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Insect pest is an essential factor affecting crop yield, and the effect of

pest control depends on the timeliness and accuracy of pest forecasting.

The traditional method forecasts pest outbreaks by manually observing

(capturing), identifying, and counting insects, which is very time-consuming

and laborious. Therefore, developing a method that can more timely and

accurately identify insects and obtain insect information. This study designed

an image acquisition device that can quickly collect real-time photos of

phototactic insects. A pest identification model was established based on

a deep learning algorithm. In addition, a model update strategy and a

pest outbreak warning method based on the identification results were

proposed. Insect images were processed to establish the identification model

by removing the background; a laboratory image collection test verified

the feasibility. The results showed that the proportion of images with the

background completely removed was 90.2%. Dataset 1 was obtained using

reared target insects, and the identification accuracy of the ResNet V2 model

on the test set was 96%. Furthermore, Dataset 2 was obtained in the cotton

field using a designed field device. In exploring the model update strategy,

firstly, the T_ResNet V2 model was trained with Dataset 2 using transfer

learning based on the ResNet V2 model; its identification accuracy on the

test set was 84.6%. Secondly, after reasonably mixing the indoor and field

datasets, the SM_ResNet V2 model had an identification accuracy of 85.7%.

The cotton pest image acquisition, transmission, and automatic identification

system provide a good tool for accurately forecasting pest outbreaks in

cotton fields.
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cotton pest, deep learning, image acquisition device, insect outbreak, transfer
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Introduction

Pest forecasting refers to the accurate monitoring of pests
and predicting pest outbreaks through analyzing relevant
data based on biology, mathematics, statistics, etc. It is very
important for farmers to achieve good pest control. Accurate
and timely pest forecasting can help farmers timely take
measures to effectively control agricultural pests and reduce
the detrimental effects of pesticide abuse on the environment
and the human body (Xiao et al., 2000; Dalal and Singh, 2017;
Malschi et al., 2018; Hu et al., 2019; Machekano et al., 2019;
Ponomarev et al., 2019).

The traditional monitoring methods obtain pest
information by regular field surveys (Ebrahimi et al., 2017).
Although field surveys can obtain detailed pest information,
it is time-consuming, labor-intensive, and limited in large
scale surveys (Dong et al., 2019; Li et al., 2019). Therefore,
some studies perform pest monitoring using sticky boards
combined with wifi cameras to collect pest information, and
others perform pest monitoring using white screens with
specific light sources to trap specific insects. Although these two
methods can obtain good results, they have obvious drawbacks
when compared with the predictive model, such as regular
replacements of sticky boards, lacks unified color expression
pattern for the sticky color palette, and limited target insect
range (Kumar et al., 2010; Zou et al., 2014; Chen et al., 2016;
Chiu et al., 2019). In recent years, geographic information
systems (GIS) have been used in agricultural pest studies. A GIS
is a computer system that collects, stores, and analyses data
about the entire or a portion of the Earth’s surface and displays
geographic distribution. Various functions are performed
during the entire process of data collection, processing, and
decision-making (Zhang, 2000). The obtained data could be
evaluated in depth in both time and space dimensions using
GIS technology paired with insect pest monitoring and early
warning models, thus achieving accurate monitoring and
early warning services. However, personnel are still necessary
for the data collection in the field and the operation is very
time-consuming (Xu et al., 2017; Dong et al., 2019; Afonin et al.,
2020). Therefore, a system that could collect real-time insect
data in a fast and accurate manner is needed for pest control.

Pest identification and classification are crucial for
pest forecasting. Automatic pest detection has become a
research topic in recent years with the rapid development
of machine learning and machine vision (Li et al., 2019).
Image segmentation and other approaches have been used to
preprocess the images, after which the features of target images
are extracted. Then, machine learning methods, such as random
forest, k nearest neighbors, support vector machine (SVM),
etc. are used to perform pest identification (Rajan et al., 2016;
Yuan and Hu, 2016; Ebrahimi et al., 2017; Javed et al., 2017;
Zhang et al., 2019). Although the approaches described above

have produced good identification results, they have flaws such
as insufficient extracted information, manual identification of
critical features, and low feature extraction efficiency. Deep
convolutional neural networks (DCNNs) have become an
effective method to solve the problems mentioned above in
recent years (Liu et al., 2016). Furthermore, deep learning
technology based on convolutional neural networks (CNNs)
has made significant progress in identifying objects, such as
pests. Due to the poor identification performance of CNNs
in the field, Li et al. (2019) proposed a data augmentation
approach based on CNNs. Liu et al. (2016) proposed a method
based on a saliency map and applied it to DCNNs for pest
identification in a rice field, and found that the accuracy was
better than that of previous. Nam and Hung (2018) successfully
employed CNN to classify and identify harmful bugs in
traps. Alfarisy et al. (2018) created a rice pest identification
model using the Caffe framework. To evaluate the model’s
prediction accuracy, Thenmozhi and Reddy (2019) compared
their constructed CNN model with several migration models
based on multiple deep learning architectures. Chen et al.
(2021) proposed an interpretable CNN model to visualize
and interpret pest identification results. Singh et al. (2021)
compared multiple CNN pre-trained models and deployed
the optimal model in a web application for automatic disease
detection in coconut trees. Nanni et al. (2022) trained on the
Deng (SMALL), large IP102, and Xie2 (D0) pest datasets based
on a collection of CNNs with different structures and found
that the models obtained using different combinations of CNNs
with different Adam performed best. Besides, to save time
and resources on training; Khan and Ullah (2022) compared
two CNN migration learning models on the IP102 dataset.
The results show that the applied model outperforms existing
classification algorithms on large data sets. Li et al. (2022) also
used the IP102 dataset and compared the classification accuracy
under different combinations of learning rate, migration
learning and data enhancement methods. They found that the
classification of models with transfer learning outperformed
those based on new learning models, and that appropriate data
enhancement techniques could improve classification accuracy
(Li et al., 2022). Several researchers adopted transfer learning
methods to carry out pest identification and classification and
obtained excellent results (Dawei et al., 2019; Swasono et al.,
2019; Chen et al., 2020; Khalifa et al., 2020; Pattnaik et al.,
2020).

Based on the above mentioned successful application of
CNNs in pest identification, it is vital to investigate the effects of
employing CNNs in phototactic insect and moth identification
systems. Therefore, this study tried to create a system for
efficiently acquiring and identifying phototactic insect images.
The objectives were to (1) design an image acquisition device;
(2) collect datasets for pest identification; (3) train models for
identifying three target pests in cotton fields; (4) provide an
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early warning method; and (5) investigate possible strategies for
improving the model.

Materials and methods

Image acquisition device

Test device
Design of image acquisition platform

The indoor insect image acquisition platform consisted
of an image acquisition system, an insect body transmission
system, sensors, light sources, and image acquisition software.
The image acquisition system was the most important part,
and others were integrated into the image acquisition system
(Figure 1). Aluminum profiles were used to construct the
bracket of the image acquisition system and the insect body
transmission system. The length and width of the square mouth
of the platform was 100 mm, and the height of the acquisition
channel was 600 mm. The upper surface of the light curtain
sensor was 200 mm away from the conveyer belt of the insect
body transmission system, and the vertical distance between
the axis of the driven shaft and the center of the camera was
100 mm. This could make the insects enter the falling passage
in a parabola. Furthermore, two cameras (2.8–12 zoom, 1080p,
Green Vision Forest, China) were positioned opposite each
other to take two separate photos of the same insect body, and
the center of the cameras was flush with the center of the light
curtain sensor. Two light-emitting diode (LED) surface light
sources were positioned on both sides of the sensor in parallel
and at a 15-degree angle to the center line of the two cameras to
ensure uniform lighting.

FIGURE 1

Insect image acquisition device.

Sensor unit

The sensor unit was composed of two complementary metal
oxide semiconductor (CMOS) cameras (2.8–12 zoom, 1080p,
Green Vision Forest, China), a light curtain sensor, and a laptop
computer. The cameras were connected to the computer via
a USB port, and the signal line of the light curtain sensor
(PT1000QL radiation sensor, switch sensor, BOJKE, China) was
connected with the TPYboard (V102, MCU: stm32f405rgt6. The
power supply line was connected to the power supply module
(3 V/5 V/12 V multiple outputs, Xintai Microelectronics,
Shenzhen, China), and the TPYboard was connected to the
computer by USB. The computer has an Intel i5–4210 M
processor with 8 GB of RAM and runs on Windows 10.

Data acquisition

An image acquisition application is written using Python,
and the computer received signals from the light curtain sensor
and controlled the cameras to collect insect images. Image
background removal was performed during data acquisition
using the Gaussian mixture model (Figure 2; Li and Zhao, 2011)
to aid in the classification and identification of insects in the
images. Gaussian mixture model is a method that locates the
background through the background model and extracts the
foreground from the image (Li and Zhao, 2011). The selection
of the background model is vital. The background model, for
example, works by first defining numerous Gaussian models,
initializing parameters, solving the important parameters that
will be utilized later, and then processing each pixel in each
image frame so that it is visible. If it matches a previously
defined Gaussian model, the pixel value is included in the
model, and the model is updated to reflect the new pixel value.
If it does not match, a new Gaussian model with the pixel
value will be created, and its parameters are set to replace
the most unlikely background model in the original model.
Finally, the first few most likely models are selected as the
background models.

The acquisition signal was sent from the light curtain sensor
to the data acquisition application through the TPYboard. The
data collection application activated two cameras to complete
the image acquisition, and both photos with and without
background removal were saved.

Feasibility analysis

To evaluate the image acquisition performance of the
device, a statistical analysis of the acquired insect images was
performed. The collected insect images were classified into six
categories, including (a) images with no background and no
noises, (b) images with removable noises, (c) images with non-
removable noises, (d) images outside the camera’s field of view,
(e) images in which the background was not removable, and
(f) images in which the targets were blurred. The feasibility of
the image acquisition approach was verified by analyzing the
proportions of various categories of images.
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FIGURE 2

Flowchart of the background subtraction algorithm.

Field device
Design of image acquisition device

The device was composed of a machine frame, insect
stun system, sensor, electric control system, insect body
collection box, and image acquisition and transmission software
(Figure 3). To complete the acquisition and transmission of

insect images, various sections were merged. A solar panel was
mounted and the electric energy was stored in a battery on the
machine’s bracket to power the device. Under the solar panel, an
insect enticing and stunning system employed a full-band light
source to attract field phototactic insects, and three transparent
screens with a 120-degree angle were mounted surrounding the
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FIGURE 3

Image acquisition system.

light source to achieve insect impact and stunning. When the
insect was stunned, it fell into the lower funnel, which was
connected to the upper part of the image acquisition system.
The device’s image acquisition process was similar to that of
the device in section “Test device.” In front of the image
acquisition system, an electric control cabinet with an industrial
computer, a control panel, a charging controller, and a touch
display was mounted. For capturing insects, there was an insect
collection box beneath the image acquisition system. If rain was
detected, a raindrop sensor mounted on the top of the machine’s
bracket would power off the device. The photosensitive sensor
was mounted on the device casing’s exterior controlled the
external light signal.

Sensor system

The sensor system was composed of a collection device,
on-off switch, and a transmission and positioning unit (EC20
USB DONGLE, COWITOP, Shenzhen, China). The acquisition
and transmission unit was composed of a light curtain sensor
and two CMOS cameras. The light curtain sensor (PT1000QL
radiation sensor, switch sensor, BOJKE, China) was connected
to the control board (stm32, Shenzhen, China). The two
cameras (2.8–12 zoom, 1080p, Green Vision Forest, China) and

the transmission and positioning unit (EC20 USB DONGLE,
COWITOP, Shenzhen, China) were connected to the industrial
computer via a USB cable. The transmission and positioning
unit employed a 4G communication network and has GPS
functionality. The industrial computer was composed of Intel
i3–4010 CPU, 4 GB RAM, and Windows 7 operating system.
The on-off power switch included a raindrop sensor unit
and a photosensitive sensor unit (FZ-GG, photoresistor, Feizhi
Electronic Technology Co., Ltd., China).

Power system

In the field, batteries (12V65Ah/10HR, HW-HSE-65-12,
Hangzhou, China) powered the device, and the solar panels
(PM: 80 W, VOC: 17.5 V, IM: 4.57A, China) charged the
batteries. The entire device started when the light was less
than the threshold of the photosensitive sensor unit in the
evening, and the raindrop sensor unit did not receive a
signal. The control board regulates the power relay for the
insect trap lamp (DC12 V 20 W 500 mm × 20 mm,
Hangzhou Zhuoqi, China), touch screen (RG-XSQ008, HDMI
VGA DC, 12-inch LED touch screen, Rongge, China), LED
surface light source (DC12 V 20 W 94 mm × 50 mm,
XEN-9450, Xing Yuan Sheng Optoelectronics, China), light

Frontiers in Plant Science 05 frontiersin.org

https://doi.org/10.3389/fpls.2022.990965
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-990965 October 13, 2022 Time: 16:20 # 6

Liu et al. 10.3389/fpls.2022.990965

curtain sensor, and the industrial computer. The trap lamp,
industrial computer, and light curtain sensor were all turned
on after the device was started. When the light curtain sensor
detected an insect body, the LED surface light source was
turned on for 5 s to supplement the light and facilitate the
image acquisition.

Data acquisition software

The image acquisition and transmission program was
written using Python 3.6 and PyQt5. The industrial computer
was set to launch the data acquisition software. After powering
up the industrial computer, the program collected the device’s
position information via the transmission and positioning unit.
The program continuously monitored the signal sent by the
sensor system, and the LED surface light source was turned
on as the image acquisition light source when the light curtain
sensor received a trigger signal. Simultaneously, the program
commanded the cameras to acquire the images (JSON), which
contains metadata including the name, location, and time. The
data were stored in the allocated folder before transfering to the
computer. Furthermore, when the program received shutdown
signal from the raindrop sensor unit or photosensitive sensor
unit, the program executed the shutdown command to power
off the industrial computer.

The device number, position, images, image acquisition
status, and image transmission status were all displayed on the
program interface. To check the working status of the program,
the program determined whether the acquisition status was
normal by detecting the serial port of the camera, the serial
port of the control panel, and the transmission connection
and network status. The status of each were displayed on the
interface at the same time.

Sample preparation

Indoor acquisition of sample images
Twenty-three instar larvae of cotton bollworm moth, borer

moth, and Spodoptera litura were purchased and used as
samples (Keyun Biology, Henan, China). In the larval stage,
insects were reared in an incubator (SPX-50 L, Hongnuo, Hebei,
China) at 27◦C with a relative humidity of 70–80%. The larvae
were kept in a pitcher at room temperature once they pupated
(Figure 4). Sugar water was given to the pupae until they
emerged. Cotton bollworm moths, borers, and prodenia litura
had 20, 4, and 4 survivals, respectively, in the end. Ten cotton
bollworm moths were selected as the samples, and six borers and
six Spodoptera litura with intact bodies selected from the insects
previously collected from the test field were included in the test
samples to maintain consistency in the sample size.

Sample collection in cotton field
The cotton field (44◦18′ 57′′ N and 86◦03′ 61′′E) is located

in Erlian, Shihezi City, Xinjiang Uygur Autonomous Region,
China. During the flowering period of cotton, the device was
placed on the border of the field to avoid interfering from the
sprayer. On August 3, 2019, the device was deployed in the field
and recovered on October 13, 2019.

Image acquisition

The first step was to acquire images using the device
illustrated in section “Test device,” which was designed by the
Intelligent Agricultural Sensing and Equipment Laboratory of
Shihezi University. The pests were dropped at the calibrated

FIGURE 4

Insect rearing process.
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position of the conveyor belt during image acquisition, and then
they were transferred to the channel. A very short exposure time
(312 µs) was set to assure the image quality for the cameras to
acquire a higher frame rate (30 fps) due to the quick falling. Two
12 V 20 W LED surface light sources were used at the same time
(Figure 5). There were three different categories of samples, each
had 10 samples. Each sample had 400 images, and a threshold
segmentation was used to select 300 images with no background
or noises. Finally, 9,000 images for the three categories were
obtained as Dataset 1. Then, Dataset 1 was divided into training,
validation, and test sets according to a ratio of 7:1.5:1.5.

The image acquisition device in section “Image acquisition
device,” which was collaboratively designed by the Intelligent
Agricultural Sensing and Equipment Laboratory of Shihezi
University and Hangzhou Zhuoqi Electronic Technology Co.,
Ltd., was used in the second step (Figure 5). A 15-acre (10,000-
square-meter) trapping area was set aside. The device collected
111,146 images from August 3, 2019 to October 13, 2019.
Between August 3 and August 10, insect experts of Shihezi
University’s Agricultural College were invited to identify 80
cotton bollworm moths, 60 borer moths, and 80 Spodoptera
litura images. In addition, 1200 images with non-target insects,
distortion, and noises were considered as the fourth category.
A total of 1,420 images were finally obtained for the four
categories and defined as Dataset 2. Due to the minimal number
of target insects identified manually, Dataset 2 was divided into
training, validation, and test sets at a ratio of 6:2:2.

Image classification

Image pre-processing
The images were cropped to obtain the region of interest

(ROI), and the unnecessary information in the images was
removed. The centroid of the insect body was used as the center
of the rectangular box when cropping, and the ROI (140 × 140
pixel) was intercepted. The image’s border was expanded and
then cropped when the insect body was at the edge of the image.

The datasets used in this study were made by simulating the
Cifar10 dataset. Due to a shortage of field data, real-time image
enhancement processing was performed while the data were
used for training. That is, images were rotated randomly by 90
degrees, staggered by 0.5, and flipped up, down, left, and right.

ResNet V2 classifier
Kaiming He, the author of ResNet, proposed ResNet V2 in

2016 (He et al., 2016). On Cifar10, the author experimented
with five residual unit structures using two networks, ResNet110
and ResNet164. The results with full pre-activation turned out
to be the best. This may be due to that firstly; information
transmission is unaffected by this structure; secondly, the batch
normalization (BN) layer function acts as a pre-activation
feature for regularization.

ResNet is a modular structure in which identical-shaped
pieces can be stacked and connected (He et al., 2016). The
residual unit was calculated as follows:

yl = h (xl) + F (xl, Wl) (1)

xl + 1 = f
(
yl
)

(2)

Following is the recursive calculation:

xL = xl +

L−1∑
i = l

F (xi, Wi) (3)

The link between any other L-th layer and any L-th layer is
expressed in Equation (3). Assuming that the loss function is ε,
the backpropagation formula is as follows:

∂ε

∂xl
=

∂ε

∂xL

∂xL

∂xl
=

∂ε

∂xL

(
1 +

∂

∂xl

L−1∑
i =l

F (xi, Wi)

)
(4)

Followings are the three features of Equation (4):
(a) There are no impediments in transmitting gradient

information between the two levels;
(b) ∂ε

∂xl
, is not easily offset;

(c) When the weight is relatively small, the problem of
gradient disappearance is successfully prevented.

Furthermore, the above formula’s properties are valid only if
h (xl) = xl and xl 1 = yl.

The ResNet V2 network has a total of 56 layers. The
parameters for the training process of the ResNet V2 model
are shown in Table 1, and the optimizer was Adam. Adam
accelerated the convergence by using momentum and an
adjustable learning rate. There were several advantages to
this approach, including high computational efficiency, small
memory requirement, and suitability for large parameters and
non-fixed targets (Kingma and Ba, 2014). The loss function
was based on the softmax layer’s cross-entropy function. Cross-
entropy represents the distance between the actual output
probability and the expected output probability; the smaller the
value of cross-entropy, the closer the two probability. Notably,
cross-entropy is currently the most widely used classification
function in CNNs (Hui and Belkin, 2020).

Verification and comparison
Feature selection

For feature selection based on Dataset 1, the gradient
boosting iterative decision tree (GBDT) method was applied.
GBDT is a simplified serial integrated learning method that
is different from other methods. The weak learner in GBDT
must be a classification and regression tree (CART) model,
and the loss of samples during model training must be as
small as possible (Friedman, 2001). In this study, a total of 30
color, texture, and shape features were extracted for Dataset 1,
Among them, the texture features were obtained by the statistics
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FIGURE 5

Data collection.

calculated by the gray co-occurrence matrix of four angles (0,
45, 90, and 135◦), and the most relevant features were chosen
for training and testing by GBDT.

Support vector machine and back-propagation neural
network

Support vector machine and BPNN were used as baseline
classifiers. The Gaussian kernel function was used in SVM, and
the kernel function parameter gamma and penalty factor C
were optimized using the particle swarm optimization (PSO)
approach. The fitness value employed in the optimization
process was the target identification rate obtained by cross-
validation, and the optimal solution was found iteratively.
The 10-fold cross-validation method was used for training
after the optimized result was attained. In addition, BPNN
employed 10-fold cross-validation for training, a Gaussian
random distribution with a mean of 0 and a standard deviation
of 1/
√

nin to initialize the weights, the cross-entropy function as
the cost function, and the L2 normalized cross-entropy to reduce
overfitting. The stochastic gradient descent algorithm was used

to train the input data; and simultaneously, the exponential
learning rate decay was employed in training to ensure that
the learning rate decreases with training to prevent both the
delayed parameter updating caused by a low learning rate and
the oscillation of parameters near the extreme value caused by
a high learning rate. The number of input layer nodes was 11,
the number of output layer nodes was 3, and the number of
hidden layer nodes determined by an empirical formula (5)
was 3.

h =
√

m+ n+ a (5)

Where h is the number of hidden layer nodes; m is the
number of input layer nodes; n is the number of output layer
nodes; and a is a constant between 1 and 10.

Evaluation criterion

The F1-score and the identification accuracy were used
to assess the model’s performance. The proportion of all the
model’s correct results to the total was used to evaluate the
identification accuracy. The harmonic average F1-score of the
precision and recall were used as a comprehensive metric
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TABLE 1 Parameters and resources used in training models.

Parameter or
resource

Value or model

Batch size 16

Initial learning rate 1e-3

Optimizer Adam

Epochs 200

Back end TensorFlow 1.14

Python 3.6

Operation system Windows 10

GPU NVIDIA GeForce RTX 2060
Memory capacity: 6144 M
Memory interface: 192 bit
Memory Bandwidth: 336.1 GB/s

Categories Helicoverpa armigera moth
Pyralid moth
Prodenialiture fabricius

The number of
images used for
training, validation,
and test

6300, 1350, and 1350

to examine the model’s precision and recall. The greater
the F1-score value, the higher the precision and recall. The
calculation method for F1-score is as follows:

F1− scorei =
2 ∗ Pi ∗ Ri

Pi + Ri
, (i = 0, 1, 2, 3) (6)

Pi =
TP

(TP + FP)
(7)

Ri =
TP

(TP + FN)
(8)

Where Pi denotes the percentage of true i-type samples
among the samples anticipated to be i-type; and Ri represents
the proportion of samples that are correctly predicted.

Methodology for updating models
The model must be updated as the number of insect species

increases. To update the model, transfer learning and a hybrid
dataset was applied in this study.

Model updating by using transfer learning

A new T_ResNet V2 model was created using the parameter
transfer training of the ResNet V2 model based on the dataset
collected in the field. Because of the uneven distribution of
Dataset 2, 70 images from the fourth category were chosen
at random and mixed with the other three categories to form
Dataset 2-1 which was used in the transfer learning model. The
initialization parameters of transfer learning were derived from
the ResNet V2 model trained on Dataset 1. The parameters of
the ResNet V2 model were changed during training, the fully
connected layer parameters were eliminated, and Dataset 2-1
was used for training.

Model updating by using mixed dataset

A new dataset was created by filling or symmetric mixing of
Datasets 1 and 2. Filling the mixing means with the first three
categories of the training set of Dataset 2 were from Dataset 1
until the data quantity of the three categories of Dataset 2 was
consistent with that of the fourth category. Symmetric mixing
means that the data of the same category and the same quantity
from the training sets of Dataset 1 and Dataset 2-1 were mixed,
and the same quantity of images from the fourth category of
Dataset 2-1 and the fourth category outside Dataset 2-1 were
mixed. The validation set and test set of Dataset 2-1 were used
for mixed data training, the model FM_ResNet V2 was obtained
by filling-type mixed data training, and the model SM_ResNet
V2 was obtained by symmetric mixed data training. Dataset 2-1
was used to compare the three models, and the test set was used
to compare the three models’ performance.

Because the quantity of the data used to train transfer
learning models was limited, the dataset was divided into the
training set, a validation set, and test set in a ratio of 6:2:2.
Real-time data enhancement including horizontal or, vertical
flipping, randomly rotating (90 degrees), and random shear (0.5)
to increase the data quantity during training.

Identification and warning

The level of pest breakout was forecasted according to the
number of pests. Following is the method for analyzing the
number of pests in the images:

(a) The pest quantity study was conducted on a 7-day cycle
since the emergence time of cotton bollworms and other pests is
approximately 7 days.

(b) The increasing rate (IR) was used to classify the change
trend of pest quantity in the first cycle.

IR =

(
Number of months at the moment
−Cardinal number of moths

)
Cardinal number of moths

× 100%

(c) Since the second cycle, the day-on-day increasing
rate (DIR) and the cycle-on-cycle increasing rate (CIR) were
included for forecasting due to changes in environmental
factors, such as temperature and humidity.

Dir =

(
Number of moths on the present day
−Number of moths on the previous day

)
Number of moths on the previous day

× 100%

CIR =

(
Number of moths on the present day− Number of

moths on the same day in the previous cycle

)
Number of moths on the same day in the previous cycle

× 100%
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TABLE 2 Grading indexes of pest outbreak in cotton field.

Outbreak level 1 2 3 4 5

Pest density ≤5 >5∼10 >10∼20 >20∼30 >30

Pest increasing rate 0 >0∼100% >100∼300% >300∼500% >300%

(d) Issuing warnings by the above analysis results.
The pest outbreak level was determined using the pest

outbreak grading method for cotton field (Zhao et al., 2015).
Pest incidence has five levels according to the technical criteria
for pest survey (Table 2).

The pest increasing rate (PIR) was used to determine the
pest outbreak level.

Pest increasing rate =

(
Number of n− level pests
−Number of level 1 pests

)
Number of level 1 pests

× 100%

Where n = 1.., 5.
Finally, on the program interface (Figure 6), when any

increasing rate (IR, DIR, or CIR) was in the range 0–100%, a
blue warning was shown on the screen. When any increasing
rate was between 100 and 300%, an orange warning was shown

on the screen. When any increasing rate exceeded 300%, a red
warning was shown on the screen.

Result

Analysis results of image acquisition
feasibility

All images (a, b, c, d, e, and f) were collected using the
image acquisition device (Figure 7). The number of noise-free
and noise-removable images accounted for more than 90.2 %
of the images. Thus, the image acquisition device and method
proposed in this study were viable.

Feature selection results

Important features were extracted from the 30 features of
Dataset 1 using GBDT’s method. The loss function was based
on logarithmic loss, and the importance of each feature was
calculated, with the mean value of the importance serving as
the salient feature’s differentiating threshold. For the training

FIGURE 6

Program interface.
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FIGURE 7

Image types.

and testing of SVM and BPNN, a total of 11 important
features were used.

Performance of the ResNet V2 model

Based on Dataset 1, ResNet V2 was trained for 200 cycles,
with the validation set error calculated once in each cycle
(Figure 8). The errors trended at approximately 0.15, with a
minimum of 0.151, indicating that the model was not overfitted.
Figure 8B shows the average identification accuracy based on
the test set, with an identification accuracy of 97.7%. Table 3
shows the F1-score values for each category.

The optimal gamma and C values after 100 iterations of
PSO SVM were 1.00 and 3.38, respectively, and the average
identification accuracy based on the training and test sets were
74.3 and 73.9%, respectively. The average identification accuracy
based on training set after 1050 iterations of BPNN was 76.4%,
while that based on the test set was 75.0%. Table 3 shows the F1-
score values produced by the SVM and BPNN for each category.
Combining identification accuracy and F1-score value, it was
found that the ResNet V2 model outperformed the others.

ResNet V2, FM ResNet V2, and SM
ResNet V2 model performance

A total of 200 training cycles were performed, and the error
for the validation set was determined once per cycle; the best
model was saved. Figure 9A depicts the variation of the curve for

the verification set. The error was approximately 0.46, and the
identification accuracy based on the validation set was 85.0%.
The test set’s identification accuracy was 84.6% (Figures 9B,C
and Table 4).

The identification accuracy and error curves based on
the validation set trained on the filling and mixed dataset
are shown in Figure 10A. The identification accuracy was
73.3%, with an error of approximately 1.7. Based on the
test set, the model trained based on the filling and mixed
dataset had an identification accuracy of 65.5%. Figures 10B,C
depicts the matrix, whereas Table 4 lists the F1-score values
for each category. Figure 11A shows the identification
accuracy and error curves based on the validation set trained
on the symmetric mixed dataset, with an identification
accuracy of 75.0% and an error of 1.6. The identification
accuracy of the model trained on symmetric mixed dataset
based on the test set was 85.7%. Figures 11B,C depicts
the matrix.

Discussion

Background removal

The results of the image acquisition method’s feasibility
demonstrates that using the Gaussian mixture model to remove
the background in the image acquisition process is viable. The
pest image acquisition in this study made use of the pest’s
free fall and the sensor’s external triggering for image capture.
The movement of the pest with relation to the background
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FIGURE 8

(A) Variation for identification accuracy and error based on validation set, (B) average classification accuracy by ResNet V2 (%).

TABLE 3 Average identification accuracy and F1-score based on the test set.

Category Accuracy (%) F1-score (%)

SVM BPNN ResNet SVM BPNN ResNet

Helicoverpa armigera (HA) 73.9 75.0 97.7 70.4 73.2 96.9

Pyrausta nubilalis (PN) 74.9 75.2 97.5

Prodenialiture fabricius (PF) 76.5 77.0 98.7

was used to remove the background. This can speed up
the compilation of subsequent image datasets, and eliminate
the need to tag pests in the image. However, this process
is easily impacted by the environment, and it is difficult to

completely remove the background. As a result, morphological
methods with various parameter combinations should be used
in conjunction with various settings to obtain the best possible
background removal.
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FIGURE 9

(A) Identification accuracy curve and error curve for the validation set(a), and matrix for the average identification accuracy based on the test set
(B) and matrix for misclassified images (C) obtained by transfer learning.

TABLE 4 The accuracy, training time, and F1-score of the three models.

Model Accuracy (%) Training duration(s) F1-Score (%) Label

Training set Validation set Test set

T_ResNet V2 93.5 85.0 84.6 586.16 47.3 0

82.8 1

86.1 2

96.0 3

FM_ResNet V2 98.1 73.3 65.5 8189.08 25.8 0

56.4 1

88.3 2

62.6 3

SM_ResNet V2 90.9 75.0 85.7 1041.82 50.0 0

92.7 1

82.1 2

90.8 3
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FIGURE 10

The average identification accuracy and error curves based on the validation set (A), matrix of the average identification accuracy based on the
test set (B), and matrix of the misclassified images based on the test set (C) for the model trained on the filling mixed dataset.

Updating the classification model

The identification accuracy based on the verification and
test sets was lower than that based on the training set, as
shown by the training results of the filling mixed dataset (model
FM_ResNet V2). This result may be because of the larger sample
size of Dataset 1 of the filling mixed dataset than that of Dataset
2, which results in the validation set’s and test set’s internal
variance is much lower than the training set’s. Therefore, the
identification accuracy, recall rate, and precision based on the
test set were lower. When the training results based on the
symmetric mixed dataset and the transfer learning dataset
(models SM_ResNet V2 and T_ResNet V2) were compared, the
model SM_ResNet V2 was found to have higher identification
accuracy than the model T_ResNet V2 based on the test
set. Based on the verification set, however, the identification

accuracy of the model SM_ResNet V2 was 10.7% lower than
that based on the test set. This may be because the validation
and test sets of the three models were all from Dataset 2-1
(see section “Verification and comparison”); among which, the
model T_ResNet V2’s training set came from Dataset 2-1, and
its data distribution was consistent with that of the validation
set. However, the data distribution of the validation set was
inconsistent with the training set for the model SM_ResNet V2.
As a result, the accuracy based on the validation set was lower
than that is based on the test set. Therefore, the model derived
from the symmetrical mixed dataset was unable to effectively
capture the distribution pattern of the new data in cotton
field, resulting in lower identification accuracy. Furthermore, by
examining the results of transfer learning, it was found that by
combining existing model parameters with transfer learning, the
model updating could be completed with a minimal amount of
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FIGURE 11

The average identification accuracy and error curves based on the validation set (A), matrix of the average identification accuracy based on the
test set (B), and matrix of the misclassified images based on the test set (C) for the model trained on the symmetric mixed dataset.

data, and the number of target categories could be altered as
needed. The identification model is essential for the forecasting
system. The updating of the model in a short time depending
on the changes in the pest species which are beneficial for
preventing outbreaks through real time monitoring, ensuring
highly efficient and precise pest control.

Early warning method

Traditional method for warning of pest outbreaks is based
on field surveys. For example, five points are selected in a
field to count the number of pest larvae on plants. In this
study, pest images were used to predict the level of the pest
outbreak. Combined with the traditional pest outbreak grading

criterion, the increasing rates of pests were used to forecast
the outbreak level. Early detection of pests during the moth
stage is vital for preventing pest outbreaks. Although an early
warning method for pest outbreaks was proposed in this
study, multi-season verification tests are still needed to verify it
further.

Conclusion

This work demonstrated that the Resnet model has
superior performance in classifying cotton field pests
compared with SVM and BPNN models. This paper
proposes a model update strategy based on the Resnet
model. We found that the SM_Resnet V2 model obtained from
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the symmetric hybrid dataset performs better on the
classification of new field data than the T_ResNet V2 model
obtained from migration learning and the FM_ResNet V2
model obtained from the populated hybrid dataset. Moreover,
the pest forecasting device proposed in this study can
automatically collect and transmit the images of pests from
cotton fields. The pest image acquisition method can acquire
pest images by removing the background, and improving the
identification accuracy. For target pests, the pest identification
model based on ResNet V2 had a higher identification
accuracy, and the application of transfer learning to update the
identification model had excellent performance. The verification
of the feasibility of the model updating by transfer learning, as
well as pest identification and early warning methods, will be a
focus for future research.
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