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diverse panel of wheat using
genome-wide association analysis
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Leaf rust, caused by Puccinia triticina (Pt) is among the most devastating diseases

posing a significant threat to global wheat production. The continuously evolving

virulent Pt races in North America calls for exploring new sources of leaf rust

resistance. A diversity panel of 365 bread wheat accessions selected from a

worldwide population of landraces and cultivars was evaluated at the seedling

stage against four Pt races (TDBJQ, TBBGS, MNPSD and, TNBJS). A wide

distribution of seedling responses against the four Pt races was observed.

Majority of the genotypes displayed a susceptible response with only 28 (9.8%),

59 (13.5%), 45 (12.5%), and 29 (8.1%) wheat accessions exhibiting a highly resistant

response to TDBJQ, TBBGS, MNPSD and, TNBJS, respectively. Further, we

conducted a high-resolution multi-locus genome-wide association study

(GWAS) using a set of 302,524 high-quality single nucleotide polymorphisms

(SNPs). The GWAS analysis identified 27 marker-trait associations (MTAs) for leaf

rust resistance on different wheat chromosomes of which 20 MTAs were found in

the vicinity of known Lr genes, MTAs, or quantitative traits loci (QTLs) identified in

previous studies. The remaining seven significant MTAs identified represent

genomic regions that harbor potentially novel genes for leaf rust resistance.

Furthermore, the candidate gene analysis for the significant MTAs identified

various genes of interest that may be involved in disease resistance. The

identified resistant lines and SNPs linked to the QTLs in this study will serve as

valuable resources in wheat rust resistance breeding programs.

KEYWORDS

leaf rust, Puccinia triticana, GWAS - genome-wide association study, seedling resistance,
wheat, QTL, SNP, marker assisted selection (MAS)
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Introduction

Global wheat production is continuously constrained by the

emergence of new and more virulent races of pathogens causing

several economically important diseases. Among these, fungal

pathogens are known to cause several important foliar diseases in

wheat including three cereal rusts: leaf rust caused by Puccinia

triticina (Pt), stem rust caused by Puccinia graminis f. sp. tritici

(Pgt), and stripe rust caused by Puccinia striiformis f. sp. tritici (Pst).

Wheat rusts threaten wheat production in the United States (US) by

accounting for yield losses in the value of millions of dollars annually.

Of the three wheat rusts, leaf rust (LR) is regarded as the most

common, extensively distributed, and devastating disease causing

3.25% yield losses annually to global wheat production (Kolmer,

2005; Savary et al., 2019). The recurrent and across-the-board

occurrence of leaf rust can lead to epidemic conditions with yield

losses ranging from 15% to more than 50% when infections occur

during early plant growth stages on susceptible cultivars (Singh et al.,

2002; Huerta-Espino et al., 2011). Serious yield losses are incurred in

terms of reduced kernels per head and decreased kernel weight

(Bolton et al., 2008). In the US alone, ~40-60 races of Pt are

reported annually (Kolmer et al., 2007) and yield losses valued at

$350 million were reported between 2000 and 2004 (Huerta-Espino

et al., 2011).

Host resistance is the most efficient and cost-effective strategy to

manage leaf rust and wheat breeding programs throughout the world

are deploying rust resistance genes in commercial cultivars to fight

against this disease (Gill et al., 2019). Around 80 leaf rust resistance

(Lr) genes have been identified and cataloged in wheat till date

(Prasad et al., 2020). Of the identified genes, eleven Lr genes have

been cloned, viz. Lr1 (Cloutier et al., 2007), Lr9 (Wang et al., 2022),

Lr10 (Feuillet et al., 2003), Lr13 (Hewitt et al., 2021; Yan et al., 2021),

Lr14a (Kolodziej et al., 2021), Lr21 (Huang et al., 2003), Lr22a (Thind

et al., 2017), Lr34 (Krattinger et al., 2009), Lr42 (Lin et al., 2022), Lr58

(Wang et al., 2022), and Lr67 (Moore et al., 2015). Genetic resistance

can be classified into two categories, namely seedling/all-stage

resistance (ASR) and adult plant resistance (APR). The seedling

resistance is largely qualitative resistance usually controlled by a

single major gene, effective at all the developmental stages of the

plant life cycle. ASR is associated with a hypersensitive response, a

programmed cell death that restricts the pathogen growth and spread.

The majority of the studied and characterized leaf rust resistance

genes are seedling resistance genes, with Lr76 (Bansal et al., 2017),

Lr79 (Qureshi et al., 2018) and Lr80 (Kumar et al., 2021b) being the

recent additions to this group. On the other hand, non-race specific,

adult-plant resistance (APR) is often partial resistance at the adult

plant stage controlled by multiple minor-effect genes with an additive

effect and only a sizable proportion of the identified Lr genes belong to

this category. Among the characterized Lr genes, Lr34 (Dyck, 1987),

Lr46 (Singh et al., 1998), and Lr67 (Hiebert et al., 2010) are broad-

spectrum APR genes, providing partial resistance against all three

wheat rusts and powdery mildew (Blumeria graminis f. sp. tritici). In

addition to these genes, Lr68 (Herrera-Foessel et al., 2012), Lr74

(Chhetri et al., 2016), Lr77 (Kolmer et al., 2018b), and Lr78 (Kolmer

et al., 2018a) have also been characterized in hexaploid wheat as APR

genes against leaf rust. The race-specific Lr genes provide resistance
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races render these genes ineffective. Thus, it is important to find novel

sources of leaf rust resistance that offer resistance to many different

leaf rust races in order to improve the overall durability of resistance

in released wheat cultivars.

The recent advancements in sequencing approaches and

harmonized community efforts have made genome-wide association

studies (GWAS) as an important method for studying the marker-

trait associations (Zhu et al., 2008; Tibbs Cortes et al., 2021). In

contrast to bi-parental linkage mapping, GWAS extensively utilizes

the ancient recombination events that occurred in natural

populations for the identification of genomic regions associated

with traits of interest. In wheat, GWAS has been used successfully

for dissecting the genetic basis of agronomic traits (Sukumaran et al.,

2015; Gao et al., 2015; Ward et al., 2019; Sidhu et al., 2020), disease

resistance (Gyawali et al., 2018; Phan et al., 2018; Zhu et al., 2020;

AlTameemi et al., 2021), quality traits (Kristensen et al., 2018; Chen

et al., 2019; Yang et al., 2020) and insect resistance (Joukhadar et al.,

2013; Mondal et al., 2016).

In the Great Plains region of the US, leaf rust is the most prevalent

rust disease. The hard red spring wheat cultivars grown in the

northern plains have resistance genes that include Lr2a, Lr10, Lr16,

Lr21, Lr23, and Lr34 (Kolmer, 2019). However, the effectiveness of

some of these genes has been reduced due to the continuous

emergence of new virulent pathogen races. For example, Lr21 had

been deployed for leaf rust resistance since the mid-2000s and is

found in some hard red spring cultivars like Glenn, Faller, and RB07.

However, virulent races against this gene have been identified in

North Dakota and Minnesota (https://www.ars.usda.gov/midwest-

area/stpaul/cereal-disease-lab/docs/lr21-virulence-detected/ ). Thus,

exploring and identifying new resistance sources is highly needed.

In the current study, a highly diverse panel of bread wheat accessions

from different regions of the world was evaluated for ASR against leaf

rust races prevalent in the Northern Great Plains of the US. A high-

resolution multi-locus GWAS was also performed to identify genomic

regions associated with LR resistance to facilitate the development of

resistant wheat cultivars for the future.
Materials and methods

Plant material and P. triticina races

We used a diverse panel of 365 hexaploid wheat accessions,

including landraces and cultivars from different regions of the

world (Supplementary Table S1). The 365 accessions were selected

from a larger collection of 890 diverse accessions of hexaploid and

tetraploid wheat that was previously resequenced using the sequence

capture assay (He et al., 2019). The accessions were obtained from the

USDANational Small Grains Collection gene bank and grown for one

round of purification and seed increase. The metadata for the 365

accessions can be found in the online repository (http://

wheatgenomics.plantpath.ksu.edu/1000EC ). Four prevalent Pt races

(TDBJQ, TBBGS, MNPSD, TNBJS) in the Northern Great Plains of

the US were selected for screening the wheat lines at the seedling

stage. TBBGS (virulent on genes Lr1, Lr2a, Lr2c, Lr3, Lr10, Lr21, Lr28,
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and Lr39) was the most predominant race in Minnesota, North

Dakota, and South Dakota in 2020. Furthermore, MNPSD (virulent

on genes Lr1, Lr3, Lr9, Lr24, Lr3ka, Lr17, Lr30, LrB, Lr10, Lr14a, and

Lr39), TNBJS (virulent on genes Lr1, Lr2a, Lr2c, Lr3, Lr9, Lr24, Lr10,

Lr14a, Lr21, Lr28, and Lr39) and TDBJQ (virulent on genes Lr1, Lr2a,

Lr2c, Lr3, Lr24, Lr10, Lr14a, Lr21, and Lr28) are the other important

races in the region.
Phenotyping assays for leaf rust
seedling screening

The 365 wheat accessions were evaluated in two independent

experiments for seedling response to LR. For the leaf rust screening,

wheat seedlings at the two-leaf stage were evaluated for their reactions

to described races in the biosafety level 2 (BSL 2) facility at Dalrymple

Research Greenhouse Complex, North Dakota Agricultural

Experiment Station (AES), Fargo. Briefly, five seedlings per each

accession along with susceptible checks were used for phenotypic

screening for each LR race. Plants were grown in a 50-cell tray

containing PRO-MIX LP-15 (www.pthorticulture.com ) sterilized soil

mix and maintained in a rust-free greenhouse growth room set to 22°

C/18°C (day/night) with 16 h/8 h day/night photoperiod. At two-leaf

stage, the seedlings were inoculated with fresh urediniospores

suspended in SOLTROL-170 mineral oil (Philips Petroleum) at a

final concentration of 105 spores mL-1 using an inoculator pressurized

by an air pump. The inoculated seedlings were placed in a dark dew

chamber at 20°C overnight and then transferred back to the growth

room. The infection types (IT) were scored about 12 to 14 days after

inoculation, using 0-4 scale, where ‘0’ = no visible uredinia, ‘;’ =

hypersensitive flecks, ‘1’ = small uredinia with necrosis, ‘2’ = small to

medium-sized uredinia with green islands and surrounded by

necrosis or chlorosis, ‘3’ = medium-sized uredinia with or without

chlorosis, ‘4’ = large uredinia without chlorosis (Stakman et al., 1962).

For each IT, ‘+’ or ‘-’ was used to represent variations from the

predominant type. A ‘/’ was used for separating the heterogeneous IT

scores between leaves with the most prevalent IT listed first. For

plants with different ITs within leaves, a range of IT was recorded with

the most predominant IT was listed first. The IT scores were

converted to a 0-9 linearized scale referred as infection response

(IR) (Zhang et al., 2014). Genotypes with linearized IR scores of 0-4

were considered as highly resistant, 5-6 as moderately resistant, and

7-9 as susceptible.
Phenotypic data analysis

Phenotypic data were analyzed as described previously in (Gill

et al., 2021). In brief, a mixed model analysis was used to obtain the

best linear unbiased estimates (BLUEs) for phenotypic responses

from each of the four isolates using following equation:

yij =   μ   +  Ri +  Gj +  eij

where yij is the trait of interest, m is the overall mean, Ri is the

effect of the ith independent replicate/experiment, Gj is the effect of the

jth genotype, and eij is the residual error effect associated with the ith
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replication, and jth genotype. The broad-sense heritability (H2) for IR

was estimated for independent nurseries as follows:

H2 =  
s 2
g

s 2
g + s2

e =   nRep
where sg2 and se2 are the genotype and error

variance components, respectively. The linear mixed model analysis

was performed in META-R (Alvarado et al., 2020) based on the

‘LME4’ R-package (Bates et al., 2015) for the heritability estimation.

The Pearson’s correlations among the phenotype responses from four

races were estimated based on the BLUEs for each trait using ‘psych’

package in R environment (R Core Team, 2018). The visualization of

descriptive statistics was performed using R package ‘ggplot2’

(Wickham, 2016).
Genotyping, population structure, and
linkage disequilibrium

The 365 accessions used in the current study were previously

sequenced using the exome sequence capture assay, resulting in the

identification of around 7.3 million single nucleotide polymorphisms

(SNPs) (He et al., 2019). A VCF file containing a filtered set of about 3

million SNPs (http://wheatgenomics.plantpath.ksu.edu/1000EC ) was

used to extract the genotyping information. The extracted genotyping

data was subjected to quality control by removing the sites with > 75%

missing data, > 5% heterozygotes, and< 5%minimum allele frequency

(MAF), leaving 302,524 high-quality SNPs for downstream analysis.

The missing genotypes from selected SNPs were imputed by Beagle

v4.1 (beagle.27Jan18.7e1.jar; https://faculty.washington.edu/

browning/beagle/b4_1.html ) (Browning and Browning, 2007) using

parameters defined earlier (He et al., 2019) and the imputed set of

302,524 SNPs was used to perform GWAS.

Further, population structure and linkage disequilibrium (LD)

analyses were performed using a pruned set of 14,185 SNPs. The LD-

based pruning (r2 > 0.2) was performed in PLINK v1.90 using ‘indep-

pairwise’ function (Purcell et al., 2007). The population stratification

was assessed using parallel iterations of a Bayesian model-based

clustering algorithms STRUCTURE v2.3.4 (Pritchard et al., 2000;

Chhatre and Emerson, 2017) assuming ten fixed populations (K =1-

10) with ten independent runs for each K using a burn-in period of

10,000 iterations followed by 10,000 Monte-Carlo iterations. The

optimal value of K was identified using STRUCTURE HARVESTER

v0.6.9, which is based on an ad-hoc statistic-based approach (Evanno

et al., 2005; Earl and vonHoldt, 2012). Further, the principal

component analysis (PCA) was performed using 14,185 SNPs with

R package ‘SNPRelate’ (Zheng et al., 2012). The first two principal

components were plotted as a scatterplot to observe any stratification

based on various factors using R package ‘ggplot2’ (Wickham, 2016).

The linkage disequilibrium (LD) between SNPs was assessed as the

squared correlation coefficient (r2) of alleles. The LD decay distance

was estimated and visualized for the whole genome and individual

sub-genomes using ‘PopLDdecay’ program (Zhang et al., 2019a).
Marker-trait associations

Genome-wide association analyses were performed using a panel

of 365 accessions with 3,02,524 high-quality SNPs to identify marker-
frontiersin.org
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trait associations for reaction to four Pt isolates. Initially, we used two

different GWAS algorithms, including the mixed linear model (MLM)

(Yu et al., 2006) and a Fixed and random model Circulating

Probability Unification (FarmCPU) (Liu et al., 2016). The quantile-

quantile (QQ) plots were used to compare the two algorithms that

revealed that FarmCPU showed better control of false positives and

false negatives. Hence, FarmCPU was used to report GWAS results

for all four isolates. In brief, FarmCPU is an improved multiple-locus

model that controls false positives by fitting the associated markers

detected from the iterations as cofactors to perform marker tests

within a fixed-effect model. The FarmCPU was implemented through

Genomic Association and Prediction Integrated Tool (GAPIT)

version 3.0 in the R environment (Wang and Zhang, 2021), and the

first two principal components were included to account for the

population structure based upon visual examination of the scree plot

and DeltaK statistic from STRUCTURE analysis. The Bonferroni

correction-based threshold to declare an association as significant

generally proves too stringent as it accounts for all the SNPs in the

dataset rather than independent tests. Thus, most studies rely on an

exploratory threshold or a corrected Bonferroni threshold based on

independent tests (Halder et al., 2019; Pang et al., 2020; Kumar et al.,

2021a). In our case, we used an exploratory threshold of -log10(P) =

5.00 which is strict compared to the commonly used threshold of

-log10(P) = 3.00 and suitable for a multi-locus model, which generally

does not require multiple corrections (Zhang et al, 2019b).

Furthermore, we evaluated the effect of the accumulation of

resistant alleles for significant marker-trait associations (MTAs) on

the phenotypic performance of the genotypes. The panel of 365

accessions was grouped based on the number of resistant alleles for

significant MTAs carried by each accession. These groups were

compared using a pairwise t-test to assess the additive effect of the

resistant alleles on the disease reaction of respective isolates.
Candidate gene analysis

The candidate gene analysis was performed for selected stable

MTAs to identify the putative candidate genes. As the SNPs were
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physically mapped to Chinese Spring RefSeq v1.0, we used IWGSC

Functional Annotation v1.0 to retrieve high-confidence genes within

+/- 1 Mb of the significant MTAs. The wheat gene expression browser

(http://www.wheat-expression.com/ ) (Borrill et al., 2016) and a

thorough review of the literature was used to exclude unlikely genes

from the candidate regions.
Results

Phenotypic response of hexaploid wheat
accessions to leaf rust

To identify new sources of leaf rust resistance, a panel of 365

hexaploid wheat accessions was phenotypically characterized at the

seedling stage with the four Pt races. The panel displayed large

variations for the disease score ranging from immune response

(IT = 0, IR = 0) to highly susceptible response (IT = 4, IR = 9)

(Figure 1; Tables 1 and 2; Supplementary Tables S2, S3). The mean

linearized infection response scores of the wheat genotypes were 6.4,

6.3, 5.4, and 6.3 for Pt races TDBJQ, TBBGS, MNPSD, and, TNBJS,

respectively (Table 1; Supplementary Table S4). The distributions of

infection responses for all races except MNPSD were skewed towards

susceptible scores (IR >7). About 45-50% of the lines displayed

susceptible reactions against TDBJQ, TBBGS and, TNBJS, whereas

only 12.7% of lines were susceptible to MNPSD with majority of the

lines exhibiting a moderately resistance response (Figure 1, Table 2).

A total of 28 (9.8%), 59 (13.5%), 45 (12.5%) and 29 (8.1%) wheat lines

were highly resistant to TDBJQ, TBBGS, MNPSD and, TNBJS,

respectively (Table 2). Majority of the resistant accessions against

these Pt races were from the Americas followed by Europe, Asia and

Africa (Supplementary Table S5). Individually, TDBJQ, TBBGS,

MNPSD, and TNBJS had 30.5%, 29%, 28.6%, and 36.7% accessions

from the Americas (Supplementary Table S5). Further, there were 71

(19.5%) lines that displayed a resistance response (IR<=6) against all

four races (Supplementary Table S6). Out of these 71 resistant

accessions, 18.3% were of North American origin (Supplementary

Table S6). The proportion of lines showing resistance ranged from
FIGURE 1

Distribution of infection response (IR) against various races of Pt observed during the seedling evaluation of 365 accessions using boxplots and
histograms. The X-axis represents the four different Pt races and the Y-axis represents the IR in 0-9 scale.
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21.4% to 27.9% for the combination of three races and 29.9% to 46.6%

for the combination of two races (Table 3). Positive but weak

correlations were observed among the seedling plant infection

responses to the four Pt races and Pearson’s r value ranged from

0.16 to 0.39 (Supplementary Figure S1). The broad-sense heritability

of infection response for the Pt races was high (0.8), showing a large

portion of phenotypic variation being explained by the genotypic

component (Table 1).
Population structure and linkage
disequilibrium analysis

The STRUCTURE analysis used to infer the population structure

revealed two major subpopulations (P1 and P2 hereafter) in the panel

of 365 accessions based on the peak of DeltaK statistic (Figure 2A).

The subpopulation P1 comprised 82 accessions while P2 was

comparatively larger comprising the remaining 283 accessions.

Further, we assessed a relationship between the two subpopulations

and various characteristics including geographic origin, type, and

growth habit of the studied accessions. The subpopulation P1 mostly

represented the spring wheat accessions as 78 of the 82 accessions had

spring growth habit. In contrast, the subpopulation P2 comprised

accessions with both spring (216), winter (53), and facultative (14)

growth habits. Additionally, P1 mainly represented landraces (51)

with comparatively few cultivars (15); whereas, P2 includes cultivated

accessions with 144 cultivars and 69 landraces. Based on geographical

origin, P1 includes accessions from Asia (45) and Africa (23) with a

few accessions from Europe (3) and the Americas (7). In contrast, P2

includes majority of accessions from Europe (89) and the Americas

(95) and a good number of accessions from Asia (40) and Africa (37).
05
The principal component analysis also revealed two

subpopulations within the studied germplasm, with the first two

principal components explaining a genetic variation of 4.7% and

3.3%, respectively (Figures 2B, C). The first two principal components

were plotted to visually differentiate the accessions by origin and

growth habit. The PCA results showed a differentiation among the

accessions belonging to landrace or cultivar categories (Figure 2C).

However, we did not observe a clear differentiation based on growth

habit and geographic origin (Supplementary Figure S2). The linkage

disequilibrium (LD) decay was estimated based on LD value (r2) for

the whole genome as well as individual sub-genomes. For the whole

genome, the LD decay was found to be about 1.5 Mb (Supplementary

Figure S3). The LD decay for the three sub-genomes A, B, and D

revealed different patterns, with A and B showing smaller LD decay

distances as compared to the D sub-genome (Supplementary

Figure S3).
Genome-wide association analyses for leaf
rust resistance

The phenotypic data of Pt screening was subjected to GWAS to

identify genomic regions and SNP markers associated with leaf rust

resistance. The GWAS was performed using BLUEs calculated from

disease scores data for individual Pt races. We identified a total of 27

significant MTAs on twelve chromosomes: 1A, 1B, 2A, 2B, 2D, 3B,

4A, 4B, 4D, 5A, 5B, and 6B for response against the four Pt races.

Individually, we detected nine, nine, one, and eight significant MTAs

for responses against races MNPSD, TBBGS, TDBJQ, and TNBJS,

respectively (Figure 3, Table 4). The nine MTAs for race MNPSD

were identified on eight different chromosomes including 1A, 2B, 2D,

3B, 4A, 4B, 5A, and 5B (Figure 3, Table 4). The most significant MTA

for MNPSD (scaffold9496_550027; -log10P = 11.5) was observed on

chromosome 3B physically mapped to 456 Mb and had a SNP effect of

0.91 (Table 4). For response against TBBGS, a total of nine MTAs

were identified on seven different chromosomes: 1B, 2A, 3B, 4B, 5A,
TABLE 2 Percent distribution of the diversity panel accessions based on
their linearized seedling infection responses (IRs) against P. triticina races
TDBJQ, TBBGS, MNPSD, and TNBJS.

Leaf rust
race

% Highly
Resistant
(0-4)

% Moderately
resistant
(5-6)

% Suscep-
tible
(7-9)

TDBJQ 9.8 41.4 48.8

TBBGS 13.5 40.8 45.7

MNPSD 12.5 74.8 12.7

TNBJS 8.1 44.5 47.4
Range of IR score for each category is given in the parenthesis.
TABLE 1 Descriptive statistical analysis of the infection response (IR)
calculated from the infection types of the 365 wheat genotypes to P.
triticina races TDBJQ, TBBGS, MNPSD, and TNBJS.

Leaf rust race Mean Minimum Maximum SDa H2b

TDBJQ 6.4 0.4 8.7 1.48 0.82

TBBGS 6.3 0.3 9.0 1.83 0.82

MNPSD 5.4 0.0 8.5 1.57 0.88

TNBJS 6.3 0.7 9.0 1.80 0.89
aStandard Deviation.
bBroad-sense heritability.
TABLE 3 Number and percentage of lines resistant to different
combinations of the four P. triticina races.

Leaf rust race combi-
nation

Number of lines (R/
MR)

Percentage of
lines

TDBJQ+TBBGS+MNPSD
+TNBJS

71 19.5

TDBJQ+TBBGS+MNPSD 94 25.8

TDBJQ+MNPSD+TNBJS 101 27.7

TDBJQ+TBBGS+TNBJS 78 21.4

MNPSD+TBBGS+TNBJS 102 27.9

TDBJQ+TBBGS 109 29.9

TDBJQ+MNPSD 160 43.8

TDBJQ+TNBJS 112 30.7

MNPSD+TBBGS 170 46.6

TBBGS+TNBJS 111 30.4

MNPSD+TNBJS 167 45.8
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5B, and 6B (Figure 3, Tab le 4) . Of note , the MTAs

scaffold145719_3415472, scaffold20863_2950181, and scaffold81142-

6_3121151 identified on chromosome 1B, 2A, and 5B showed a

significant effect value of -0.81, 0.66, and -0.80, respectively.

Further, eight significant MTAs were detected for TNBJS mapped

on six different chromosomes including 1A, 1B, 2B, 2D, 3B, and 4A

(Figure 3, Table 4). Among these eight MTAs, the most significant

MTA (scaffold63719_1362898) was identified on chromosome 4A at

625 Mb and had a SNP effect value of 0.81. In contrast to the other

races, we identified only one MTA (scaffold38811_1402219) for isolate

TDBJQ mapped at 503 Mb on chromosome 4D (Figure 3, Table 4).

Furthermore, we evaluated the additive effect of resistant alleles of

significant MTAs on mean infection response from individual races.

As we identified only one MTA for TDBJQ, data from only three races

were used for this analysis. Overall, we observed a significant negative

association between the number of resistant alleles and infection

response for all three races suggesting that the accumulation of

resistant alleles in genotypes reduces infection response (Figure 4).

The accessions with two or more resistant alleles exhibited a lower

infection response against all individual races.
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Candidate gene analysis for significant
marker-trait associations

The significant MTAs were further analyzed to identify candidate

genes underneath or in close vicinity of the MTAs in the wheat

genome. Among the 27 MTAs, 20 were mapped in the proximity of

previously reported MTAs (Supplementary Table S7), QTLs or genes

for LR resistance, validating the importance of these regions. Thus, we

selected these regions for identifying putative genes of interest that

may play a role in LR resistance. Further, we investigated the local LD

decay in these 20 regions by constructing haplotype blocks. Out of the

20 regions, LD decay rate was found to be less than 1 Mb in 17 regions

(data not shown). Henceforth, a 1 Mb window around the associated

SNP was used to retrieve high-confidence genes using CS RefSeq v1.1.

In total, we identified 252 high confidence (HC) genes in +/- 1 Mb of

the significant MTAs (Supplementary Table S8). Further, a thorough

comparison with literature identified genes of interest that encode

known plant disease resistance proteins such as intracellular

nucleotide-binding and leucine-rich repeat (NLR) receptors,

proteins with kinase domains, ATP-binding cassette (ABC)

transporters, F-box-like domain-containing proteins, defensins,

receptor kinase proteins, and others (Supplementary Table S9).
B

C

A

FIGURE 2

Population structure analysis in panel of 365 wheat accessions based on the 3,02,524 SNPs. (A) Evanno plot of Delta-K statistic from the STRUCTURE
analysis. (B) Scree plot for first 10 components obtained from principal component analysis (PCA). (C) Scatterplot based on the first two components
(PC1 and PC2) from PCA.
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TABLE 4 Summary of the marker-trait associations (MTAs) identified for resistance to P. triticina races MNPSD, TBBGS, TDBJQ, and TNBJS.

Race SNP Chrom Positiona Alleleb P value Effectc -Log10(P)

MNPSD scaffold43155_283689 1A 32,381,168 T/C 3.9E-07 0.36 6.4

scaffold57495_4340875 2B 448,878,050 G/T 5.9E-08 -0.74 7.2

scaffold109282_20590799 2D 62,620,318 C/T 4.4E-09 -0.41 8.4

scaffold9496_550027 3B 456,405,981 T/C 3.2E-12 0.91 11.5

scaffold35818-1_1947539 4A 601,155,551 T/C 4.8E-06 0.28 5.3

scaffold6836_258869 4B 1,789,216 G/A 8.9E-07 0.32 6.0

scaffold31373_401257 5A 30,099,694 G/C 1.3E-06 0.41 5.9

scaffold33098_3932746 5B 347,928,790 T/C 1.1E-08 0.43 7.9

scaffold81325_356781 5B 586,845,078 C/T 9.0E-06 0.45 5.0

TBBGS scaffold35219_1114450 1B 17,885,002 G/T 3.4E-06 0.47 5.5

scaffold145719_3415472 1B 69,906,201 C/T 6.8E-08 -0.81 7.2

scaffold33664_2059905 2A 4,217,825 A/T 7.6E-07 0.40 6.1

scaffold57658-1_2072073 2A 547,134,074 T/C 7.0E-08 -0.47 7.1

scaffold22480_722430 3B 544,111,954 G/A 4.2E-08 0.46 7.4

scaffold73828-3_704067 4B 538,266,707 A/G 3.5E-06 0.33 5.5

scaffold20863_2950181 5A 514,152,049 T/A 3.4E-06 0.66 5.5

scaffold81142-6_3121151 5B 115,397,685 G/T 2.2E-08 -0.80 7.7

scaffold84762_1725496 6B 21,911,761 A/G 6.9E-07 -0.59 6.1

TDBJQ scaffold38811_1402219 4D 503,867,312 T/C 1.0E-05 0.70 5.0

TNBJS scaffold123808_1588140 1A 21,616,147 A/G 1.0E-05 -0.48 5.0

scaffold33401_3398330 1B 119,884,884 G/A 5.0E-06 0.63 5.3

scaffold56230_857271 2B 671,745,210 C/T 1.4E-07 0.28 6.8

scaffold98508-7_1879233 2B 768,104,692 T/C 2.0E-08 0.34 7.7

scaffold67556_44513 2D 37,367,713 T/C 4.7E-06 0.54 5.3

scaffold151621_1347043 3B 829,196,566 C/T 1.1E-08 -0.79 7.9

scaffold63719_1362898 4A 625,284,220 C/T 8.7E-11 0.81 10.1

scaffold163140-5_613860 4A 725,750,499 A/G 6.1E-06 -0.29 5.2
F
rontiers in Plant S
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aPosition is based on IWGSC RefSeq v1.0 (IWGSD, 2018).
bAllele nomenclature: Major allele/Minor allele.
cSNP effect.
B

C

D

A

FIGURE 3

Manhattan plots from genome-wide association studies showing the distinct peaks for identified MTAs in response to (A) MNPSD, (B) TDBJQ, (C) TBBGS,
and (D) TNBJS races of P. triticina. The red horizontal line represents the threshold used to report MTAs for each race.
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Discussion

Wheat germplasm collections serve as major resources for

enriching the wheat genetic diversity against various biotic and

abiotic stresses including pathogens such as rusts. Utilizing the

untapped value of these genetic repositories can help identify

potential novel sources of genes and QTLs and thereby advance the

course of broadening the resistance diversity against leaf rust.

Association studies have been successfully deployed in both bread

wheat and durum wheat for detecting genomic regions associated with

leaf rust resistance at seedling and adult plant stages (Aoun et al., 2016;

Gao et al., 2016; Li et al., 2016; Sapkota et al., 2019; Leonova et al., 2020;

Aoun et al., 2021). Foliar diseases of wheat like leaf rust are among the

most important and destructive diseases in the Northern Great Plains

of the US. Identifying novel sources of resistance against leaf rust is a

continuing challenge due to the constant evolution of Pt populations

causing the resistance breakdown of the existing Lr genes. In 2020, 15

virulence phenotypes were identified from 140 isolates in North

Dakota, Minnesota, and South Dakota with TBBGS (42.1%), MNPSD

(17.9%), and TNBJS (5.7%) being the most predominant phenotypes

(https://www.ars.usda.gov/midwest-area/stpaul/cereal-disease-lab/

docs/cereal-rusts/race-surveys/ ). Therefore, we evaluated a global

wheat diversity panel of 365 hexaploid wheat accessions for

identifying genetic loci harboring novel resistance genes for leaf rust

against four important and prevalent races namely, TDBJQ, TBBGS,

MNPSD, and TNBJS, at the seedling stage.

Our phenotypic evaluations identified a substantial number of

resistant accessions from both North and South America

(Supplementary Table S5) against the Pt races. Further, we identified

59 spring, 10 winter, and 2 facultative growth habit accessions out of the

71 resistant lines carrying race-specific resistance to all four Pt races

that are prevalent in the north-central region of the United States

(Supplementary Table S6). The majority of the accessions are cultivated

lines from the Americas (38%) followed by Europe (25.3%), Asia

(22.5%), and Africa (9.9%) (Supplementary Table S6). Leaf rust

resistance in a sizeable proportion (18.3%) of North American lines

could be due to their selection against Pt races predominant in North

America. Similar results were reported by (Gao et al., 2016), where high

resistance was observed in a sub-population consisting mostly North

American lines when screened against multiple Pt races common in

that region. The resistance response to Pt races, TNBJS and TBBGS
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showed a slightly higher correlation (0.39) (Supplementary Figure S1)

as compared to the other races which could be due to the similarities in

the virulence profile as both races are virulent on Lr1, Lr2a, Lr2c, Lr3,

Lr10, Lr21, Lr28, and Lr39. Out of the 71 resistant lines, 10 wheat

accessions displayed a highly resistant response (IR<= 4) against a

combination of three different races, and only 3 lines were highly

resistant (IR<= 4) against all four races (Supplementary Table S6).

These lines may contain one or more existing or novel genes and can

serve as a potential source for transferring this resistance into wheat

cultivars by the breeding programs.

For conducting GWAS, a high quality set of SNPs was used to

identify marker trait associations for reaction to four Pt isolates

(Supplementary Table S10). GWAS with FarmCPU algorithm

identified 27 MTAs for leaf rust resistance on the eleven wheat

chromosomes (Table 4). The BLUEs were not normally distributed,

so we tried BoxCox transformation to normalize the data. However,

the transformation did not improve the distribution of BLUEs

(Supplementary Figure S4), hence we used non-transformed data

for performing GWAS. Out of 27 MTAs, 20 were identified in the

vicinity of previously reported genes, MTAs, or QTLs associated with

leaf rust resistance. An important MTA (scaffold33664_2059905) was

identified for LR resistance against TBBGS which mapped around 4

Mb on the short arm of chromosome 2A. Interestingly, this region

(0.5 – 7.8 Mb) has been reported to harbor three known Lr genes

including Lr17 (Dyck and Kerber, 1977), Lr37 (Bariana and

McIntosh, 1993; Blaszczyk et al, 2004), and Lr65 (Wang et al., 2010;

Mohler et al., 2012; Zhang et al., 2021a), and a recently identified QTL

for LR resistance (Fatima et al., 2020) (Supplementary Table S7). A

long chromosomal fragment of 25-38 cM containing Lr37, Yr17, and

Sr38 was introduced from a wild wheat relative Aegilops ventricosa

and located on a 2NS/2AS translocation in a winter wheat cultivar

‘VPM1’ (Bariana and McIntosh, 1993). Lr37 is an adult plant

resistance gene but expresses a seedling resistance response of 2+ at

temperatures below 20°C (Park and McIntosh, 1994; Kolmer, 1996).

Recently this segment was also found to provide resistance against

wheat blast. In addition to Lr37, this MTA (scaffold33664_2059905)

colocalized with WMS636 (4.9 Mb), a distal flanking marker

associated with genes Lr17a (Bremenkamp-Barrett et al, 2008) and

the two makers, AltID-11(0.55Mb) and Alt-92 (0.61Mb), flanking

Lr65 (Zhang et al., 2021b). Since TBBGS is avirulent against Lr65 and

the identified MTA colocalized with markers tightly linked to Lr65, it
B CA

FIGURE 4

Linear regression plots of seedling response toward P. triticina races (A) MNPSD, (B) TBBGS and, (C) TNBJS to the number of favorable alleles of
identified MTAs for respective races.
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is highly likely that the locus identified in this study is identical to the

Lr65 locus. Zhang et al. (2021b) identified TraesCS2A02G001500

encoding NB-ARC and LRR domains as the most prominent

candidate gene for Lr65. On chromosome 4B, we identified an

MTA (scaffold73828-3_704067) associated with response to TBBGS

in the vicinity of two known Lr genes, Lr12 (Dyck et al., 1966) and

Lr31 (Singh and McIntosh, 1984). Lr12 is a race specific adult plant

resistance gene and is completely linked or identical to Lr31 which is a

seedling resistance gene that requires another complementary gene

Lr27/Sr2/Yr30 to function (Singh and McIntosh, 1984; Singh et al.,

1999; Mago et al., 2011; Singh and Bowden, 2011). However, we did

not identify any association in the 3BS region harboring Lr27 in

this study.

Three MTAs (scaffold35219_1114450, scaffold145719_3415472 and

scaffold33401_3398330) were identified on chromosome 1B against

TBBGS and TNBJS. Two known Lr genes, Lr33 (Dyck, 1987) and

Lr75 (Singla et al., 2017) were previously mapped on chromosome 1B.

Lr75 is an adult plant resistance gene and was first identified in the

Swiss cultivar ‘Forno’ (Schnurbusch et al., 2004; Singla et al., 2017). The

physical position of scaffold145719_3415472 approximately co-localized

with the physical location of GWM604, a distal flanking marker linked

to Lr75 on CS RefSeq v1.0 (Singla et al., 2017). Given that the

scaffold145719_3415472 was identified for seedling resistance to LR, it

is unlikely that this MTA represents Lr75. Another MTA on

chromosome 1B (scaffold33401_3398330) was mapped 9.2 Mb apart

from a diagnostic marker (BOBWHITE_C39153_131) linked to Lr33

(Che et al. , 2019). Interestingly, scaffold35219_1114450 ,

scaffold145719_3415472 and scaffold33401_3398330 were mapped

within 1 Mb of several previously reported MTAs (IAAV8117,

BS00083533_51, and BS00084722_51) for leaf and stripe rust

resistance (Zhang et al., 2021a) validating their role in response to Pt

(Supplementary Table S7).

We identified two MTAs (scaffold56230_857271 and scaffold98508-

7_1879233) for race TNBJS on chromosome 2BL close to WMS382, a

marker associated with Lr50 (Brown-Guedira et al., 2003). Lr50 was

transferred from wild wheat, T. timopheevi armeniacum and was

previously mapped on chromosome 2BL (Brown-Guedira et al.,

2003). Furthermore, scaffold56230_857271, and scaffold98508-

7_1879233 on 2BL mapped in close vicinity of previously reported

MTAs (AX-95006189 and AX-94481202) for LR resistance (Kumar

et al., 2020). AnotherMTA, scaffold151621_1347043wasmapped in the

vicinity of a recently reported MTA (AX-94671785) for LR resistance

(Vikas et al., 2022) (Supplementary Table S7).

I n r e s p o n s e t o MNPSD , w e d e t e c t e d a n MTA

(scaffold109282_20590799) which mapped on chromosome 2D near

aWPT-0330, a marker linked to a seedling resistance gene, Lr2 (Dyck

and Samborsk i , 1974 ; Ts i lo e t a l . , 2014 ) . S imi l ar l y ,

scaffold81325_356781 on chromosome 5B mapped ~ 8 Mbp apart

from marker BOBWHITE_REP_C50349_139 (Carpenter et al., 2017),

which is linked to Lr18 (Dyck and Samborski, 1968). Further studies

are needed to determine the relationship between the identified MTAs

and the postulated Lr genes in close proximity to MTAs. Joukhadar

et al. (2020) conducted a GWAS study using 2,300 hexaploid wheat

genotypes including worldwide landraces, cultivars and synthetic

backcross derivatives for adult plant resistance to leaf rust, stripe
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and stem rust across multiple Australian environments. Of the 365

wheat accessions used in our study, 257 genotypes overlapped with

the adult plant screening panel (Joukhadar et al., 2020); interestingly

no common resistant lines and significant marker-trait associations

for leaf rust were found among the two studies.

In addition, our analyses also identified two novel MTAs

(scaffold9496_550027 and scaffold57658-1_2072073) that were

located in genomic regions where no previously reported Lr genes

or MTAs have been reported in wheat (Supplementary Table S7).

Further, we also identified five putatively novel MTAs

(scaffold33098_3932746, scaffold57495_4340875, scaffold163140-

5_613860, scaffold151621_1347043, and scaffold56230_857271)

mapped at >10 Mb apart from the previously reported MTAs in

various GWAS studies (Supplementary Table S7). A total of three,

one, and three significant novel MTAs were identified for resistance

against MNPSD, TBBGS, and TNBJS, respectively. One of these seven

MTAs, scaffold57495_4340875, detected on chromosome 2B was

found near Lr35, (Kerber and Dyck, 1990) an APR gene expressing

at two-leaf stage. BCD260 (Seyfarth et al., 1999), a marker linked to

the Lr35, was about 30 Mb apart scaffold57495_4340875. Given Lr35

confers APR and the associated marker is far away from the identified

MTA, it is unlikely the same locus. Another MTA, scaffold163140-

5_613860 against race TNBJS was mapped on the region harboring

known gene Lr28 (McIntosh et al., 1982) on chromosome 4A.

However, TNBJS is virulent on Lr28 which eliminates the

possibility of association of Lr28 with scaffold163140-5_613860.

Further, scaffold163140-5_613860 was also mapped in the vicinity of

a recently reported MTA (AX-95106749) for adult plant LR resistance

(Vikas et al., 2022). Since, scaffold163140-5_613860 was identified for

seedling resistance to LR, it is unlikely that this MTA represents AX-

95106749. Similarly, scaffold56230_857271, scaffold151621_1347043,

and scaffold33098_3932746, identified on chromosomes 2B, 3B, and

5B represent a novel locus associated with TNBJS and MNPSD

respectively, as no previously reported Lr gene has been detected in

this region.

Next, we selected 17 significant MTAs based on LD decay rate of

less than 1Mbp to identify candidate genes with putative role in

disease resistance (Supplementary Tables S8, S9). The putative

candidate genes belonged to different disease resistance encoding

gene families such as leucine-rich repeats receptor-like kinases (LRR-

RLKs), nucleotide-binding site leucine-rich repeats (NBS-LRRs),

serine/threonine-protein phosphatase domain containing proteins,

ABC transporters, zinc finger proteins, and others (Supplementary

Table S9). Zinc finger domains have been identified in various disease

resistance genes from several crops, indicating their significant role in

conferring host-plant resistance (Epple et al., 2003; Ciftci-Yilmaz and

Mittler, 2008; Emerson and Thomas, 2009). Further, serine/

threonine-protein phosphatase domain containing proteins are

known to be involved in regulation of plant defense and stress

responses (Paıś et al., 2009; Máthé et al., 2019). LRR-RLKs and

ABC transporters have known to be involved in a wide variety of

developmental and defense-related processes (Torii, 2004; Krattinger

et al., 2009; Kang et al., 2011). Additionally, a few more genes

encoding putative proteins of interest including plant defensins,

germin-like proteins, E3 ubiquitin-protein ligase, cytochrome P450
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family protein, F-box proteins (FBPs), and others were identified

(Supplementary Tables S8, S9). These identified genes could serve as

valuable information in future gene cloning efforts of these

genomic regions.

In conclusion, we identified valuable sources of LR resistance

against multiple Pt races. The SNP markers reported as associated

with resistance can facilitate the deployment of these QTLs through

marker-assisted selection in breeding programmes.
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