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Melatonin is a pleiotropic signaling molecule that reduces the adverse effects of

abiotic stresses, and enhances the growth and physiological function of many

plant species. Several recent studies have demonstrated the pivotal role of

melatonin in plant functions, specifically its regulation of crop growth and yield.

However, a comprehensive understanding of melatonin, which regulates crop

growth and yield under abiotic stress conditions, is not yet available. This review

focuses on the progress of research on the biosynthesis, distribution, and

metabolism of melatonin, and its multiple complex functions in plants and its

role in the mechanisms of metabolism regulation in plants grown under abiotic

stresses. In this review, we focused on the pivotal role of melatonin in the

enhancement of plant growth and regulation of crop yield, and elucidated its

interactions with nitric oxide (NO) and auxin (IAA, indole-3-acetic acid) when

plants are grown under various abiotic stresses. The present review revealed that

the endogenousapplication of melatonin to plants, and its interactions with NO

and IAA, enhanced plant growth and yield under various abiotic stresses. The

interaction of melatonin with NO regulated plant morphophysiological and

biochemical activities, mediated by the G protein-coupled receptor and

synthesis genes. The interaction of melatonin with IAA enhanced plant growth

and physiological function by increasing the levels of IAA, synthesis, and polar

transport. Our aim was to provide a comprehensive review of the performance of

melatonin under various abiotic stresses, and, therefore, further explicate the

mechanisms that plant hormones use to regulate plant growth and yield under

abiotic stresses.
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Introduction

Abiotic stresses continuously reduce the growth and yield of

different crops (Zhang et al., 2021a; Ahmad et al., 2022a). The

growing of plants in altered environments often creates abiotic

stresses such as salinity, drought, heat, cold, and heavy metals. The

imposition of abiotic stresses can certainly affect plants ’

morphophysiological, biochemical, and molecular activity, from

seed germination to maturity, and, eventually, cause higher losses

in plant yields (Rahman et al., 2022). It has been demonstrated that

about 70% of staple food crop yields are adversely affected by abiotic

stresses (Khan et al., 2015). These stresses induce numerous changes

in the metabolism of plants by producing reactive oxygen species

(ROS), which in turn disturb homeostasis and ion distribution in

plants (Raza et al., 2022). Improving the response of plants to these

stresses is particularly important for sustainable plant production

(Gonzalez Guzman et al., 2022). Over the last few decades,

tremendous efforts have been made by research scientists to

enhance plant growth and yields via the extensive application

of chemicals.

Melatonin (N-acetyl-5-methoxytryptamine) is an important

bioactive compound in vascular plants, discovered in 1995 (Dubbels

et al., 1995). Initially, it was regarded as a powerful antioxidant that

had different beneficial roles in various stages of plant growth and

development (Sheshadri et al., 2018), such as germination (Zhang

et al., 2017), root elongation (Arnao and Hernández-Ruiz, 2019),

photosynthesis (Li et al., 2017), and leaf senescence (Wang et al.,

2022). It has also been a plant hormonewith an important role in

enhancing the growth and regulation of plants (Arnao and

Hernández-Ruiz, 2019). It is found in various plants tissues, such as

the seeds, roots, leaves, and fruits (Zhang et al., 2017). Thepotential

role melatonin could play in the enhancement of plant growth

andregulation has been widely investigated by scientific researchers

(Sun et al., 2020).

Recently, it has been reported that melatonin increases the fatty

acid content and enhances the profile of alkaloids in coffee and

soybean plants (Ramakrishna et al., 2012). However, the

mechanism of enhanced fatty acid production via melatonin is far

from clear and needs to be further investigated in different crops

under various abiotic stresses. As a multiregulatory molecule,

melatonin regulates the expression of genes involved in plant

growth and development (Byeon and Back, 2014), redox reactions

(Tomas and Montes, 2005), abiotic stress resistance (Boccalandro

et al., 2011), sucrose metabolism [cell wall invertase (CWIN) and

sucrose synthase (SUSY)] (Solfanelli et al., 2006; Dutta et al., 2013;

Payyavula et al., 2013), and specialized metabolism [phenylpropanoid

metabolism: phenylalanine ammonia lyase (PAL), chalcone synthase

(CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H),

dihydroflavonol reductase (DFR), and anthocyanidin synthase

(ANS)] (Weeda et al., 2014). The phytomelatonin receptor PMTR1

mediates the signaling of ROS, regulates homeostasis or, and delivers

a dark indication to promote night stomatal closure (thus avoiding

water loss during the night), thereby facilitating plant adaptation to

dry land environments (Li et al., 2020). However, what genes

participate in the signaling pathway to promote night stomatal

closure, and how these genes evolved to facilitate plant adaptation

to dry land environments, is still far from clear. In addition, because of
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the limitation of experimental methods, there is still no definitive

evidence showing that melatonin function in plant organs is

significantly enhanced at night as compared with the daytime (Van

Tassel et al., 2001; Xie et al., 2022). The findings of various studies

related to the role of phytomelatonin are of huge significance (Zhang

et al., 2021b). Melatonin gives plants resistance to drought (Wang

et al., 2014), salt (Hernández et al., 2015), osmotic stress (Zhang et al.,

2013), high temperature (Byeon and Back, 2014), cold (Bajwa et al.,

2014), and copper stress (Posmyk et al., 2009a).

It has been confirmed that the application of exogenous

melatonin can mitigate the effects of abiotic stresses in various

crops (Cao et al., 2019). Lower doses of melatonin (i.e., <10 mM)

have been shown to promote seed germination and lateral root

formation in cucumber plants under cold and drought stresses

(Zhang et al., 2013; Simlat et al., 2018). In corn seedlings,

melatonin increased drought resistance by alleviating oxidative

damage and drought-induced photosynthetic inhibition (Ye et al.,

2016). The pretreatment of melatonin also increased endogenous

melatonin and inhibited the up-regulation of NCED1 genes, but

selectively up-regulated catabolic genes, such as ABA80x1 and

ABA80x3, and abscisic acid (ABA)-related synthesis genes, and

decreased the accumulation of ABA and induced stomatal

reopening in corn under drought stress (Li et al., 2021). In apple

trees, melatonin maintained drought tolerance by regulating the

concentrations of ABA metabolism and stomatal behavior (Li

et al., 2015). In barley, the exogenous supply of melatonin increased

photosynthetic carbon assimilation by improving the antioxidant

defense of organelles under low temperature or drought stresses (Li

et al., 2016). To date, most of the components in melatonin-related

signaling pathways remain unclear and need to be further

investigated, especially in plants under abiotic stresses (Zhou et al.,

2020). In previous studies, melatonin has been shown to be present at

high concentrations in several crops (e.g., wheat, rice, barley, corn,

grape, oats, and tobacco), and in popular beverages (e.g., tea, coffee,

and wine) (Arnao and Hernández-Ruiz, 2009; Ramakrishna et al.,

2012; Arnao and Hernández-Ruiz, 2013; Shi et al., 2015a). However, it

is still unknown if the response of melatonin in plants under various

stresses is the same across different crops.

Therefore, in this manuscript we have aimed to provide a

comprehensive review of advances in our knowledge of the roles,

biosynthesis, distribution, metabolism, functions, and mechanisms of

melatonin in regulating the growth and development of various crops

under abiotic stresses. In addition, the interactions of melatonin with

other phytohormones, such as nitric oxide (NO) and auxin (IAA,

indole-3-acetic acid), are analyzed.
Melatonin biosynthesis

The biosynthetic pathway of melatonin in plants is well

documented (Park et al., 2012; Kang et al., 2013). The concept of

plant-synthesized melatonin was first introduced in an isotope tracer

study (Murch et al., 2000). The biosynthetic pathway of

phytomelatonin in vascular plants is thought to be similar to that

in animals, although there is much debate surrounding this (Murch

et al., 2000; Tan et al., 2013; Zhao et al., 2019). Based on a number of

findings, tryptophan is considered as the initial substrate of melatonin
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synthesis and is involved in four enzymatic steps catalyzed by at least

six enzymes, including tryptophan decarboxylase (TDC), tryptophan

hydroxylase (TPH), tryptamine 5‐hydroxylase (T5H), serotonin N‐

acetyltransferase (SNAT), N‐acetylserotonin methyltransferase

(ASMT), and caffeic acid O‐methyl transferase (COMT) (Back

et al., 2016; Sun et al., 2021) (Figure 1). The two required processes

that contribute to tryptophan are hydroxylation and decarboxylation

for melatonin biosynthesis. They have been identified in herbivorous

plants (Park et al., 2012). Auxin [indole-3-acetic acid (IAA)], which

occurs naturally in plants, is biosynthesized from tryptophan via four

proposed routes, that is, indole-3-acetaldoxime (IAOx), indole-3-

pyruvic acid (IPyA), indole-3-acetamide (IAM), and tryptamine

(TAM). The biosynthesis pathway of auxin from tryptophan is still

unknown and needs to be further investigated in different crops under

abiotic stresses. Serotonin is catalyzed via SNATs to form N-

acetylserotonin, which is then methoxylated by ASMTs to form

melatonin (Wang et al., 2017). Serotonin performs various

important functions in plants, such as growth regulation and stress

defense (Figure 1). Currently, the presence and function of serotonin

in plants is an increasingly popular research area, but to date, there

are only minor studies available about the functions of serotonin

under different abiotic stresses. It has been shown that in rice TDC-

catalyzed decarboxylation of tryptophan is the first step in melatonin

biosynthesis, followed by T5H‐catalyzed hydroxylation (Park et al.,

2012). The T5H gene is considered an essential gene for serotonin

biosynthesis. It has been found that suppression of the T5H gene in

transgenic rice increases the melatonin concentration, suggesting that

melatonin concentration in plants is not proportional to serotonin

concentration (Sun et al., 2021). The increase in melatonin

concentration and the up-regulation of the T5H gene for serotonin

biosynthesis under abiotic stresses in other crops are still far from

being clearly understood.
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abiotic stresses

The distribution, metabolism, and complex
functions of melatonin in plants under
abiotic stresses

The immunohistochemical localization of melatonin has

demonstrated that the compound is present in the primary roots

and seeds of sunflower and Arabidopsis seedlings (Pelagio-Flores

et al., 2012; Mukherjee et al., 2014; Figure 2). The accumulation of

melatonin was observed in the oily body of plants, including in the

cotyledon cells of both control and salt-treated seedlings, thus

showing the effect of long-distance signaling, induced by sodium

chloride (NaCl) stress, from roots to cotyledons (Mukherjee et al.,

2014). A study found that NaCl stress induced slower mobilization in

the cotyledons of sunflower seedlings (David et al., 2010). NaCl stress

caused melatonin accumulation in seedling cotyledons, and, as a

result, reduced degradation of the oily body. The mobilization of the

oily body and the activity of fatty acid-metabolizing enzymes are

considered to mitigate the effects of salt stress (David et al., 2010). The

accumulation of melatonin in cotyledons played a positive

antioxidative role, in that it maintained the activity of the enzymes

required for lipid mobilization during seedling growth (David et al.,

2010). The accumulation mechanism of melatonin in the oily body of

plants, including in the cotyledon cells of control and salt-treated

seedlings, is less well documented, and further studies are required so

that, ultimately, antioxidant defense systems of various crops can

be improved.

Moreover, melatonin can trigger the accumulation of nitric oxide

via its up-regulation of nitrate reductase expression and down-

regulation of S-nitrosoglutathione reductase (GSNOR) expression.
FIGURE 1

The regulatory role of biosynthetic melatonin under stress conditions. Tryptophan is the initial substrate of melatonin synthesis and is divided into four
enzymatic steps catalyzed by six enzymes: tryptophan decarboxylase (TDC), tryptophan hydroxylase (TPH), tryptamine 5‐hydroxylase (T5H), serotonin N‐
acetyltransferase (SNAT), N‐acetylserotonin methyltransferase (ASMT), and caffeic acid O‐methyl transferase (COMT). Serotonin is catalyzed via SNAT to
form N-acetylserotonin, which is further methoxylated by ASMTs to form melatonin and acts as a growth regulator stress defense molecule. The T5H
gene improves serotonin biosynthesis. TDC catalyzes decarboxylation of tryptophan, and it is considered the first step of melatonin biosynthesis.
Suppression of the T5H gene increases the concentration of melatonin in rice plants and increases yield. Auxin produced naturally in plants is
biosynthesized from tryptophan in four ways: indole-3-acetaldoxime (IAOx), indole-3-pyruvic acid (IPyA), indole-3-acetamide (IAM), and tryptamine
(TAM).
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The application of melatonin can alter the levels of NO in plants, and,

as a result, affect the level of endogenous melatonin. The molecular

interaction mechanisms of melatonin and NO are indispensable to

different physiological activitiesin plants. However, the molecular

interaction mechanisms of melatonin with NO in plants is still far

from clear (He and He, 2020). Melatonin can mediate the crosstalk

between NO and ethylene and regulate the ripening of fruits via N-

nitrosomelatonin (NOMela) signaling (Mukherjee, 2019). In pear

fruits, for example, melatonin reduced ethylene production and

delayed post-harvest senescence by regulating NO synthesis (Liu

et al., 2019). A recent discovery identified that the interaction

between melatonin and NO resulted in the formation of NOMela

(i.e., N-nitrosomelatonin), and the promised roles in plant

morphophysiological activity (Martı ́nez-Lorente et al., 2022).

However, owing to the limited available knowledge on melatonin,

the interaction of these two compounds and fruit ripening occurring

via NOMela in various plants are poorly understood when these

plants are under abiotic stresses. In addition, melatonin induces the

accumulation of IAA via NO and, as a result, affects the formation of

adventitious roots in tomato seedlings (Xie et al., 2022). Melatonin

also regulates the transport and distribution of auxin, in turn

promoting the formation of adventitious roots in tomato plants

(Wen et al., 2016).

Melatonin has been widely shown to promote plant growth and

photosynthetic activity under salt stress (Wang et al., 2016; Figure 2).

Melatonin greatly reduced the decrease in chlorophyll a (Chl a),

chlorophyll b (Chl b), and total chlorophyll (Chls) contents caused by

salt stress, and promoted the net photosynthetic rate (Pn) and
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chlorophyll degradation caused by salt stress in plants (Kudoh and

Sonoike, 2002; Yin et al., 2019). Previous studies found that the

contents of Chl a, Chl b, and Chls were much higher in plants treated

with melatonin than in untreated plants, indicating that melatonin

facilitated both chloroplast gene expression and protein content

turnover to promote the accumulation of chlorophyll content (Suo

et al., 2015; Siddiqui et al., 2019). Melatonin can act as an antioxidant

agent, reducing ROS activity and, as a result, inhibits chlorophyll

degradation (Ma et al., 2018; Figure 2). There are studies that indicate

that melatonin reduces the degradation of chlorophyll by down-

regulating the expression of chlorophyll degradation-related genes

during methyl jasmonate-induced senescence (Wang et al., 2019).

However, more studies are needed to identify the various genes and

measure gene expression involved in reducing chlorophyll

degradation in various plants under abiotic stresses.
Interaction of melatonin with nitric oxide

It is essential to study the physiological responses of crops

regulated by the interactions between melatonin and NO to ensure

higher yields of these crops. Melatonin and NO affect several

physiological processes, such as root growth, mitigation of iron

deficiency, and aging (Kaya et al., 2020; Figure 3). The interactions

between the two compounds regulate many genes involved in

hormone synthesis and, as a result, change the levels of

phytohormones (Zhu et al., 2019; Singhal et al., 2021). Interactions
FIGURE 2

The distribution and regulatory roles of an exogenous supply of melatonin in mitigating abiotic stresses are divided into three parts. (i) Melatonin
distributed in the roots and seeds. Sodium chloride (NaCl) induces slow mobilization of enzymes and reduces the enzymes’ activity in the oily body of
plants in seedlings and roots and, as a result, alters salt stress. The supply of exogenous melatonin enhances the level of plant antioxidants and enzyme
activities. (ii) Salt stress reduces chlorophyll content, but exogenous melatonin improves chlorophyll content, chloroplast gene expression, and protein
content, and, as a result, enhances photosynthesis activity and chlorophyll accumulation. In addition, it enhances plant Pn and CE and, as a result, inhibits
chlorophyll degradation. The improvement of all these traits enhances plant growth and metabolism. (iii) Drought stress causes ROS in plants, which
induces Ch degradation and Ch reduction. The application of endogenous melatonin during drought reduces ROS and O2

– content and, as a result,
increases chlorophyll content and plant growth physiological function. CE, carboxylation efficiency; Ch, chlorophyll; Pn, net photosynthetic rate; ROS,
reactive oxygen species.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1108507
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ahmad et al. 10.3389/fpls.2023.1108507
between melatonin and NO have recently been identified under

conditions of plant stress (Arnao and Hernández-Ruiz, 2018). A

previous study demonstrated that melatonin triggers the endogenous

accumulation and synthesis of NO, which acts as an antioxidant and

regulates other plant defense mechanisms (Okant and Kaya, 2019).

The G protein-coupled receptor, as a melatonin receptor, mediates

hydrogen peroxide (H2O2) signaling transduction, which is in turn

involved in melatonin-induced stomatal closure in Arabidopsis plants

(Wei et al., 2018; He and He, 2020). An example of this is melatonin

promoting the production of NO in tomato plants when they were

exposed to alkaline stress. In this situation, NO could be a

downstream signal that plays an crucial role in the tolerance

enhanced by melatonin in tomato plants grown under alkaline

stress (Liu et al., 2015). Melatonin, together with NO, promotes

plant growth and physiological function. The current review

suggests that the mechanism of melatonin’s interaction with NO in

plants under abiotic stress is still not clearly understood, and the

various genes activated as a result of that interaction have not yet

been identified.
Frontiers in Plant Science 05
Melatonin regulated the transport and
distribution of auxin

Previous studies of the relationship between melatonin and auxin

have focused on their chemical similarity (Arnao and Hernández-

Ruiz, 2021). Melatonin promotes growth by increasing the

concentration of IAA, synthesis of IAA, and polar IAA transport

(Wang et al., 2016; Figure 4). Various studies have also identified the

ability of melatonin and auxin to regulate root and shoot growth and

to promote photosynthesis in a similar way (Tan et al., 2019; Mao

et al., 2020). A study of plants under drought stress showed that

melatonin encouraged the plants to produce more IAA, which helped

to increase plant growth and yield. During the maturity stage, the

concentration of melatonin decreased, and the increase in IAA

concentration was negligible (Ahmad et al., 2022). This decrease in

IAA concentration seen in plants in the later growth stages is due to

the decreased demand for IAA (Jia et al., 2020). Another similar study

showed that the content of IAA decreased from the early growth to

the maturity stages in plants under drought stress. Thus, it is
FIGURE 3

The interactive role of melatonin with nitric oxide (NO) in mitigating abiotic stress. The application of melatonin in tomato plants enhances NO content.
NO further triggers antioxidant enzymes activity in plants, which shows resistance to abiotic stress and enhances root growth, iron deficiency, aging, and
the expression of synthesis genes. In addition, G protein as a melatonin receptor enhances root growth, iron deficiency, aging, and the expression of
synthesis genes mediates hydrogen peroxide (H2O2) signaling transduction that is involved in a melatonin-induced stomatal closure in Arabidopsis.
FIGURE 4

The interactive role of melatonin with auxin (IAA, indole-3-acetic acid) in mitigating the effects of drought stress. The application of melatonin increases
IAA content in plants. Melatonin and IAA promote plant photosynthetic activity in the same way. When plants are under drought stress, melatonin
interacts with IAA at the maturity stage, and increases plant growth and yield.
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conceivable that plants need higher levels of IAA during seedling

growth. Plants require certain hormones during their growth and

development. Melatonin boosts the IAA levels in plants, and IAA

plays an indispensable role in the growth of plants and their

development from germination to maturity.
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abiotic stress

Salinity

Publishedexamples of melatonin mitigating abiotic stresses in

various species of cropplants are shown in Table 1. Salt stress

decreased chlorophyll content and photosynthetic activity and

enhanced ROS activity and photoperiod regulation (Yin et al.,

2019). Melatonin improved thegrowth of green bean seedlings

under salt stress, increased photosynthetic activity, and mitigated

the oxidative damage caused by ROS by improving antioxidant

defense systems in plants (Hasanuzzaman et al., 2020; Elsayed

et al., 2021). Multiple studies indicate that melatonin plays a vital

role in adaptive responses to salt stress in various plant species (Chen

et al., 2018; Liang et al., 2018). However, most of these studies are

observational and the findings have not been supported by

physiological and molecular research (Liu et al., 2020). In rice,

melatonin enhanced salt stress by enabling K+ retention (a vital

component of plant tissue tolerance mechanisms) in the roots of

plants, and by enabling the process that required Oryza sativa (OS)

respiratory burstoxidase homolog F (OsRBOHF)-dependent ROS

signaling to trigger stress-responsive genes, which in turn increased

the expression of K+ uptake transporters (particularlyOsHAK5) in the

tips of roots (Liu et al., 2020). Potassium is an essential element for

plant growth and development, and its reduction has been observed

under salt stress (Chen et al., 2018; Liu et al., 2019). These results

correspond with the findings of Huang et al. (2019), who reported

that NaCl-induced respiratory burst oxidase homolog (RBOH)-

mediated production of H2O2 may be essential for stress signaling

and plant adaptation to saline stress. However, studies on the role of

OsRBOHF-dependent ROS signaling in the activation of stress-

responsive genes and increased expression of K+ uptake

transporters in the root tip of plants are lacking, as they have not

been conducted on a large variety of plants under abiotic stresses. In

addition, further research should focus on identifying responsive genes

from OsRBOHF-dependent ROS signaling to increase the uptake of K+

transporter ions in the root tips of different crops under various stresses

(Yu et al., 2018).

Melatonin also promotes ethylene biosynthesis, and the

application of melatonin was found to strongly induce MYB108A

and ACS1 genes during grape berry ripening (Xu et al., 2017). The

MYB108A and ACS1 genes, which perform their function as

transcription and essential genes that participate in the production

of ethylene, were induced by the application of melatonin (Dong et al.,

2011). ACS genes are considered a significant target under abiotic

stresses to regulate ethylene production in plants. The salt-responsive

gene VviACS1 has been identified as being responsible for ethylene

production in plants (Xu et al., 2019). In addition, the ACSa and ACS1

genes are significant in that they are considered a primary target for

salt tolerance in corn and tobacco (Cao et al., 2006; Lee and Back,

2016). Melatonin, combined with 1-aminocyclopropane-1-carboxylic

acid (ACC, an ethylene precursor), improved salt tolerance in

grapevine plants. In addition, ethylene production was involved in
TABLE 1 Published examples of melatonin in mitigating abiotic stress in
various crops.

Abiotic
stress Crop

Response of plants
treated with melatonin
under abiotic stress

References

Salt stress

Rice Increased salt tolerance
Liu et al.,
2020

Tobacco Increased salt tolerance
Cao et al.,

2006

Melon Increased salt tolerance
Castañares
and Bouzo,

2019

Limonium
bicolor

Increased salt tolerance Li et al., 2019

Grapevine Increased salt tolerance Xu et al., 2019

Drought
stress

Corn Increased drought tolerance Li et al., 2021

Apple Increased drought tolerance Li et al., 2015

Heat
stress

Arabidopsis Increased heat tolerance
Hernández
et al., 2015

Tomato Increased heat tolerance
Wang et al.,

2018

Cold
stress

Corn Increased cold stress tolerance
Posmyk et al.,

2009b

Cucumber Increased cold stress tolerance
Kolodziejczyk
et al., 2016

Arabidopsis Increased cold stress tolerance
Shi et al.,
2015b

Bermuda
grass

Increased cold stress tolerance
Khalid et al.,

2022

Heavy
metal
stress

Wheat Increased heavy metal tolerance
Zeng et al.,

2022

Tomato Increased heavy metal tolerance
Hasan et al.,

2019

Arabidopsis Increased heavy metal tolerance
Yin et al.,
2022

Rice Increased heavy metal tolerance
Maharajan
et al., 2022

Other
stresses

Malus
hupehensis

Increased UV stress tolerance
Wei et al.,

2019

Mediterranean Increased UV stress tolerance
Nawaz et al.,

2022

Alpine species Increased UV stress tolerance
Nawaz et al.,

2022
UV, ultraviolet light.
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melatonin-induced salt tolerance (Xu et al., 2019). The mechanism and

function of MYB108A, ACS1, ACSa, and VviACS1 genes in ethylene

production due to the melatonin induction under abiotic stresses in

different plants is largely unknown.
Drought

Drought stress negatively affects plants’morphophysiological and

biochemical activity, leading to a decrease in crop yields (Singh et al.,

2015; Chen et al., 2019). Drought stress is the cause of oxidative stress

and damages plant cells, and, via the higher accumulation of ROS,

decreases stomatal closure and photosynthetic activity, and results in

a deterioration of antioxidant defense systems. The accumulation of

ROS is considered a threat to the survival of plant cells as it leads to

electron leakage, lipid peroxidation, and subsequent membrane

injury, as well as damaged protein and nucleic acid contents

(Maksup et al., 2014). To prevent this damage, plants have

developed various strategies to regulate their growth under different

environmental stresses (Kim and Kim, 2020). As a new plant growth

regulator, melatonin is thought to be involved in drought stress

responses (Zhang et al., 2015; Li et al., 2021). Drought stress

reduced morphological activity in plants, including that pertaining

to leaf size and the relative water conductivity of corn seedlings.

Meanwhile, both leaf size and relative water conductivity were

significantly enhanced by the application of melatonin (Li et al.,

2021). A similar result was revealed by Ye et al. (2016), who reported

that melatonin improved the shoot dry weight and leaf size of corn

seedlings. In plants, physiological processes in leaves, such as

photosynthesis, respiration, and transpiration, are maintained by

stomata, the opening and closing of which are controlled by

complex signal transduction pathways and water balance. In the

presence of drought stress, plants regulate their cellular moisture

content by regulating stomatal closure and reducing their

transpiration rate. However, the density of stomata significantly

increases with the contraction of guard cells, and deteriorates under

drought stress (Xue et al., 2021). In general, the application of

melatonin has shown resistance against the deterioration of stomata

cells and increased its length and width under drought stress in corn

(Li et al., 2021). The contrasting results in the study by Li et al. (2015),

however, demonstrated that drought stress did not reduce stomatal

cell density in apples. Nevertheless, the exogenous supply of

melatonin maintained high turgor pressure and kept the stomata

open. The difference in the findings might be because of the

differences in the regulatory mechanism of melatonin in different

plant species (Li et al., 2021). The present review demonstrates that

melatonin’s quantity, performance, and mechanisms of action differ

from plant species to plant species, but fewer morphophysiological

responses have been documented under drought stress in

different plants.
Heat stress

High levels of heat stress increase endogenous melatonin

concentrations and, thereby, enhance thermotolerance, because of

the potent antioxidant capacity of melatonin in plants (Liang et al.,
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2018; Ahammed et al., 2019). A previous study on Arabidopsis plants

demonstrated that melatonin increased the seed germination rate

from approximately 30% to 39% under heat stress (Hernández et al.,

2015). It has been confirmed by the correlation between the synthesis

of phytomelatonin and seed germination that phytomelatonin is

synthesized during the germination of cucumber seeds, and that its

synthesis peaks 14 hours after germination (Zhang et al., 2014).

Nevertheless, further research on various crops is still needed.

Melatonin improved germination capability by promoting soluble

sugar utilization and synthesis of new proteins, and increased amylase

and a-amylase activities in melon and Limonium bicolor seeds

(Castañares and Bouzo, 2019; Li et al., 2019). Recent research has

revealed the mechanisms by which melatonin significantly mitigates

the effects of heat stress on plant seeds. First, because of the high

potency of melatonin, it maintained high viability and germination

capacity (Hernández et al., 2015). When plants are exposed to high

levels of heat stress, the activities of antioxidant enzymes, such as

superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT),

are increased (Wang et al., 2022), and melatonin inhibits the

accumulation of H2O2 (Marta et al., 2016). Melatonin treatment

up-regulates genes, such as GA20ox and GA3ox, which are

involved in gibberellin (GA) biosynthesis. The content of GA,

particularly GA4, is also increased by melatonin. However,

unfortunately, melatonin down-regulates the expression of the

essential gene NECD2, which is mainly involved in ABA

biosynthesis (Zhang et al., 2014; Li et al., 2019). The mechanisms of

the up-regulation and down-regulation of gene expression should be

studied further in plant cells under heat stress.

Furthermore, heat stress can deteriorate the balance between

antioxidants, resulting in ROS accumulation and causing

peroxidative damage to cell membranes (Sun et al., 2021). The

exogenous application of melatonin in tomatoes and rice reversed

the adverse effects of heat stress on plant shoot and root growth

(Wang et al., 2018). Melatonin also reduced the damage caused by

heat stress by regulating redox homeostasis, and modulating NO and

polyamine biosynthesis in tomato seedlings (Jahan et al., 2019). In

Arabidopsis plants, the heat shock protein HSP90 and heat shock

factors (i.e., HSFA2 and HSFA32) contributed to the alleviation of

melatonin-mediated heat stress (Shi et al., 2015a). A study

demonstrated that HSPs prevented the cellular proteins of

tomatoes, grown under heat stress, from refolding or degrading

denatured proteins (Xu et al., 2016). Heat shock proteins (HSPs)

can isolate and store unfolded proteins. In addition, HSPs can act as

chaperones by protecting cells against stresses that can induce protein

denaturation and block protein aggregation, and by enhancing the

survival of cells and, in turn, of the cellular activity during high levels

of heat stress. However, our current understanding of how heat shock

proteins and heat shock factors relate to melatonin-mediated heat

stress is limited, and in need of further investigation.
Cold stress

Cold stress is one of the major abiotic stresses that reduces crop

growth and yield, especially in temperate zones and highly elevated

areas (Bhat et al., 2022). Plants exposed to cold stress experience

changes in various physiological, molecular, metabolic, and
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biochemical activities. Examples include variations in membrane

fluidity, metabolism homeostasis, and enzyme activity (Wu et al.,

2022). Photosynthesis is a pivotal plant metabolism process, and one

that is highly sensitive to cold stress. This is because low temperature

hinders many major components of photosynthesis (Dahal et al.,

2012). Chlorophyll content decreases under cold stress, leading to

chlorosis in leaves (Kaura et al., 2022). The chlorophyll content of

leaves provides important information about the effectiveness of

physiological processes in plants in plants (Gitelson et al., 2003).

Plants treated with melatonin had a higher concentration of

chlorophyll than non-treated plants under cold stress (Yang et al.,

2022). Plant growth at low temperatures induces the excessive

production or inefficient deactivation of ROS, such as H2O2,

superoxide anions (i.e., O2
–), and hydroxyl radicals (i.e., OH),

which in turn can cause injury to plants (Ghaderian et al., 2015). In

addition, ROS accumulation causes the oxidation of proteins and

peroxidation of lipids within plant cells, resulting in reduced plant

growth (Nahar et al., 2015). For self-defense against oxidative injury

caused by ROS, plants have evolved effective antioxidant systems to

scavenge ROS, such as SOD, POD, and CAT, as well as non-

enzymatic antioxidants, including proline and glutathione (Erdal

et al., 2015; Ghaderian et al., 2015). Several studies have

demonstrated that exogenous melatonin can stimulate plant growth

in various plants, such as corn, and can promote the germination of

cucumber seeds under cold stress (Posmyk et al., 2009b;

Kolodziejczyk et al., 2016). In Arabidopsis plants, melatonin

modulates leaf senescence against cold stress (Shi et al., 2015b).

Melatonin applications enhance the resistance of Bermuda grass to

cold stress by improving cell membrane stability, and by regulating

photosynthesis and metabolic activity (Khalid et al., 2022). Melatonin

played a role as both a first-line defense and internal sensor of

oxidative stress in a study of different species of plants (Iqbal and

Khan, 2022). For example, in barley, exogenous melatonin can

enhance photosynthetic carbon assimilation by improving the plant

antioxidant defense systems of organelles under cold stress (Li et al.,

2016). Therefore, the improved performance of primed seeds in terms

of seedling growth and germination might be the result of improved

antioxidant defense systems under cold stress (Cao et al., 2022).

However, an understanding of the growth of waxy corn and other

crop seeds primed with melatonin in response to cold stress is still

limited (Cao et al., 2022).
Heavy metal stress

Certain heavy metals, such as zinc (Zn), cadmium (Cd), iron (Fe),

and copper (Cu), are essential for plant growth and metabolism, but

their accumulation to higher levels can negatively affect plant growth

and yield. Heavy metal stress inhibits plant photosynthetic activity, the

activity of enzymes involved in the Calvin cycle, and carbohydrate

metabolism (Hasan et al., 2019). In addition, higher levels of ROS

accumulation during heavy metal stress inhibit root growth and

promote leaf senescence in turn, chloroplasts (Zeng et al., 2022).

Previous studies have demonstrated that plants treated with

melatonin can improve their growth and yield by improving their

morphophysiological activities under heavy metal stress conditions.

The production of endogenous melatonin in plants can be triggered by
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tolerance (Menhas et al., 2022). Melatonin enhanced plant metabolism

and antioxidant enzymes activity, and triggered the ascorbate–

glutathione cycle to counteract the effects of heavy metal stress

(Moustafa-Farag et al., 2020). In wheat seedlings, exogenous

melatonin increased endogenous melatonin and, as a result,

enhanced root and shoot growth under cadmium (Cd) toxicity (Zeng

et al., 2022). The increase of endogenous melatonin mitigates cadmium

toxicity by balancing H2O2 homeostasis and activating antioxidant

defense systems in wheat (Ni et al., 2018). Melatonin effectively

mitigated Cd toxicity by improving H+-ATPase activity and

phytochelatin and glutathione content, and by facilitating Cd

sequestration in tomato plant cells (Hasan et al., 2015). Melatonin

impacted sulfur metabolism, which plays an important role in plant

tolerance against Cd stress (Menhas et al., 2022). In tomatoes,

melatonin deficiency reduced the sulfur concentration and increased

the accumulation of cadmium (Hasan et al., 2019). The overexpression

of melatonin biosynthetic enzymes genes improved heavy metal stress

in Arabidopsis plants (Yin et al., 2022). Similarly, in rice, various gene

families, such as NRAMP, HMA, MTP, YSL, and ZIP, are involved in

heavy metal stress (Maharajan et al., 2022). These genes reduced the

uptake of heavy metals and accumulation in rice grains (Peris-Peris

et al., 2017). Several studies investigating the role of melatonin in plant

morphophysiological activity, antioxidant capacity, and biosynthetic

genes in various crops have recently been undertaken. However, the

role of melatonin in improving these activities, as well as the

transduction pathways of different genes in cotton, rice, and other

crops under heavy metal stress, is still unknown.
Other stresses

Ultraviolet (UV) radiations negatively effects plant growth and

development, andtheir intensity continuously increasing caused by

rapid ozone layer depletion. The higher levels of UV radiation can

substantially reduce crop productivity by hindering plant PSII,

photosynthetic activity, nucleic acids, and biomass accumulation

and portioning (Bera et al., 2022). Plants exposed to higher levels of

UV radiation have reduced expression and synthesis of key

photosynthetic proteins, such as chlorophyll a/b binding proteins

(Khudyakova et al., 2019). Melatonin plays a vital role in mitigating

the negative effects of UV radiation on crop productivity. It has been

demonstrated that exogenous melatonin in Malus hupehensis and

Nicotiana sylvestris plants facilitates the UV-induced damage to DNA

and UV radiation induced by ROS (Wei et al., 2019). Melatonin is

considered a potent antioxidant that protects plants against UV

radiation; it regulates the expression of various UV signaling

pathways, such as transcription factors RUP1/2, HY5, and HYH,

and the ubiquitin-degrading enzyme COP1 (Yao et al., 2021).

Exogenous melatonin improved the expression of RUP1/1, HY5,

HYH, and COP1, which perform a key role in the protection

against UV radiation (Hassan et al., 2022). Hence, melatonin

regulates antioxidant defense systems to prevent plants from the

negative impacts of UV stress (Yao et al., 2021). Endogenous

melatonin is substantially increased in Glycyrrhiza uralensis plants

when their roots are exposed to UV radiation, and as a result plant

DNA damage is reduced (Wei et al., 2019). Similarly, the
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accumulation of endogenous melatonin induces a tolerance response

to UV stress in Mediterranean and alpine species of plants (Nawaz

et al., 2022). Although limited research has demonstrated a role for

melatonin in UV stress tolerance (Hassan et al., 2022), more studies

are required to investigate the role of melatonin in regulating various

UV signaling pathways that are involved in mitigating the negative

effects of UV radiation in various crops.
Conclusions and future directions

The impact of abiotic stresses on plant development is considered

a significant threat to agricultural productivity. Plants adopt different

physiological, biochemical, and molecular responses to overcome the

negative effects of abiotic stresses (Ahmad et al., 2022b).

Phytomelatonin has potential to be used as a tool for reducing or

alleviating the adverse effects of abiotic stresses in various crops. The

exogenous application of melatonin is essential for plant growth and

development under abiotic stresses. Phytomelatonin plays a key role

in plant metabolism and the complex mechanism of plant function;

however, the role that melatonin plays in the underlying mechanisms

in plants grown under abiotic stress is still poorly understood.

Moreover, the interaction of melatonin with NO and with IAA/

auxin, and their responses to abiotic stresses, make for attractive

targets in molecular research. The relationship between melatonin

and NO regulates morphophysiological and biochemical activities by

way of the G protein-coupled receptor and synthesis genes.

Furthermore, the mechanism by which G protein regulates the

morphophysiological activity and the different genes involved in the

regulation by melatonin are still unclear. In addition, the interaction

of melatonin with auxin enhanced growth and physiological function

by increasing the levels of auxin, synthesis, and polar transport. In the

later growth stage, the content of auxin is decreased because of the

decreased melatonin concentrations in plants. To grow and achieve a

higher yield, plants need a continuous supply of IAA from sowing to

maturity. In the lateral growth stage, the effects of an exogenous

supply of melatonin, and the mechanism by which melatonin boosts

IAA levels in various crops, are still unknown.

Melatonin has an important role in regulating plant metabolism

and increasing yield under various abiotic stresses. In addition, the

OsRBOHF-dependent ROS signaling that activated stress-responsive

genes in plants grown under abiotic stress enhanced the uptake of

potassium (K+) transporter (OsHAK5) in the roots. The potassium

transporter OsHAK5 plays a vital role in potassium acquisition and

transport from root tissue to the shoots, especially in plants exposed

to low potassium concentrations, enhancing plant metabolism and

physiological function under salt stress. The mechanism of the K+

transporter OsHAK5 and the activation of gene identification, which

are due to the OsRBOHF-dependent ROS signaling in various crops

under abiotic stresses, however, is poorly understood.

Ethylene in plants is considered a multifunctional phytohormone

that significantly improves plant growth and senescence. However,

the role of genes such as MYB108A, ACS1, ACSa, and VviACS1 in

ethylene production in different plants under various stresses is still

poorly understood.

In addition, serotonin plays a vital function in plants, acting as a

growth regulator and as a stress defense molecule. The relationship of
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melatonin with T5H genes in serotonin biosynthesis under abiotic

stress is still unknown in many plants.

Stomata density is closely associated with plant growth properties,

and photosynthetic activity is improved by melatonin application.

Stomatal cells undergo deterioration when plants are exposed to

drought stress (Salehi-Lisar and Bakhshayeshan-Agdam, 2016). In

contrast, no adverse effects on stomatal density were observed in

apple plants grown under drought stress (Li et al., 2015). The reason

for these different results might be that there are different signaling

pathways in different crops. The mechanisms of this phenomenon in

various crops are still poorly understood. These mechanisms need to

be further investigated under various stresses because the amount

performance, and mechanism of action of melatonin vary among

plant species.

It has been confirmed that, melatonin up-regulates GA20ox and

GA3ox, genes that are involved in GA biosynthesis and result in

increased GA4 while down-regulating the NECD2, which is involved

in ABA biosynthesis. The role of melatonin in the up- and down-

regulation of genes involved in the biosynthesis of GA and ABA

under various abiotic stresses remains unclear.

The heat shock proteins of tomatoes protect the plants’ cellular

protein against heat stress due to refolding or degradation of

denatured proteins. However, the response and activity of heat

shock proteins and heat factors in plants with a melatonin supply

under abiotic stresses in different crops is still poorly understood.
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