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Height to crown base (HCB) is an important predictor variable for forest growth and

yield models and is of great significance for bamboo stem utilization. However,

existing HCB models built so far on the hierarchically structured data are for arbor

forests, and not applied to bamboo forests. Based on the fitting of data acquired

from 38 temporary sample plots of Phyllostachys edulis forests in Yixing, Jiangsu

Province, we selected the best HCB model (logistic model) from among six basic

models and extended it by integrating predictor variables, which involved evaluating

the impact of 13 variables on HCB. Block- and sample plot-level random effects

were introduced to the extended model to account for nested data structures

through mixed-effects modeling. The results showed that bamboo height, diameter

at breast height, total basal area of all bamboo individuals with a diameter larger than

that of the subject bamboo, and canopy density contributed significantly more to

variation in HCB than other variables did. Introducing two-level random effects

resulted in a significant improvement in the accuracy of the model. Different

sampling strategies were evaluated for response calibration (model localization),

and the optimal strategy was identified. The prediction accuracy of the HCB model

was substantially improved, with an increase in the number of bamboo samples in

the calibration. Based on our findings, we recommend the use of four randomly

selected bamboo individuals per sample to provide a compromise between

measurement cost, model use efficiency, and prediction accuracy.

KEYWORDS

random effects prediction, mean response, crown density, BAL, sample selection

strategy, response calibration, logistic function
1 Introduction

According to the 2022 Sixth Assessment Report by the Intergovernmental Panel on

Climate Change (IPCC), the concentration of CO2 in the atmosphere is now 410 ppm,

which is the highest level in recent years. Afforestation can mitigate climate change by

reducing atmospheric CO2 (Wang et al., 2013). Although the planet’s arboreal forest area is
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decreasing dramatically worldwide, the area of bamboo forests is

increasing substantially (FAO, 2010). Bamboo forests have distinct

characteristics from arboreal forests, including faster growth, higher

production efficiency, and faster maturity. Bamboo forests has

steadily increased their net carbon storage capacity in recent

decades, becoming a carbon sink in the subtropical region of

China (Chen et al., 2009; Wang et al., 2013) and playing an

important role in mitigating global warming (Yen and Lee, 2011;

Yen, 2015; Yen, 2016; Zhou et al., 2022).

The bamboo crown is an important part of the bamboo forest,

as it is where photosynthesis, transpiration, and other physiological

processes occur (Morataya et al., 1999). Bamboo crowns affect the

distribution of the biomass of various organs in bamboo forests, the

density and dry matter accumulation of bamboo stems, and the

quality of bamboo stems (Biging and Dobbertin, 1992; Chmura

et al., 2007). Bamboo crowns also reflect the vitality of bamboo

forests (Assman, 1970; Hasenauer and Monserud, 1996; Pan et al.,

2020), the quality of stems (Kuprevicius et al., 2014; Yang, 2017),

and wind resistance (Ancelin et al., 2004; Yang, 2017).

The ratio of crown length to bamboo height (CR) is an

important parameter for quantifying and determining bamboo

vitality, competition, stability of growth stage, and production

efficiency (Monserud and Sterba, 1996; Brown et al., 2004;

Kuprevicius et al., 2014). Bamboo CR can be measured directly

(Maguire and Hann, 1990) or determined by measuring total

bamboo height (H) and height to crown base (HCB) (Fu et al.,

2017; Sharma et al., 2017; Pan et al., 2020; Yang et al., 2020). HCB is

defined as the vertical height from the ground to the first living

branch (Hasenauer and Monserud, 1996). HCB reflects the

utilization efficiency of bamboo stems; that is, the smaller the

distance between bamboo branches and the ground, the lower the

availability of bamboo stems (Zhou, 1998; Sun et al., 2009; Li et al.,

2010; Sun, 2010). The stem is the most-utilized part of bamboo and

can be used as an industrial raw material to produce paper,

chopsticks, charcoal, etc. (Zhou, 1998; Dam et al., 2018).

Therefore, the study of bamboo HCB is of great practical

significance for nutrition research (photosynthesis and

transpiration of the bamboo canopy) and utilization research

(bamboo stem quality). However, while conducting bamboo

forest surveys or measurements, especially in dense bamboo

forests, it is difficult to distinguish bamboo crowns; thus, HCB

measurement is time-consuming, laborious, and costly (Temesgen

et al., 2005; Zhou et al., 2022). To avoid these difficulties, a model to

estimate HCB should be developed using measured data from a

sufficient number of bamboo plants.

HCBmodels for different tree species have been established, and

their construction methods vary from simple to complex (Wykoff

et al., 1982; Van Deusen and Biging, 1985; Walters and Hann, 1986;

Popoola and Adesoye, 2012; Rijal et al., 2012; Fu et al., 2017; Sharma

et al., 2017; Yang et al., 2020; Zhou et al., 2022). The predictor

variables used in these models include individual tree variables (H,

diameter at breast height; DBH; and competition-related variables)

and stand variables (stand density, base area, and site quality-

describing variables). The general forms of existing HCB models

are exponential and logistic (Fu et al., 2017; Sharma et al., 2017;
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Yang et al., 2020). Most existing HCB models use ordinary least

squares (OLS) regression for parameter estimation, and the

predictor variables included in the models are simple. Bamboo

forest growth differs significantly by block and sample plot nested in

the block, and repeated measurements of different bamboo

attributes might be made during the inventory. Using OLS to

estimate HCB models built on a hierarchical (nested) data

structure would lead to biased parameter estimation and invalid

hypothesis tests (West et al., 1984). Mixed-effects modeling for such

a nested data structure (e.g., bamboo culms within a sample plot,

sample plots within a block, multiple measurements on the same

plot or bamboo plant) provides the most robust method to avoid the

problems caused by a nested data structure, including problems

with spatial correlations. Mixed-effects modeling has been widely

used in forest modeling in recent years because of its high efficiency

and robustness (Fu et al., 2017; Sharma et al., 2017; Pan et al., 2020;

Yang et al., 2020; Zhou et al., 2021a; Zhou et al., 2021b). Only a few

HCB modeling studies exist, and they are based solely on arboreal

species (Fu et al., 2017; Pan et al., 2020; Yang et al., 2020) and use

one-level mixed-effects modeling. Here, we use two-level mixed-

effects modeling, which is novel in the field of bamboo forest

modeling. Considering the significant contribution of bamboo

forests to mitigating global warming and their importance in

balancing ecosystem function, building a bamboo HCB model

would be worthwhile.

To solve the problems (nested data structure, spatial

correlations, lack of intensive bamboo HCB research, etc.), this

study developed a mixed-effects HCB model by integrating DBH,

total basal area of all bamboo individuals with a diameter larger

than that of the subject bamboo (BAL), and canopy density (CD) as

the predictor variables and random effects at the block and sample

plot levels. Specifically, this study aimed to (1) develop a nonlinear

mixed-effects (NLME) model of bamboo HCB, (2) quantify the

impact of the predictor variables on HCB, and (3) select the

strategies that would be most suitable for a response calibration

of the two-level NLME HCB model. We used temporary sample

plot data of Phyllostachys edulis (moso bamboo) forests on the

Yixing Forestry Farm, Jiangsu Province, for our study. The methods

and results presented can provide an important reference for

efficient inventorying and effective management of bamboo forests.
2 Materials and methods

2.1 Study area and data

The study area is located in the Yixing State-owned Forest

Farm, Jiangsu, China (119° 41 ′ 38 ″ E, 31° 13 ′12 ″N) (Figure 1).
The forest farm is humid throughout the year and has a subtropical

monsoonal climate. It has an annual average temperature of 16.7 °C,

total precipitation of 1805.4 mm, 1807.5 h of sunshine, and 150

rainy days. It is the area with the richest bamboo forest resources in

Jiangsu Province.

From July to August 2022, 38 temporary sample plots (Figure 1)

were established on the forest farm and investigated. The area of
frontiersin.org

https://doi.org/10.3389/fpls.2023.1095126
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2023.1095126
each sample plot was 20 × 20 m. These sample plots represented

most of the forest structure, forest size, and vitality in the region.

The sample plots were distributed across five different blocks. Each

bamboo plant in the sample plots with a DBH greater than 5 cm was

measured for DBH, H, height to crown base (HCB), crown width,

canopy density, and age. A total of 1374 individuals were measured

and the measured stand and individual bamboo data are

summarized in Table 1. Because of the unique growth

characteristics of moso bamboo, with a vegetative cycle of two

years (on-year and off-year), the age could be expressed as “du”

(Tang et al., 2016), with one (I) “du” corresponding to 1–2 years,
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and 2 (II) and 3 (III) “du” corresponding to 3–4 and 5–6 years,

respectively (Tang et al., 2016). Figure 2 shows the general features

of bamboo in the study area. Figure 3 shows the scatter plots of HCB

versus potential predictor variables evaluated in our study.
2.2 Basic model

By consulting the relevant literature on HCB modeling, we used

six common mathematical functions as candidates for bamboo

forest modeling (Table 2). As we found that the DBH and BAL of
FIGURE 1

Location of sample plots nested in different block settings.
TABLE 1 Bamboo forest variables statistics.

Variable Min Max Mean SD

DBH (cm) 5.0 15.6 10.38 1.57

QMD (cm) 8.91 11.8 10.47 0.60

RD 0.44 1.44 0.9913 0.12

HCB (m) 1.4 14.3 6.88 1.87

H (m) 5 17.9 12.16 2.01

BAL (m2 ha−1) 0 70.58 23.44 14.62

A(du) 1 5 1.67 0.78

CW(m) 2.03 4.86 3.09 0.38

BA (m2 ha−1) 11.32 72.56 28.2 11.23

CD 0.4 0.87 0.65 0.16

N (culms ha−1) 1150 3750 2783 853
Diameter at breast height (DBH), quadratic mean DBH (QMD), relative diameter (ratio of DBH of an individual to QMD; RD), height to crown base (HCB), bamboo height (H), total basal area
of all bamboos with a diameter larger than that of the subject bamboo (BAL), bamboo age (A), crown width (CW), base area per hectare (BA), canopy density (CD), number of culms per hectare
(stand density; N), minimum (Min), maximum (Max), the average value (Mean), and standard deviation (SD).
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bamboo were significantly related to HCB, which was also proven

by a recent bamboo modeling study (Zhou et al., 2022), we used

these variables as predictor variables in the basic models. We then
Frontiers in Plant Science 04
used the entire data set to fit these models, and four versatile

evaluation indicators (Eqs. 1–4) were used to compare model fits.

The model with the best-fitting effect was selected for further

extension and analysis.

MD =
1
no

n

i=1
(HCBijk − dHCBijk) (1)

R2 = 1 −o
n

i=1
(HCBijk − dHCBijk)

2=o
n

i=1
(HCBijk −

o
n

i=1
HCBijk

n
)2 (2)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(HCBijk − dHCBijk)

2

s
(3)

TRE =o
n

i=1
HCBijk − dHCBijk

��� ���=on
i=1

dHCBijk (4)

where HCBijk is the height to crown base of the kth bamboo in

the jth sample plot in the ith block, ^HCBijk is the estimated value of

the kth bamboo in the jth sample plot in the ith block, and n is the

number of sample plots.

In addition to DBH, BAL, and bamboo size, location and

competition also affect HCB (Fu et al., 2017; Pan et al., 2020;

Yang et al., 2020). We therefore also considered bamboo size, stand

vitality, site quality, and competition. There were 12 predictor

variables in total, which can be grouped into the bamboo size and

stand vitality variables (H, CW, CD, bamboo age (A), stand density

(N), base area (BA), quadratic mean DBH; QMD), competition-

related variables (total basal area of all bamboo individuals with a

diameter larger than that of the subject bamboo (BAL) and relative
FIGURE 3

Scatter plots of HCB versus different predictor variables evaluated for their potential contribution to the HCB model of moso bamboo.
FIGURE 2

Features of moso bamboo in the sample plot.
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diameter (RD; the ratio of DBH of individual bamboo to QMD),

and site quality factors (slope degree, slope position, and humus

thickness), and their impact on HCB was evaluated.

We used graphical analysis and appropriate statistical tests to

select the variables that contributed the most to the HCB models

(Uzoh and Oliver, 2008). Root mean square error (RMSE) and

Akaike’s information criterion (AIC) were used to compare the

model variants created by different combinations and logarithmic

transformations of the predictor variables. All analyses were carried

out using the R nls function, and the model with the most attractive

fit statistics was selected for further extension using two-level

mixed-effects modeling.
2.3 Two-level NLME HCB model

We introduced random effects at both the block and sample plot

levels by considering the combination of each fixed parameter and

random effects and selecting the best combination using AIC and

Log Likelihood (LL). Spatial correlation appeared to have little

influence on the HCB model; thus, we disregarded this effect.

However, there was a significant heteroscedasticity problem,

which was reduced by using a variance-covariance matrix

(Davidian and Giltiman, 1995).

Ri = s 2G0:5
i GiG

0:5
i (5)

where Ri the variance-covariance matrix, s 2 the residual

variance (Gregoire et al., 1995), Gi is the diagonal matrix

describing heteroscedasticity and G i is the matrix describing the

spatial correlation. Therefore, G i is assumed to be an

identity matrix.

To reduce the heteroscedasticity problem in Eq. 5, we evaluated

three common variance functions (Eqs. 6–8) (Yang et al., 2020;

Zhou et al., 2022) and selected the best-performing one. AIC and LL

were used to evaluate the effects of the variance functions.

Var(xijk) = s 2 exp (2gHijk) (6)

Var(xijk) = s 2H2g
ijk (7)
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Var(xijk) = s 2(g1 +H2g2
ijk )

2 (8)

whereHijk is the height of the k
th bamboo in the jth sample plot in

the ith block and g , g1, g2 represents the parameter to be estimated.
2.4 Parameter estimation

All the basic models (Table 2) were estimated using the R nls

function, and the parameters of the mixed-effects model were

estimated using the R nlme function (R Core Team, 2020).
2.5 Response calibration/prediction with
NLME models

Based on the optimal mixed-effects model selected above, we

considered two cases: one with only the fixed parameters considered

(excluding random effects), termed the M response, and one with

local measurements used to estimate random effects, termed model

localization or model calibration (Calama and Montero, 2004; Yang

et al., 2009). When random effects cannot be estimated, the M

response must be used for HCB prediction. The empirical best

linear unbiased prediction (EBLUP) theory (Eq. 9) was used to

estimate random effects (Lindstrom and Bates, 1990; Liu and Cela,

2008).

û i = ŶZT
i (R̂ i + ZiŶZT

i )
−1ei

= ŶZT
i (R̂ i + ZiŶZT

i )
−1½yi − f(b̂ , u*i , xi) + Ziu*i � (9)

where û i is the estimated random effects; u*i is estimated value

by using the EPBLUmethod; f ( · ) is an NLME HCBmodel; b̂ is the

fixed effect parameters vector; xi is the vector of predictor variables;

Ŷ is the random effect variance-covariance matrix; R̂ i is variance-

covariance matrix; and Zi is ni � q dimensional design matrix of the

partial derivatives of the NLME HCBmodel f ( · ) with respect to the

random-effect ui. More detailed descriptions of the response

calibration can be found in Meng and Huang (2009) and Fu

et al. (2017).
TABLE 2 HCB candidate models considered (HCB: height to crown base; H: bamboo height; x: vector of bamboo variables; b, a, c, 1/m and W:
parameter vector; ∞: infinity).

Designation Mathematical Form Name of Function Value Range Source

M1 HCB = H½1 − expðbx)� Exponential ( −∞,H) Wykoff et al., 1982

M2 HCB = H½1 − expðbx)2� Exponential ( −∞,H) Van Deusen and Biging, 1985

M3
HCB =

H
½1 + exp (bx)�

Logistic (0,H) Walters and Hann, 1986

M4
HCB =

H

½1 + c exp (bx)�1=m
Logistic (0,H) Rijal et al. (2012)

M5 HCB = H½1 − cexp(bxW )� Exponential ( −∞,H) Rijal et al. (2012)

M6 HCB = H½a + exp(bx)� Exponential ( −∞,H) Popoola and Adesoye (2012)
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Different sample sizes can be used for response calibration or

random-effects estimation. Different sampling strategies produce

different random effect values, which affect the prediction accuracy

of NLME models. Previous forest modeling studies attempted to

identify the optimal sample size for estimating random effects in

several forestry NLME models (Meng and Huang, 2009; Yang et al.,

2009; Yang et al., 2020; Zhou et al., 2021a). However, none of these

studied the NLME HCBmodel of bamboo forests. As moso bamboo

was uniaxially scattered throughout the sample plot, with each

bamboo plant growing independently like a tree and many

individual plants per sample plot, we were able to evaluate four

different sampling strategies for predicting random effects:
Fron
1. 1–8 randomly selected bamboo plants per sample plot.

2. 1–8 bamboo plants with the largest DBH per sample plot.

3. 1–8 bamboo plants with average DBH per sample plot.

4. 1–8 bamboo plants with the smallest DBH per sample plot.
RMSE and total relative error (TRE) statistics were used to

evaluate the prediction performance of each sampling strategy. The

EBLUP theory was used to estimate the empirical Bayesian

estimates of random effects. To ensure the stability of the

estimates, each strategy was repeated 100 times, and the mean

RMSE and TRE statistics were computed for each strategy.
2.6 Model evaluation

The effectiveness of the NLME-HCB model could be evaluated

by using independent data. However, these data are laborious and

costly to gather. Thus, this study adopted the leave-one-out cross-

validation (LOOCV) approach (Fu et al., 2018; Yang et al., 2020;

Zhou et al., 2021a). We removed one sample plot at a time and fitted

the models using data from the remaining 37 sample plots. This

process was performed randomly 38 times to ensure that data from

each sample plot was excluded from the fitting. The statistical

indicators (Eq. 1–4) were computed using the predicted and

observed HCB values.
3 Results

3.1 Basic models

Using all the data, we fitted six candidate models (M1–6;

Table 1) and evaluated them using four statistical indicators (Eqs.

1–4). All the models had a similar fitting effect. However, the R2,

RMSE, and TRE of M3, M4, and M5 were slightly higher than those

of the other models (Table 3). Because the number of parameters of

M4 and M5 was higher than those of M3, we chose the simplest

model, M3, for further analyses.

HCBijk =
Hijk

½1 + e(b1+b2DBHijk+b3BALijk)� + xijk (10)

where HCBijk is the height to crown base of the kth bamboo in

the jth sample plot in the ith block, DBHijk is the DBH of the kth
tiers in Plant Science 06
bamboo in the jth sample plot in the ith block, BALijk is the BAL of

the kth bamboo in the jth sample plot in the ith block, b1, b2, b3 are
fixed parameters to be estimated, and xijk is the error term.
3.2 Expansion of the basic model

In addition to DBH and BAL, we considered other variables as

predictors that substantially affected HCB. The HCB model with

DBH, BAL, and CD provided the best fit (R2 = 0.5226, RMSE =

1.2905, TRE = 3.3892), indicating that only CD provided a better

fitting effect than the other variables evaluated. The use of only three

predictor variables in the model prevents over-parameterization

and non-convergence problems and still describes the majority of

HCB variations. The extended HCB model form is

HCBijk =
Hijk

½1 + e(b1+b2DBHijk+b3BALijk+b4CDij)� + xijk (11)

where HCBijk is the height to crown base of the kth bamboo in

the jth sample plot in the ith block, DBHijk is the DBH of the kth

bamboo in the jth sample plot in the ith block, BALijk is the BAL of

the kth bamboo in the jth sample plot in the ith block and CDij is the

CD of the jth sample plot in the ith block, b1, b2, b3, b4 are fixed

parameters to be estimated, and xijk is the error term.

We simulated the effects of DBH, BAL, and CD on HCB

estimation (Figure 4). HCB increased with increasing BAL, DBH,

and CD, with DBH having the greatest impact on HCB, followed by

BAL and CD.

The curves simulated using Eq. 11 (extended HCB model

without random effects) passed almost through the middle of the

data clouds (Figure 5), indicating that the model would be

biologically reasonable, and the parameters easily explained.
3.3 NLME HCB model

Random effects at both the block and sample plot levels were

introduced into the extended model form (Eq. 11) and different

parameter combinations were considered to determine the best

combination of fixed-effect parameters and random effects. The

NLME model using the combination of (Eq. 12) provided the

smallest AIC (AIC = 4946) and maximum LL (LL= -2465), with

the best-fit statistics (R2 = 0.6350, RMSE = 1.1285, TRE = 2.5742).
TABLE 3 Fit statistics of the basic models.

Model MB RMSE TRE R2

M1 0.0050 1.2970 3.4250 0.5178

M2 0.0050 1.2970 3.4250 0.5178

M3 0.0053 1.2948 3.4129 0.5194

M4 0.0053 1.2948 3.4129 0.5194

M5 0.0052 1.2949 3.3992 0.5194

M6 0.0044 1.2970 3.4244 0.5178
fr
MB, mean bias; RMSE, root mean square error; TRE, total relative error; and R2, coefficient
of determination.
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Among the three evaluated variance functions (Eqs. 6–8), the

exponential function (Eq. (6)) provided the smallest

heteroscedasticity (Table 4; Figure 6).

HCBijk =
Hijk

½1 + e(b1+m1i+(b2+m2i+m2ij)DBHijk+b3BALijk+b4CDij)� + xijk (12)

All the parameters of the OLS HCB model (Eq. 11) and NLME

HCB model (Eq. 12) were statistically significant (p< 0.05). The first

model (Eq. 11), with estimated parameter values, is provided below

(Eq. 13).

HCBijk =
Hijk

½1 + e(1:3922−0:1273DBHijk−0:0068BALijk−0:2494CDij)� + xijk (13)

where xijk eN(0, 1:2920), and similarly estimated NLME HCB

model is,

HCBijk =
Hijk

½1 + e(0:8407+m1i+(−0:07922+m2i+m2ij)DBHijk−0:0020BALijk−0:3440b4CDij)�
+ xijk

(14)
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wheremi =
m1i

m2i

" #eN 0

0

" #
, Ŷ 1 =

1:17e-02  −0:529

−0:529 5:84e-05  

 !( )

m2ij ∼N(0, 2:13e-04)

xijk ∼N(0,Ri = 1:3017G0:5
i GiG

0:5
i )

bG ij = diag½2:0048 exp (-0:0179Hij1),…, 2:0048 exp (-0:0179Hijk)�;

Gi = Ii
3.4 Response calibration/model prediction

The results of using different sampling strategies to estimate

random effects are shown in Figure 7. The different sampling

strategies showed almost identical trends in prediction accuracy.

With an increase in the number of samples, prediction accuracy

incrementally improved. The RMSE and TRE of three of the
FIGURE 4

Simulation of the impact of DBH, BAL, and CD on HCB. The HCB model used for this simulation is Eq. 11.
FIGURE 5

Base model (Eq. 11) simulation curves overlaid on scattered plot data (relationship between HCB and H).
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sampling strategies were smaller than those of the M response and

OLS models; the “smallest DBH” strategy was the exception (Eq.

11). When four randomly selected bamboo plants per sample plot

were used, the model produced the maximum reduction rates of

both RMSE and TRE, which were 22.53% and 16.54%,

respectively. With the inclusion of additional samples, the

prediction accuracy of the model incrementally improved, and

while the cost and time for measurement also substantially

increased. Thus, it would be reasonable to use four randomly-

selected bamboo plants per sample plot for calibration of the

NLME HCB model (Eq. 12).
3.5 Model evaluation

We used the same evaluation statistics (Eqs. 1–4) to compare

the prediction performance of the OLS HCB model (Eq. 10) (RMSE

= 1.2905; TRE=15.6863), NLME HCB model (Eq11) (RMSE =

1.1285; TRE=2.5742), and M response (RMSE = 1.2760;

TRE=15.3380) model. Relative to the OLS and the M response

models, the prediction statistics of the NLME HCB model were

substantially improved. When using 1–8 randomly-selected

bamboo plants to estimate the random effects at the block and

sample plot level, the RMSE decreased from 0.04% to 33.4% relative
Frontiers in Plant Science 08
to the M response of Eq. 12. This indicated that the random effects

at the block and sample plot levels had a large impact on the change

in HCB and their inclusion was justified.
4 Discussion

With growing concern regarding the increase in atmospheric CO2

concentration, researchers are increasingly paying attention to bamboo

as a resource for reducing atmospheric CO2 because of its substantial

advantages over woody plants, such as faster growth and carbon

sequestration rates, high production capacity, and multiple uses

(Zhang et al., 2014; Yen, 2015; Yen, 2016). Most studies emphasize the

economic value of bamboo but pay little attention to its physiological

growth characteristics, including HCB and CR dynamics, the

quantification of which provides support for carbon stock estimation

and global warming mitigation (Song et al., 2013; Yen, 2016).

In this study, among the six candidate models that were chosen

from previous HCB modeling studies (Fu et al., 2017; Sharma et al.,

2017; Yang et al., 2020; Zhou et al., 2022), the logistic model showed

the best fitting effect (Table 3), which is consistent with HCB

modeling studies on arboreal species (Fu et al., 2017; Pan et al.,

2020; Yang et al., 2020). Moreover, the simulation curve of the model

overlays the data, which is biologically reasonable, and the parameters

are solved and easily explained (Figure 5). The two-level NLME HCB

model developed with four predictor variables (H, DBH, BAL, and

CD) was able to describe a large proportion of HCB variations, even

though the data pattern was largely scattered (Figure 3). Some studies

have used DBH and H as predictor variables in an HCB model (Rijal

et al., 2012; Fu et al., 2017). Because DBH is the most important and

accurate variable in forestry inventory, it has been widely used in

forest modeling, including HCB modeling (Rijal et al., 2012; Fu et al.,

2017; Zhou et al., 2021a). H reflects the vitality and competition of the

plant. BAL reflects competition among individual bamboo plants in
TABLE 4 AIC and LL of different variance functions applied to NLME
HCB model (AIC, Akaike Information Criteria; LL, loglikelihood).

Variance function AIC LL

None 4945.80 -2464.90

Eq. 6 4944.60 -2463.30

Eq. 7 4945.53 -2463.76

Eq. 8 4945.53 -2463.76
B C

D E

A

FIGURE 6

Residual distribution of the NLME HCB (Eq. 12) with and without using the variance functions. (A) OLS, (B) variance function not included, (C–E)
different variance functions (Eqs. 6–8) included, respectively.
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the sample plot and is widely used in various forest models (Zhang

et al., 2017; Yang et al., 2020; Zhou et al., 2021a; Zhou et al., 2022).

Our study also found a significant positive relationship between CD

and HCB (R2 = 0.5226, RMSE = 1.2905, TRE = 3.3892) (Figure 4);

however, the inclusion of CD was not attempted in previous HCB

modeling studies, making our study novel. The inclusion of CD is

necessary because it reflects the site quality and vitality of bamboo

forests, with a larger CD meaning a denser bamboo crown, stronger

bamboo vitality, and better site quality. The positive relationship

between CD and HCB means that the larger the CD, the more

bamboo in the forest, and the darker the environment under the

bamboo forest, which is not suitable for photosynthesis,

transpiration, and other physiological activities (Lawlor, 2009).

Better growth and survival of bamboo would increase HCB, which

improves adaptation to the environment.

Many researchers have found that stand density significantly

contributes to HCB variation (Toney and Reeves, 2009; Russell and

Weiskittel, 2011; Popoola and Adesoye, 2012). Stand density also

reflects the competition among individual bamboo plants within a

stand. The HCB of moso bamboo with the same DBH was larger in

more-crowded bamboo forests. However, our study showed no

significant impact of stand density on HCB. This may be due to the

competition between individual bamboo plants, as reflected by BAL

and CD.

We also evaluated other variables; however, their impact on the

HCB model was minor. Although adding an increasing number of

variables might slightly improve the accuracy of the model, introducing

too many variables certainly leads to model non-convergence and

biased parameter estimation caused by excessive parameterization (Fu

et al., 2013; Fu et al., 2017). Including too many predictor variables in

the HCB model raises inventory cost and takes longer.

Relative spacing may influence tree height and crown base

relationships (Saud et al., 2016; Pan et al., 2020). However, this

did not apply to our study because the bamboo stand density did

not change much during a given period. While annual bamboo

shoots may lead to a change in stand density, the bamboo in this

study was cut down 4–6 years after it was planted, minimizing long-

term stand density changes.
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Our model introduced both block- and plot-level random

effects, which largely reduced unexplained variance and improved

the fitting accuracy of the model relative to the OLS model

(Figure 6). The addition of random effects added to DBH

produced the best results, which could be attributed to the DBH

difference reflected in the data and expressed by the random effect.

Calibrating the mixed-effects model using small samples is

important for applying this model in forestry. A small number of

samples per stand could be used to determine the impact variables that

significantly affect HCB (Liu and Cela, 2008). Calibration using various

sample sizes has been evaluated and discussed in most studies (Calama

and Montero, 2004; Yang et al., 2009; Campo et al., 2010; Fu et al.,

2017; Ye et al., 2019; Yang et al., 2020; Zhou et al., 2021a). The

prediction accuracy of the model can be significantly improved by

increasing the number of samples (Figure 7). In our study, the use of

four randomly selected bamboo plants resulted in the highest reduction

rates of RMSE and TRE. Although increasing the number of samples

led to improved prediction accuracy, it also increased inventory costs

and lead time. Thus, considering these as limiting factors of the

inventory, four randomly selected bamboo plants per sample plot are

optimal for calibrating the mixed-effects model, as this provides a

desirable compromise betweenmeasurement cost, model use efficiency,

and prediction accuracy (Yang et al., 2009; Fu et al., 2017; Ye et al.,

2019; Yang et al., 2020; Zhou et al., 2021a).

As pointed out in Section 1, the study of bamboo HCB is of

great practical significance for research on bamboo forest

photosynthesis, transpiration, and utilization. The proposed

model (Eq. 12) predicts the HCB of bamboo forests under similar

site conditions (stand density of 1000–4000 stem/ha, the slope of 0–

15). It can provide a reliable basis for bamboo forest management,

such as describing changes in the bamboo canopy, bamboo forest

fire potential, and carbon storage (Ancelin et al., 2004; Kuprevicius

et al., 2014; Yang, 2017).

Some studies have pointed out that there may be errors in HCB

measurements (caused by the crew, equipment failure, etc.) (Omule,

1980; Fuller, 1987; Rencher and Schaalje, 2008; Gertner, 2011). In

building the model, it was assumed that the response variable is

random and error-free, and when any error is associated with this
FIGURE 7

Root mean squared error (RMSE) and total relative error (TRE) for the ordinary least square (OLS) model (Eq. 11), mean response of NLME model (M
response) (Eq. 12), and NLME model (Eq. 12) calibrated using four sampling strategies.
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and the predictor variables, the resulting model may be significantly

biased. However, we did not consider these potential sources of

error in our study. If any variable in Eq. 11 contains significant

errors, a new modeling method, such as error-in-variable modeling,

must be developed to address this problem. Studies have shown that

altitude and climate factors may also have a significant impact on

HCB (Yang, 2017; Zhou et al., 2021a), which needs to be considered

in future studies.
5 Conclusion

In this study, the NLME HCB model containing three

individual bamboo variables (H, DBH, and total BAL or CD) was

developed by introducing random effects at the block and sample

plot levels. The NLME HCB model described the majority of HCB

variations. The HCB increased with increasing DBH, CD, and BAL,

with DBH having the greatest impact, followed by height and CD.

There was a significant impact of the block- and sample plot-level

random effects on HCB, and consequently, the NLME HCB model

was significantly improved relative to the basic and expanded

models without random effects (the fixed-effects model or M

response). The NLME HCB model used in this study can be

applied after calibration with random effects estimated using at

least four randomly selected individual bamboo plants per sample

plot and can accurately predict the HCB of bamboo forests under

identical site conditions. The model will provide a reliable basis for

bamboo forest management, such as describing changes in the

bamboo canopy, bamboo forest fire potential, and carbon storage.
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Campo, F. C., Tomé, M., Soares, P., and Diéguez-Aranda, U. (2010). A generalized
nonlinear mixed-effects height–diameter model for Eucalyptus globulus l. @ in
northwestern Spain. For. Ecol. Manage. 259, 943–952. doi: 10.1016/j.foreco.2009.11.036

Chen, X., Zhang, X., Zhang, Y., Booth, T., and He, X. (2009). Changes of carbon
stocks in bamboo stands in China during 100 years. For. Ecol. Manage. 258, 1489–1496.
doi: 10.1016/j.foreco.2009.06.051
Chmura, D. J., Rahman, M. S., and Tjoelker, M. G. (2007). Crown structure and
biomass allocation patterns modulate above ground productivity in young loblolly pine
and slash pine. For. Ecol. Manage. 243 (6), 219–230. doi: 10.1016/j.foreco.2007.02.027

Dam, J. E., Elbersen, W., and Montano, C. D. (2018). Bamboo production for
industrial utilization. Perennial Grasses Bioenergy Bioprod, 175–216. doi: 10.1016/
B978-0-12-812900-5.00006-0

Davidian, M., and Giltiman, D. M. (1995). Nonlinear models for repeated
measurement data (New York: Chapman and Hall). Available at: https://doi.org/10.
1201/9780203745502.

FAO (2010). Global forest resources assessment 2010: Main report Vol. 163 (Rome,
Italy: FAO Forestry Paper; FAO).

Fu, L., Liu, Q., Sun, H., Wang, Q., Li, Z., Chen, E., et al. (2018). Development of a
system of compatible individual tree diameter and aboveground biomass prediction
models using error-In-Variable regression and airborne LiDAR data. Remote Sens. 10
(2), 325. doi: 10.3390/rs10020325

Fu, L., Sun, H., Sharma, R. P., Lei, Y., Zhang, H., and Tang, S. (2013). Nonlinear
mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia
lanceolata) in south-central China. For. Ecol. Manage. 302, 210–220. doi: 10.1016/
j.foreco.2013.03.036
frontiersin.org

https://doi.org/10.1016/j.foreco.2004.07.067
https://doi.org/10.1016/j.foreco.2004.03.029
https://doi.org/10.1016/j.foreco.2004.03.029
https://doi.org/10.1016/j.foreco.2004.03.029
https://doi.org/10.1139/x03-199
https://doi.org/10.1016/j.foreco.2009.11.036
https://doi.org/10.1016/j.foreco.2009.06.051
https://doi.org/10.1016/j.foreco.2007.02.027
https://doi.org/10.1016/B978-0-12-812900-5.00006-0
https://doi.org/10.1016/B978-0-12-812900-5.00006-0
https://doi.org/10.1201/9780203745502
https://doi.org/10.1201/9780203745502
https://doi.org/10.3390/rs10020325
https://doi.org/10.1016/j.foreco.2013.03.036
https://doi.org/10.1016/j.foreco.2013.03.036
https://doi.org/10.3389/fpls.2023.1095126
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2023.1095126
Fu, L., Zhang, H., Sharma, R. P., Pang, L., and Wang, G. (2017). A generalized
nonlinear mixed-effects height to crown base model for Mongolian oak in northeast
China. For. Ecol. Manage. 384, 34–43. doi: 10.1016/j.foreco.2016.09.012

Fuller, W. A. (1987). Measurement error models (New York: John Wiley and Sons).

Gertner, G. Z. (2011). The sensitivity of measurement error in stand volume
estimation. Can. J. For. Res. 20 (6), 800–804. doi: 10.1139/x90-105

Gregoire, T. G., Schabenbeger, O., and Barrett, J. P. (1995). Linear modeling of
irregularly spaced, unbalanced, longitudinal data from permanent-plot measurement.
Can. J. For. Res. 25, 137–156. doi: 10.1139/x95-01

Hasenauer, H., and Monserud, R. A. (1996). A crown ratio model for Austrian
forests. For. Ecol. Manage. 84, 49–60. doi: 10.1016/0378-1127(96)03768-1

Kuprevicius, A., Auty, D., Achim, A., and Caspersen, J. P. (2014). Quantifying the
influence of live crown ratio on the mechanical properties of clear wood. Forestry 87,
449–458. doi: 10.1093/forestry/cpt006

Lawlor, D. W. (2009). Musings about the effects of environment on photosynthesis.
Ann. Bot. 103 (4), 543–549. doi: 10.1093/aob/mcn256

Li, Z., Song, D. Q., and Wang, F. S. (2010). Effects of different site conditions on
under-branch height of Phyllostachys pubescensmazel.World Bamboo Rattan 8, 16–19.

Lindstrom, M. J., and Bates, D. M. (1990). Nonlinear mixed effects models for
repeated measures data. Biometrics 46 (3), 673–687. doi: 10.2307/2532087

Liu, W., and Cela, J. (2008). Count data models in SAS. Stat Data Anal., 371–2008.

Maguire, D. A., and Hann, D. W. (1990). Constructing models for direct prediction
of 5-year crown recession in southwestern Oregon Douglas-fir. Can. J. For. Res. 20 (7),
1044–1052. doi: 10.1139/x90-139

Meng, S. X., and Huang, S. (2009). Improved calibration of nonlinear mixed-effects
models demonstrated on a height growth function. For. Sci. 55 (3), 238–248.
doi: 10.1093/forestscience/55.3.238

Monserud, R. A., and Sterba, H. (1996). A basal area increment model for individual
trees growing in even-and uneven-aged forest stands in Austria. For. Ecol. Manage. 80,
57–80. doi: 10.1016/0378-1127(95)03638-5

Morataya, R., Galloway, G., Berninger, F., and Kanninen, M. (1999). Foliage biomass
- sapwood (area and volume) relationships of Tectona grandis L.F. and Gmelina
arborea roxb.: Silvicultural implications. For. Ecol. Manage. 113 (2–3), 231–239.
doi: 10.1016/S0378-1127(98)00429-0

Omule, S. A. Y. (1980). Personal bias in forest measurement. For Chronicle 56 (5),
222–224. doi: 10.5558/tfc56222-5

Pan, L., Mei, G., Wang, Y., Saeed, S., Chen, L., Cao, Y., et al. (2020). Generalized
nonlinear mixed-effect model of individual TREE height to crown base for Larix
olgensis Henry in northeast China. J. Sustain. For 39 (262), 1–14. doi: 10.1080/
10549811.2020.1734026

Popoola, F. S., and Adesoye, P. O. (2012). ). crown ratio models for Tectona grandis
(Linn. f) stands in osho forest reserve, oyo state, Nigeria. J. For. Environ. Sci. 28 (2), 63–
67. doi: 10.7747/JFS.2012.28.2.063

R Core Team (2020). R: A language and environment for statistical computing
(Vienna, Austria: R Foundation for Statistical Computing). Available at: http://www.R-
project.org/.

Rencher, A. C., and Schaalje, G. B. (2008). Linear models in statistics (New York:
John Wileyand Sons).

Rijal, B., Weiskittel, A. R., and Kershaw, J. A. (2012). Development of height to
crown base models for thirteen tree species of the north American acadian region. For
Chronicle 88 (1), 60–73. doi: 10.5558/tfc2012-011

Russell, M. B., and Weiskittel, A. R. (2011). Maximum and largest crown width
equations for 15 tree species in Maine.Northern J. Appl. For 28 (2), 84–91. doi: 10.1093/
njaf/28.2.84

Saud, P., Lynch, T. B., Anup, K. C., and Guldin, J. M. (2016). Using quadratic mean
diameter and relative spacing index to enhance height-diameter and crown ratio
models fitted to longitudinal data. Forestry 89 (2), 215–229. doi: 10.1093/forestry/
cpw004

Sharma, R. P., Vacek, Z., Vacek, S., Podrázský, V., and Jansa, V. (2017). Modelling
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