nuclei segmentation and
classification. Neural Networks 151, 1–15. doi: 10.1016/j.neunet.2022.02.020

Ilyas, T., Umraiz, M., Khan, A., and Kim, H. (2021). DAM: Hierarchical adaptive
feature selection using convolution encoder decoder network for strawberry
segmentation. Front. Plant Sci. 12, 189. doi: 10.3389/fpls.2021.591333

Jagtiani, E. (2021). Advancements in nanotechnology for food science and
industry. Food Front. 3 (1), 56–82. doi: 10.3389/fmicb.2017.01501

Jiang, P., Chen, Y., Liu, B., He, D., and Liang, C. (2019). Real-time detection of
apple leaf diseases using deep learning approach based on improved convolutional
neural networks. IEEE Access 7, 59069–59080. doi: 10.1109/ACCESS.2019.2914929

Kawasaki, Y., Uga, H., Kagiwada, S., and Iyatomi, H. (2015). “Basic study of
automated diagnosis of viral plant diseases using convolutional neural networks”,
in International symposium on visual computing (Springer), 638–645.

Kirillov, A., He, K., Girshick, R., Rother, C., and Dollár, P. (2019). “Panoptic
segmentation”, in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 9404–9413.

Kohler, F., Pellegrin, F., Jackson, G., and Mckenzie, E. (1997)Koppert powdery
mildew. In: Diseases of cultivated crops in pacific island countries. Available at:
https://www.koppert.com/challenges/disease-control/powdery-mildew/ (Accessed
26 January 2021).

Kranz, J., and Rotem, J. (2012). Experimental techniques in plant disease
epidemiology (Berlin: Springer Science & Business Media).

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Communications of the ACM 60 (6), 84–90.

Kundu, N., Rani, G., Dhaka, V. S., Gupta, K., Nayak, S. C., Verma, S., et al.
(2021). IoT and interpretable machine learning based framework for disease
prediction in pearl millet. Sensors 21, 5386. doi: 10.3390/s21165386

Li, G., Ma, Z., and Wang, H. (2013). “Development of a single-leaf disease
severity automatic grading system based on image processing”, in Proceedings of
the 2012 international conference on information technology and software
engineering (Springer), 665–675.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017).
“Feature pyramid networks for object detection”, in Proceedings of the IEEE
conference on computer vision and pattern recognition. 2117–2125.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., et al. (2016).
“Ssd: Single shot multibox detector”, in European conference on computer vision.
21–37 (Springer: Germany).

Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). “Path aggregation network for
instance segmentation”, in Proceedings of the IEEE conference on computer vision
and pattern recognition. 8759–8768.
frontiersin.org

https://doi.org/10.1146/annurev.phyto.42.040803.140329
https://doi.org/10.3923/ajps.2010.276.280
https://doi.org/10.3390/sym11070939
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1080/07352681003617285
https://doi.org/10.1080/07352681003617285
https://doi.org/10.1007/s10327-006-0299-3
https://doi.org/10.48550/arXiv.1412.7062
https://doi.org/10.48550/arXiv.1706.05587
https://www.clef-initiative.eu/
https://doi.org/10.3390/s21144749
https://doi.org/10.1016/j.agsy.2017.01.019
https://doi.org/10.1016/j.compag.2018.01.009
https://doi.org/10.3390/s17092022
https://doi.org/10.3389/fpls.2018.01162
https://doi.org/10.3389/fpls.2019.01321
https://doi.org/10.1080/07060669509500710
https://doi.org/10.1146/annurev-anchem-061010-114010
https://doi.org/10.1016/j.neucom.2017.01.018
https://www.clef-initiative.eu/
https://doi.org/10.1016/j.jviromet.2009.07.008
https://extension.usu.edu/pests/ipm/notes_ag/veg-blossom-end-rot
https://extension.usu.edu/pests/ipm/notes_ag/veg-blossom-end-rot
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.3390/rs9090907
https://doi.org/10.48550/arXiv.1511.08060
https://doi.org/10.3390/rs13234941
https://doi.org/10.1016/j.neunet.2022.02.020
https://doi.org/10.3389/fpls.2021.591333
https://doi.org/10.3389/fmicb.2017.01501
https://doi.org/10.1109/ACCESS.2019.2914929
https://www.koppert.com/challenges/disease-control/powdery-mildew/
https://doi.org/10.3390/s21165386
https://doi.org/10.3389/fpls.2022.983625
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ilyas et al. 10.3389/fpls.2022.983625
Liu, J., and Wang, X. (2020). Tomato diseases and pests detection based on
improved yolo V3 convolutional neural network. Front. Plant Sci. 11, 898. doi:
10.3389/fpls.2020.00898

Liu, B., Zhang, Y., He, D., and Li, Y. (2017). Identification of apple leaf diseases
based on deep convolutional neural networks. Symmetry 10, 11. doi: 10.3390/
sym10010011

Lowe, G. (2004). Sift-the scale invariant feature transform. Int. J. 2, 91–110.

Mahlein, A.-K., Steiner, U., Hillnhütter, C., Dehne, H.-W., and Oerke, E.-C.
(2012). Hyperspectral imaging for small-scale analysis of symptoms caused by
different sugar beet diseases. Plant Methods 8, 1–13. doi: 10.1186/1746-4811-8-3

Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., et al.
(2015). Advanced methods of plant disease detection. a review. Agron. Sustain.
Dev. 35, 1–25. doi: 10.1007/s13593-014-0246-1

Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016). Using deep learning for
image-based plant disease detection. Front. Plant Sci. 7, 1419. doi: 10.3389/
fpls.2016.01419

Nanni, L., Ghidoni, S., and Brahnam, S. (2017). Handcrafted vs. non-
handcrafted features for computer vision classification. Pattern Recognition 71,
158–172. doi: 10.1016/j.patcog.2017.05.025

Neave, S. (2018) Pacific pests, pathogens & weeds. Available at: https://apps.
lucidcentral.org/pppw_v10/text/web_full/entities/tomato_blossom_end_rot_082.
htm (Accessed 01 January 2021).

Nie, X., Wang, L., Ding, H., and Xu, M. (2019). Strawberry verticillium wilt
detection network based on multi-task learning and attention. IEEE Access 7,
170003–170011. doi: 10.1109/ACCESS.2019.2954845

Nutter, F.Jr., Gleason, M., Jenco, J., and Christians, N. (1993). Assessing the
accuracy, intra-rater repeatability, and inter-rater reliability of disease assessment
systems. Phytopathology 83, 806–812. doi: 10.1094/Phyto-83-806

Nutter, F. Jr., Teng, P., and Shokes, F. (1991). Disease assessment terms and
concepts. Plant disease 75, 1187– 1188.

Peng, C., Zhang, X., Yu, G., Luo, G., and Sun, J. (2017) “Large kernel matters–
improve semantic segmentation by global convolutional network” (Accessed
Proceedings of the IEEE conference on computer vision and pattern recognition).

Pethybridge, S. J., and Nelson, S. C. (2015). Leaf doctor: A new portable
application for quantifying plant disease severity. Plant Dis. 99, 1310–1316.
doi: 10.1094/PDIS-03-15-0319-RE

Pukkela, P., and Borra, S. (2018). “Machine learning based plant leaf disease
detection and severity assessment techniques: State-of-the-art,” in Classification in
BioApps (Germany: Springer), 199–226.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016) “You only look once:
Unified, real-time object detection” (Accessed Proceedings of the IEEE conference
on computer vision and pattern recognition).

Redmon, J., and Farhadi, A. (2018). Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767. doi: 10.48550/arXiv.1804.02767
Frontiers in Plant Science 24
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time
object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28.
doi: 10.48550/arXiv.1506.01497

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: Convolutional
networks for biomedical image segmentation”, in International Conference on
Medical image computing and computer-assisted intervention. 234–241 (Germany:
Springer).

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018).
“Mobilenetv2: Inverted residuals and linear bottlenecks”, in Proceedings of the IEEE
conference on computer vision and pattern recognition. 4510–4520.

Savary, S., Ficke, A., Aubertot, J.-N., and Hollier, C. (2012). Crop losses due to
diseases and their implications for global food production losses and food security.
Food Sec. (Springer) 4, 519–537. doi: 10.1007/s12571-012-0200-5

Schwartz, H. F., Steadman, J. R., Hall, R., and Forster, R. L. (2005).
“Compendium of bean diseases,” in American Phytopathological society (USA:
APS Press).

Shah, V. V., Shah, N. D., and Patrekar, P. V. (2013). Medicinal plants from
solanaceae family. Res. J. Pharm. Technol. 6, 143–151.

Shrivastava, S., Singh, S. K., and Hooda, D. S. (2015). Color sensing and image
processing-based automatic soybean plant foliar disease severity detection and
estimation. Multimedia Tools Appl. 74, 11467–11484. doi: 10.1007/s11042-014-2239-0

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). “Inception-v4,
inception-resnet and the impact of residual connections on learning”, in Thirty-first
AAAI conference on artificial intelligence.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).
“Going deeper with convolutions”, in Proceedings of the IEEE conference on
computer vision and pattern recognition. 1–9.

Tan, M., and Le, Q. (2019). “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in International conference on machine learning.
6105–6114 (PMLR).

Tan, M., Pang, R., and Le, Q. V. (2020). “Efficientdet: Scalable and efficient object
detection,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 10781–10790.

Tian, Y., Yang, G., Wang, Z., Li, E., and Liang, Z. (2019). Detection of apple
lesions in orchards based on deep learning methods of cyclegan and yolov3-dense.
J. Sensors 2019, 13. doi: 10.1155/2019/7630926

Wang, G., Sun, Y., and Wang, J. (2017). Automatic image-based plant disease
severity estimation using deep learning. Comput. Intell. Neurosci. 2017, 8. doi:
10.1155/2017/2917536

Xie, S., Yang, T., Wang, X., and Lin, Y. (2015). “Hyper-class augmented and
regularized deep learning for fine-grained image classification”, in Proceedings
of the IEEE conference on computer vision and pattern recognition. 2645–2654.

Zhong, Y., and Zhao, M. (2020). Research on deep learning in apple leaf disease
recognition. Comput. Electron. Agric. 168, 105146. doi: 10.1016/j.compag.2019.105146
frontiersin.org

https://doi.org/10.3389/fpls.2020.00898
https://doi.org/10.3390/sym10010011
https://doi.org/10.3390/sym10010011
https://doi.org/10.1186/1746-4811-8-3
https://doi.org/10.1007/s13593-014-0246-1
https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.1016/j.patcog.2017.05.025
https://apps.lucidcentral.org/pppw_v10/text/web_full/entities/tomato_blossom_end_rot_082.htm
https://apps.lucidcentral.org/pppw_v10/text/web_full/entities/tomato_blossom_end_rot_082.htm
https://apps.lucidcentral.org/pppw_v10/text/web_full/entities/tomato_blossom_end_rot_082.htm
https://doi.org/10.1109/ACCESS.2019.2954845
https://doi.org/10.1094/Phyto-83-806
https://doi.org/10.1094/PDIS-03-15-0319-RE
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.1007/s12571-012-0200-5
https://doi.org/10.1007/s11042-014-2239-0
https://doi.org/10.1155/2019/7630926
https://doi.org/10.1155/2017/2917536
https://doi.org/10.1016/j.compag.2019.105146
https://doi.org/10.3389/fpls.2022.983625
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	DIANA: A deep learning-based paprika plant disease and pest phenotyping system with disease severity analysis
	1 Introduction
	2 Related work
	2.1 Image-based disease recognition
	2.2 Region-based disease recognition
	2.3 Plant disease severity assessment

	3 Materials and methods
	3.1 Dataset construction
	3.1.1 Data acquisition
	3.1.2 Data analysis and distribution
	3.1.2.1 Blossom end rot
	3.1.2.2 Powdery mildew
	3.1.2.3 Gray mold
	3.1.2.4 Cercospora



	4 System overview
	4.1 Proposed approach
	4.1.1 Disease detector and localizer unit
	4.1.1.1 Class prediction subnetwork
	4.1.1.2 Box regression subnetwork

	4.1.2 Disease severity analyzer unit
	4.1.3 Integration unit

	4.2 Na&iuml;ve approach
	4.2.1 Na&iuml;ve DDL unit
	4.2.2 Na&iuml;ve DSA unit

	4.3 Experimental setup
	4.4 Evaluation metrics

	5 Results and discussion
	5.1 Data augmentation
	5.2 Evaluation of the DDL task
	5.3 Evaluation of the DSA task
	5.4 Ablation studies
	5.5 Qualitative results
	5.6 Inference time vs. accuracy

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


