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Unravelling the molecular
mechanism underlying drought
stress response in chickpea via
integrated multi-omics analysis

Vikram Singh1, Khushboo Gupta2, Shubhangi Singh2,
Mukesh Jain1 and Rohini Garg2*

1School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India,
2Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar,
Uttar Pradesh, India
Drought stress affects growth and productivity significantly in chickpea. An

integrated multi-omics analysis can provide a better molecular-level

understanding of drought stress tolerance. In the present study, comparative

transcriptome, proteome and metabolome analyses of two chickpea genotypes

with contrasting responses to drought stress, ICC 4958 (drought-tolerant, DT)

and ICC 1882 (drought-sensitive, DS), was performed to gain insights into the

molecular mechanisms underlying drought stress response/tolerance. Pathway

enrichment analysis of differentially abundant transcripts and proteins suggested

the involvement of glycolysis/gluconeogenesis, galactose metabolism, and

starch and sucrose metabolism in the DT genotype. An integrated multi-omics

analysis of transcriptome, proteome and metabolome data revealed co-

expressed genes, proteins and metabolites involved in phosphatidylinositol

signaling, glutathione metabolism and glycolysis/gluconeogenesis pathways,

specifically in the DT genotype under drought. These stress-responsive

pathways were coordinately regulated by the differentially abundant

transcripts, proteins and metabolites to circumvent the drought stress

response/tolerance in the DT genotype. The QTL-hotspot associated genes,

proteins and transcription factors may further contribute to improved drought

tolerance in the DT genotype. Altogether, the multi-omics approach provided an

in-depth understanding of stress-responsive pathways and candidate genes

involved in drought tolerance in chickpea.
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1 Introduction

Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated

worldwide, especially in developing countries. India ranks first in chickpea production

accounting for approximately 75% of the total production (FAO, 2016). Chickpea has high

nutritional value containing proteins (20–25%), carbohydrates (61.5%) and fatty acids
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(4.5%), along with a significant amount of essential amino acids and

vitamin content (Jukanti et al., 2012). Chickpea is cultivated mainly

in arid and semi-arid regions with limited water availability.

Therefore, drought stress is a major constraint that causes

significant loss in growth and productivity of chickpea. Chickpea

employs an adaptive strategy to tolerate limited drought stress due

to its well-established root system architecture. Significant

phenotypic variations in root characteristics have been reported

among various chickpea genotypes. Higher biomass, root length

density and better root system architecture are the characteristics of

drought-tolerant (DT) genotypes, whereas drought-sensitive (DS)

genotypes exhibit reduced root characteristics (Gaur et al., 2008;

Kashiwagi et al., 2015).

The implementation of different high-throughput “omics”

techniques in silos, including transcriptomics, proteomics and

metabolomics have enabled the understanding of drought stress

responses in chickpea to some extent (Garg et al., 2016; Khan et al.,

2019; Bhaskarla et al., 2020; Gupta et al., 2020). A few studies have

been performed to elucidate the global transcriptional dynamics to

identify the genes and regulatory networks under various abiotic

stress conditions (Garg et al., 2015; Garg et al., 2016; Kudapa et al.,

2018; Mashaki et al., 2018; Kumar et al., 2019). The transcriptome

analysis of chickpea roots under drought stress for different DT and

DS genotypes revealed the involvement of various transcription

factors (TFs), metabolic pathways and biological processes in the

drought stress responses (Garg et al., 2016; Bhaskarla et al., 2020).

The proteomics approaches have also been employed to examine

the complexity of drought stress response. The proteins localized in

different cellular compartments and those involved in different

metabolic processes were found to contribute to drought

tolerance in chickpea (Barua et al., 2019; Cevik et al., 2019; Gupta

et al., 2020; Vessal et al., 2020). However, limited progress has been

made towards metabolome analysis in chickpea under stress

conditions. The metabolite profiling of leaves of two chickpea

genotypes, Noor‐2009 (drought-sensitive) and 93127 (drought-

tolerant) revealed the changes in amino acids composition under

drought stress (Khan et al., 2019).However, these studies employed

a stand-alone omics approach to investigate the drought stress

response in chickpea. The integration of transcriptome, proteome

and/or metabolome data have provided an impressive

understanding of biotic, abiotic and oxidative stress response,

nitrogen metabolism, tiller production, alkaloids biosynthesis,

iron homeostasis and fruit ripening in different plants (Amiour

et al., 2012; Srivastava et al., 2013; Sudre et al., 2013; Zeng et al.,

2013; Remmers et al., 2018; Li et al., 2019a; Wang et al., 2019;

Yun et al., 2019; Chin et al., 2020; Moreno et al., 2021; Bittencourt

et al., 2022; Leão et al., 2022; Shu et al., 2022). An integrated

analysis of transcriptome, proteome and metabolome in different

chickpea genotypes can provide a better understanding of

molecular mechanisms and pathways underlying drought stress

response/tolerance.

In this study, we used two chickpea genotypes with contrasting

responses to drought stress, namely ICC 4958 (drought-tolerant,

DT) and ICC 1882 (drought-sensitive, DS). These chickpea

genotypes have been characterized extensively for their

contrasting responses to drought stress and used for the
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generation of bi-parental populations for the QTL mapping

(Jaganathan et al., 2015). These genotypes showed different root

traits, phenotypic responses and yield under drought stress

(Kashiwagi et al., 2005; Krishnamurthy et al., 2010; Kashiwagi

et al., 2013; Garg et al., 2016; Purushothaman et al., 2017). ICC

4958 showed higher root and shoot dry weight, and larger roots in

comparison to ICC 1882 (Garg et al., 2016). Moreover, higher shoot

biomass, grain yield and harvest index were also observed for ICC

4958 under drought stress (Purushothaman et al., 2016). Here, we

analyzed the transcriptome, proteome and metabolome of the roots

of ICC 4958 and ICC 1882 genotypes under control and drought

stress conditions to gain mechanistic insights into the drought stress

tolerance in chickpea. The differential expression analyses identified

the differentially abundant transcripts, proteins and metabolites

under control and/or drought stress conditions in/between the

chickpea genotypes. Weighted gene co-expression network

analysis (WGCNA) was performed to explore the co-expressed

genes, proteins and metabolites. The co-expressed genes/modules

were further investigated for the identification of TF encoding

genes, and those located within the known QTL-hotspot region

for drought tolerance in chickpea. The integrated analysis of

transcriptome, proteome and metabolome data revealed a crucial

role of phosphatidylinositol (PI) signaling, glutathione metabolism

and glycolysis/gluconeogenesis pathways in drought tolerance.

These results provide new insights into the drought tolerance

mechanism in chickpea and prioritization of candidate genes for

functional analysis.
2 Materials and methods

2.1 Plant materials and drought
stress treatment

The seeds of two chickpea genotypes with contrasting response

to drought stress, ICC 4958 (drought-tolerant, DT) and ICC 1882

(drought-sensitive, DS) were procured from International Crops

Research Institute for the Semi-arid Crops (ICRISAT), Hyderabad,

India. The seeds of both genotypes were grown in pots containing

soilrite saturated with reverse osmosis water. The pots were kept in

a plant growth chamber with day (28°C in 400 µmol photons/m2/s

of light intensity) and night (23°C in dark) cycle of 14 h and 10 h,

respectively. Drought stress was imposed on 11 d old plants by

withholding water for 15 d, while control seedlings were watered on

alternate days until the end of the experiment. Water withholding

for different days has been used for imposing drought stress in

previous studies (Garg et al., 2016; Sinha et al., 2019). We observed

significant difference in the root growth of DT and DS genotypes

under drought stress after 15 d and collected the root samples from

the control and drought-stressed plants of both genotypes to

investigate the molecular changes. The samples were harvested in

multiple technical replicates, snap frozen in liquid nitrogen and

stored at -80 °C until further analysis. The root tissues were

harvested in three independent biological replicates. The root

tissues harvested from the same experiments were used for

transcriptome, proteome and metabolome analyses.
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2.2 RNA sequencing and
data pre-processing

Total RNA from each sample was extracted using TRI reagent

according to the manufacturer’s instructions (Sigma Life Sciences).

RNA quality and quantity were assessed using Nanodrop

Spectrophotometer and Agilent Bioanalyzer (Agilent technologies,

Singapore) as described previously (Garg et al., 2010). Further,

libraries from two biological replicates of each sample were

prepared and sequencing was performed on the Illumina platform

to generate 49-nt single-end reads. Quality control of raw reads was

performed using NGS QC Toolkit (v2.3.3) (Patel and Jain, 2012) for

removal of reads harboring adapter sequence and/or bases with

poor quality. The filtered high-quality reads were used for

downstream analysis.
2.2.1 Read mapping and differential gene
expression analysis

The filtered high-quality reads were mapped on the kabuli

chickpea genome (v1.0; Varshney et al., 2013b) using Tophat

(v2.1.1) (Trapnell et al., 2009) software. To analyze gene

expression, a reference-guided assembly of the transcriptome data

from all samples was generated using Cufflinks (v2.2.1) (Trapnell

et al., 2012). Cuffmerge was used to create consensus assembly from

the reference-guided assemblies generated for each sample.

Differential expression analysis was performed for DT and DS

genotypes under drought (D) relative to control (C), [DT(D/C)]

and [DS(D/C)], respectively, and for DT genotype relative to DS

genotype under control (C) conditions, [DT(C)/DS(C)]. The

differential expression analysis between different samples was

performed using Cuffdiff. The transcripts with P-value ≤ 0.05 and

log2 fold change of ≥ 1 (up-regulated) and ≤ -1 (down-regulated)

were considered to be differentially abundant.
2.3 Total protein extraction

Grounded root tissue (~1 g) for each sample (in three biological

replicates) was suspended into 3 ml of extraction buffer (pH, 8.0)

[Tris-HCl (500 mM), EDTA (50 mM), sucrose (700 mM), KCl (100

mM), b-mercaptoethanol (2%) and phenylmethylsulfonyl fluoride

(1 mM)], vortexed briefly and incubated in ice for 10 min. An equal

volume of Tris-HCl saturated phenol (pH, 6.6–7.9) was added to

the sample and kept at room temperature for 10 min. Samples were

centrifuged at 12,000 g for 10 min at 4°C and upper phenolic phase

was recovered carefully into a new tube. The phenolic phase was

once again extracted with 3 ml of extraction buffer as described

above. Following centrifugation, the upper phase was carefully

recovered and transferred into a new tube. Afterwards, 4 volumes

of precipitation solution (0.1 M ammonium acetate in cold

methanol) was added. The properly mixed solution was incubated

overnight at -20°C. Finally, total proteins were pelleted down by

centrifugation at 5500 g for 10 min at 4°C. The protein pellet was
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dissolved in solubilization buffer [Tris-HCl (1.5 M, pH 8.0) and urea

(8 M)] and the solubilized protein sample was used for nanoLC-

MS/MS analysis.
2.3.1 Nano-LC-MS/MS and data processing
Each protein sample (25 µl) was reduced using 5 mM tris (2-

carboxyethyl)phosphine (TCEP) followed by alkylation with

iodoacetamide (50 mM) and digestion with trypsin (1:50 of

trypsin/lysate ratio) for 16 h at 37°C. Digested samples were

cleaned using C18 silica cartridge to remove the salts and dried

using speed vacuum. Dried protein pellet was resuspended in

solubilization buffer A [acetonitrile (5%) and formic acid (0.1%)].

NanoLC-MS/MS analysis of the solubilized protein sample was

performed using EASY-nLC 1000 system (Thermo Fisher

Scientific) coupled to Thermo Q-Exactive equipped with

nanoelectrospray ion source by the commercial service provider

(Valerian Chem Pvt. Ltd., New Delhi). About 1.0 µg of the digested

protein (peptides) was resolved using 60 cm Viper column (360 µm

outer diameter, 75 µm inner diameter, 10 µm tip) filled with 3.0 µm

of C18-resin. Further, peptides were loaded with buffer A (5%

acetonitrile and 0.1% formic acid) and eluted with 0 – 40% gradient

of buffer B [acetonitrile (95%) and formic acid (0.1%)] at a flow rate

of 300 nl/min for 100 min.

The raw data was analyzed for qualitative and quantitative

proteome using MaxQuant (MQ) (version 1.6.14.0) (Tyanova et al.,

2016). The collected spectra of all peptides were searched against all

the annotated protein sequences (28,269) in the reference chickpea

genome (Varshney et al., 2013a) to identify its corresponding

proteins using Andromeda, a peptide search engine (Cox et al.,

2011). The protease used to generate peptides was set as enzyme

specificity for trypsin/P. The estimated false discovery rate (FDR) of

all peptide and protein identifications was set to 1%. The mass

tolerance was kept to 7 ppm for precursor and fragment ions. Two

missed cleavage values were allowed, and the minimum peptide

length was set to 7 amino acids. The label-free method was used for

protein quantification with classic type normalization and

minimum ratio count of two. MQ provided the MS/MS spectrum

details of all the identified peptides. Both unique and razor peptides

were used for the identification of proteins, and protein

quantification (abundance) was referred to their intensities.

Differential expression analysis of proteins was performed using

edgeR for DT(D/C), DS(D/C) and DT(C)/DS(C) comparisons.

Proteins with log2 fold change of ≥ 1 (up-regulated) and ≤ -1

(down-regulated) and P-value ≤ 0.05 were considered as

differentially abundant.
2.4 Sample preparation and gas
chromatography-mass spectrometry for
metabolome analysis

Frozen root samples (three biological replicates of each sample)

were grounded into fine powder using liquid nitrogen. About 200

mg of each grounded sample was homogenized with 5 ml of pre-
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chilled methanol:acetonitrile (2:1) solvent in pestle and mortar. The

solution was centrifuged at 9,500 rpm for 15 min at 25°C and

supernatant was divided into two aliquots representing the

technical replicates. Thereafter, 50 ml of ribitol (2 mg/ml in ddw)

was added to each sample to serve as internal standard. The

supernatant was dried in a speed vacuum concentrator at 25°C

until the sample dryness reached to ~95%. Further, derivatization of

samples was done by adding 50 ml of methoxyamine hydrochloride

solution (30 mg methoxyamine hydrochloride in 1 ml of pyridine)

followed by incubation at 30°C for 90 min. Subsequently, 100 ml of
N-methyl-N-trimethyl silyl tri-flouro acetamide (MSTFA) was

added to each sample and incubated at 37°C for 60 min for tri-

methyl-sialylation (TMS).

Two technical replicates of each derivatized sample (biological

replicate) were analyzed by GC-MS (QP2010 ULTRA, Shimadzu,

Japan). The derivatized sample (1 ml) was injected into a Rtx-5Sil-

MS (30 m × 0.25 mm × 0.25 mm) column using a split injection

mode with the sampling time of 1 min, injection temperature 260°C

and column oven temperature of 70°C using the flow control mode

as linear velocity. Helium was used as a carrier gas with a flow rate

of 1 ml min-1. The initial oven temperature was set as 70°C for 3

min and then increased to 280°C until full run. The following

parameters was adjusted for MS analysis, ion source temperature at

230°C, interference temperature at 270°C, run time of 50 min, scan

speed of 3333 and mass by charge ratio (m/z) of 40 – 650.

Acquisition of total ion chromatogram (TIC) was done for

metabolite identification and quantification via GCMS solution

4.20 software (Shimadzu, Japan). Peak integration was performed

to calculate the peak area, height and retention time (RT), and

identification of metabolites was done by the similarity search of

obtained mass spectra with the mass spectra available in NIST14,

NIST14s and Wiley08 libraries. The manual curation of all the

identified metabolites was performed to retain a unique set of

metabolites for each sample analyzed. The metabolites identified

in at least three replicates of each sample were used for further

analysis and metabolite levels were normalized using ribitol as an

internal standard. Differential expression analysis of metabolites

was done by edgeR for DT(D/C), DS(D/C) and DT(C)/DS(C)

comparisons, and metabolites with log2 fold change of ≥1 (up-

regulated) and ≤-1 (down-regulated) and P-value ≤0.05 were

considered as differentially abundant.
2.5 Co-expression network analysis

We used WGCNA (v 1.70-3; Langfelder and Horvath, 2008) to

perform co-expression analysis for transcriptome, proteome and

metabolome data sets for all the four samples, DT(C), DT(D), DS

(C) and DS(D). Co-expression analysis was performed by using log2
normalized values of FPKM (for 9847 genes showing ≥ 0.1

variance), intensity (for 2430 proteins) and relative amount (for

133 metabolites) of transcriptome, proteome and metabolome data,

respectively. The matrix of co-expression data was generated using

an optimized beta power (b) of three for transcriptome, seven for
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proteome and four for metabolome, and transformed into

topological overlap matrix (TOM). The hierarchical clustering

was performed using an average method to generate dendrogram.

Module identification was done by dynamicTreeCut function to

generate clusters with minimum size of 30 for transcriptome and

proteome, and 15 for metabolome, and deepSplit value of 2. Highly

correlated modules were merged at cutHeight of 0.2 to obtain the

final set of modules.
2.6 Integrated analysis of transcriptome,
proteome and metabolome

The integrated analysis of transcriptome, proteome and

metabolome data was done using WGCNA as described earlier

(Kelly et al., 2018; Liu et al., 2020). Integration of transcriptome,

proteome and metabolome data was done by using their module

eigenvectors. Two-way integration approach was adopted for the

data integration, where transcriptome and proteome data were

integrated using eigenvector for co-expressed gene modules

(eigengenes) and co-expressed protein modules (eigenproteins) to

identify the correlation between eigengenes and eigenproteins.

Similarly, integration of transcriptome and metabolome data

using eigenvectors for co-expressed gene modules (eigengenes)

and co-expressed metabolite modules (eigenmetabolites) was

performed to revea l corre lat ion between eigengenes

and eigenmetabolites.
2.7 GO and pathway enrichment analysis

GO enrichment analysis for differentially abundant transcripts

(DATs) and differentially abundant proteins (DAPs) were

performed using BiNGO tool in Cytoscape (v3.7). The GO terms

with P-value ≤ 0.05 were considered as significantly enriched. The

pathway enrichment analysis for DATs and DAPs was performed

using KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/) considering

KEGG, BioCys and PANTHER databases at the P-value cut-off of

≤ 0.05. Pathway enrichment analysis for differentially abundant

metabolites (DAMs) was performed using MetaboAnalyst (v.3.0) at

P-value cut-off of ≤ 0.05.
2.8 Reverse transcriptase- quantitative
polymerase chain reaction analysis

The RT-qPCR analysis was performed to validate the

expression levels of selected candidate genes. A total of 17 genes

exhibiting differential expression in DS(D/C), DT(D/C) and/or DT

(C)/DS(C) comparisons were selected for the analysis. The primers

were designed using Primer Express (3.0) software (Thermo

Fischer; USA) and are listed in Table S11. The differential

abundance levels of the selected genes were determined and

compared with the RNA-seq data.
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3 Results

Drought response/tolerance in different chickpea genotypes has

been attributed mainly due to the root system architecture and

related traits (Gaur et al., 2008; Garg et al., 2016; Purushothaman

et al., 2016). The chickpea genotypes used in this study, ICC 4958

(drought-tolerant, DT) and ICC 1882 (drought-sensitive, DS),

showed different root traits and have been characterized

extensively for their contrasting responses to drought stress

(Kashiwagi et al., 2005; Krishnamurthy et al., 2010; Kashiwagi

et al., 2013; Jaganathan et al., 2015; Garg et al., 2016;

Purushothaman et al., 2017). To gain deeper mechanistic insights

into the drought stress tolerance in chickpea, we implemented a

multi-omics (transcriptomics, proteomics and metabolomics)

approach to analyze the roots of ICC 4958 and ICC 1882

genotypes under control and drought stress conditions.
3.1 Differential gene expression profiling
and pathway/GO enrichment analysis

RNA-sequencing of root samples from the two chickpea

genotypes, ICC 4958 (DT) and ICC 1882 (DS) was performed

under control (C) and drought stress (D) conditions. The high-

quality filtered reads for each sample were mapped to the chickpea

genome (Table S1). The reference-guided assembly resulted in a

total of 30978 gene loci, including 27881 known and 3097 novel loci
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(Table S2). Differential expression analysis revealed a total of 1718

(478 up- and 1240 down-regulated) and 1702 (680 up- and 1022

down-regulated) Differentially Abundant Transcripts (DATs) in

DT [DT(D/C)] and DS [DS(D/C)] genotypes, respectively, under

drought stress. Further, at least 1222 (864 up- and 358 down-

regulated) DATs were identified between DT and DS genotypes

under control conditions [DT(C)/DS(C)] (Figures 1, S1A) (Table

S3). A comparative analysis of DT(D/C), DS(D/C) and DT(C)/DS

(C) identified common and specific DATs among different

comparisons. A total of 1128 (409 up- and 719 down-regulated),

841 (406 up- and 435 down-regulated), and 900 (644 up- and 256

down-regulated) DATs were specific for DT(D/C), DS(D/C) and

DT(C)/DS(C) comparisons, respectively. However, 580 (62 up- and

518 down-regulated) DATs were common between DT(D/C) and

DS(D/C), and only 31 (1 up- and 30 down-regulated) DATs were

common among all the comparisons (Figure 1A).

To investigate the metabolic pathways associated with DATs,

pathway enrichment analysis was performed for the up- or down-

regulated sets of genes for DT(D/C), DS(D/C) and DT(C)/DS(C). A

total of 136, 108 and 174 significantly enriched pathways were

identified among the up-regulated genes in DT(D/C), DS(D/C) and

DT(C)/DS(C), respectively (Figure 1B). The most enriched

pathways for DT(D/C) included plant hormone signaling,

phenylpropanoid biosynthesis, carbon metabolism, anthocyanin

modification, sucrose biosynthesis, glycolysis, gluconeogenesis,

galactose metabolism, pentose phosphate pathway, and fructose

and mannose metabolism. Among the up-regulated genes in DS(D/
A B C

FIGURE 1

Differentially abundant transcripts (DATs) in drought-tolerant (DT) and drought-sensitive (DS) chickpea genotypes under control (C) and drought
stress (D) conditions. DATs in the DT and DS genotypes were identified under drought stress as compared to control, DT(D/C) and DS(D/C),
respectively, and between DT and DS genotypes under control condition, [DT(C)/DS(C)]. (A) Venn diagram showing common and specific DATs in
DT(D/C), DS(D/C) and DT(C)/DS(C) comparisons, where total number of transcripts are shown by black color font, and up- and down-regulated
transcripts are presented by red and blue color fonts, respectively. (B, C) Bubble plots showing significantly enriched pathways among up- (B) and
down-regulated (C) transcripts in DT(D/C), DS(D/C) and DT(C)/DS(C) comparisons. Top 20 pathways with P-value ≤ 0.05 were selected. The bubble
size defines the number of transcripts assigned to the pathway and bubble color represents P-value as per the given scale.
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C), those encoding ABC transporters, and involved in callose

biosynthesis, and circadian rhythm were enriched. However, DT

(C)/DS(C) showed enrichment of plant-pathogen interaction,

cellulose biosynthesis, starch and sucrose metabolism,

phospholipases, phospholipid remodeling, wnt signaling pathway,

triacylglycerol biosynthesis/degradation, glycerolipid metabolism,

phosphatidylcholine acyl editing and MAPK signaling pathways

among the up-regulated genes. The nitrogen metabolism pathway

was enriched in both DT(D/C) and DS(D/C), while the diterpenoid

biosynthesis pathway was enriched among the up-regulated genes

in all the comparisons. Similarly, down-regulated genes in DT(D/

C), DS(D/C) and DT(C)/DS(C) were found to be involved in 224,

209 and 91 pathways, respectively (Figure 1C). Most enriched

pathways among down-regulated genes in DT(D/C) were,

triacylglycerol biosynthesis and degradation, phospholipases, and

cysteine and methionine metabolism, whereas terpenoid

biosynthesis, flavonoid biosynthesis, glycolysis/gluconeogenesis,

coumarins biosynthesis, amino sugar and nucleotide sugar

metabolism, and fatty acid degradation pathways were enriched

in DS(D/C). The pathways related to plant-pathogen interaction,

MAPK signaling pathway, phenylpropanoid biosynthesis, pyridine

nucleotide cycling, phosphatidylcholine acyl editing, and cellulose

biosynthesis were enriched in both DT(D/C) and DS(D/C), whereas

plant hormone signal transduction pathway was enriched in DT

(D/C), DS(D/C) and DT(C)/DS(C).

To further investigate the biological functions of DATs,

comparative GO enrichment analysis of the up- (Figure S1B) or

down-regulated (Figure S1C) genes in DT(D/C), DS(D/C) and DT

(C)/DS(C) comparisons were performed. The up-regulated genes in

DT(D/C) were involved mainly in amino acid metabolism and

transport, ion transport, response to ions, and cell wall

modification. However, negative regulation of biosynthesis and

development, pigment metabolism, terpene metabolism, DNA

modifications, regulation of transport, DNA maintenance and

recombination, and hormone stimulus biological process terms

were enriched in DS(D/C). GO terms related to signaling, root

morphogenesis, hormone signaling, phenylpropanoid metabolism,

and carbohydrate metabolism were enriched in DT(C)/DS(C). GO

terms, including gene silencing, cell division, DNA replication and

repair, and root development were represented in both DS(D/C)

and DT(C)/DS(C). The down-regulated genes were involved in the

signaling pathway, response to abiotic stress, immune response,

hormone signaling, carbohydrate biosynthesis and protein

modification in DT(D/C). Lipid biosynthesis and cellular

respiration terms were enriched in DS(D/C) and DT(C)/DS(C),

respectively. However, hormone stimulus, response to biotic and

abiotic stimulus, and cell wall modification were commonly

represented in both DS(D/C) and DT(C)/DS(C).
3.2 Differentially abundant proteins and
pathway/GO enrichment analysis

Overall proteome analysis identified a total of 25742 peptides

representing 2430 unique proteins in all the samples. Among these,

2180, 2205, 2171 and 2138 proteins were identified in DT(C), DT
Frontiers in Plant Science 06
(D), DS(C) and DS(D) samples, respectively (Table S4). The

differential expression analysis revealed a total of 306 (162 up-

and 144 down-regulated), 336 (143 up- and 193 down-regulated)

and 360 (176 up- and 184 down-regulated) DAPs in the DT(D/C),

DS(D/C) and DT(C)/DS(C) comparisons, respectively (Figures 2A,

S2A) (Table S5). A comparative analysis of DT(D/C), DS(D/C) and

DT(C)/DS(C) identified 231 (128 up- and 103 down-regulated), 109

(49 up- and 60 down-regulated) and 190 (106 up- and 84 down-

regulated) DAPs specific to DT(D/C), DS(D/C), DT(C)/DS(C),

respectively. However, 70 (31 up- and 39 down-regulated) DAPs

were common between DT(D/C) and DS(D/C), and 8 (4 up- and 4

down-regulated) DAPs were common among al l the

comparisons (Figure 2A).

The pathway enrichment analysis was performed for the up- or

down-regulated proteins in DT(D/C), DS(D/C) and DT(C)/DS(C)

comparisons. The up-regulated proteins contributed to 116, 128

and 14 metabolic pathways, whereas down-regulated proteins were

involved in 115, 56 and 83 metabolic pathways in DT(D/C), DS

(D/C) and DT(C)/DS(C), respectively. The up-regulated proteins

were involved mainly in pyruvate metabolism and protein

processing in DT(D/C), amino acid biosynthesis, sucrose

biosynthesis and glutathione metabolism in DS(D/C), and starch

and sucrose metabolism, amino sugar and nucleotide sugar

metabolism, ribosome, spliceosome and protein processing in DT

(C)/DS(C) (Figure 2B). The galactose metabolism, glycolysis/

gluconeogenesis, and ascorbate and aldarate metabolism pathways

were commonly enriched in DT(D/C) and DS(D/C), whereas

phenylpropanoid biosynthesis, endocytosis and cyanoamino acid

metabolism were detected in all the three comparisons, DT(D/C),

DS(D/C) and DT(C)/DS(C) (Figure 2B). Similarly, enriched

pathways among the down-regulated proteins were, purine

metabolism, amino sugar and nucleotide sugar metabolism,

MAPK signaling pathway and phenylpropanoid biosynthesis in

DT(D/C); RNA transport, phagosome and pyruvate metabolism in

DS(D/C); and glutathione-mediated detoxification and RNA

transpor t in DT(C)/DS(C) (F igure 2C) . Glyco lys i s /

gluconeogenesis, ribosome, proteasome, fatty acid degradation,

and starch and sucrose metabolism were enriched in both DT(D/

C) and DS(D/C), whereas sucrose biosynthesis, colanic acid

building blocks biosynthesis, and ascorbate and aldarate

metabolism were common in DT(D/C) and DT(C)/DS

(C) (Figure 2C).

Next, GO enrichment analyses of up- or down-regulated

proteins in DT(D/C), DS(D/C) and DT(C)/DS(C) were

performed to gain more insights into their biological functions

(Figures S2B, C). The up-regulated proteins in DT(D/C) were

enriched in fatty acid metabolism, auxin homeostasis and cell

growth related GO terms. However, in DS(D/C) transport and,

purine and pyrimidine metabolism; and in DT(C)/DS(C), hormone

signaling, amino acid metabolic process, cell wall modification,

chromosome organization and phenylpropanoid pathway were

enriched. The amino acid metabolism and MAPK signaling were

common in DS(D/C) and DT(C)/DS(C). The GO enrichment

analysis of down-regulated proteins suggested the involvement of

phenylpropanoid metabolism, jasmonic acid and ethylene

dependent signaling, abiotic stress, immune response and
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nucleotide metabolism in DT(D/C). However, hormone signaling,

RNA splicing, fatty acid oxidation, protein targeting, transport and

localization terms were specific to DT(C)/DS(C).
3.3 Differential metabolite profiling and
pathway enrichment analysis

After processing the raw data obtained via GC-MS analysis, we

identified high-confidence metabolites in all the samples. Overall, a

total of 133 high-confidence metabolites were obtained in all the

samples, of which 87, 98, 94 and 88 metabolites were represented in

DT(C), DT(D), DS(C) and DS(D), respectively (Figure S3A; Table

S6). The analysis identified a total of 32 (17 up- and 15 down-

regulated), 74 (34 up- and 40 down-regulated) and 36 (13 up- and

23 down-regulated) DAMs in DT(D/C), DS(D/C) and DT(C)/DS

(C) comparisons, respectively (Figure 3A; Table S7). A comparative

analysis of DT(D/C), DS(D/C) and DT(C)/DS(C) identified 21 (12

up- and 9 down-regulated), 50 (27 up- and 23 down-regulated) and

19 (9 up- and 10 down-regulated) DAMs specific to DT(D/C), DS

(D/C) and DT(C)/DS(C), respectively. However, 9 DAMs (4 up-

and 5 down-regulated) were common between DT(D/C) and DS(D/

C) (Figure 3A). The DAMs identified in all three comparisons, DT

(D/C), DS(D/C) and DT(C)/DS(C), were comprised of different

metabolite classes (Figure 3B). Among these, the metabolites

representing carbohydrates, lipids and amino acids were most
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abundant in all the three comparisons. However, metabolites

representing acids, alcohols, polyamines, organic compounds and

other classes were comparatively less prominent (Figures S3B, C).

The pathway enrichment analysis of DAMs revealed that up-

regulated metabolites in DT(D/C) were majorly involved in the

arginine biosynthesis pathway (Figure S4). DAMs in DS(D/C)

represented galactose metabolism, starch and sucrose metabolism,

fructose and mannose metabolism as the most enriched pathways.

However, glycine, serine and threonine metabolism, and

aminoacyl-tRNA biosynthesis pathways were common in DT(D/

C) and DS(D/C). The down-regulated metabolites were involved in

glyoxylate and dicarboxylate metabolism, butanoate metabolism,

alanine, aspartate and glutamate metabolism in DT(D/C), fructose

and mannose metabolism in DS(D/C), and biosynthesis of

unsaturated fatty acids, cyanoamino acid metabolism and linoleic

acid metabolism in DT(C)/DS(C). Furthermore, galactose

metabolism pathway was common between DT(D/C) and DS

(D/C), glutathione metabolism between DT(D/C) and DT(C)/DS

(C), and aminoacyl-tRNA biosynthesis between DS(D/C) and DT

(C)/DS(C) (Figure S4). Among the identified pathways, galactose

metabolism, and starch and sucrose metabolism were most

enriched among the up-regulated metabolites in DS(D/C).

However, down-regulated metabolites showed enrichment of

galactose metabolism in DT(D/C) and DS(D/C), and unsaturated

fatty acid biosynthesis, glutathione metabolism and linoleic acid

metabolism in DT(C)/DS(C) (Figure 3C).
A B C

FIGURE 2

Differentially abundant proteins (DAPs) in drought-tolerant (DT) and drought-sensitive (DS) chickpea genotypes under control (C) and drought stress
(D) conditions. DAPs in the DT and DS genotypes were identified under drought stress as compared to control, DT(D/C) and DS(D/C), respectively,
and between DT and DS genotypes under control condition, [DT(C)/DS(C)]. (A) Venn diagram showing common and specific DAPs in DT(D/C), DS(D/
C) and DT(C)/DS(C) comparisons, where total number of proteins are shown by black color font, and up- and down-regulated proteins are
presented by red and blue color fonts, respectively. (B, C) Bubble plots showing significantly enriched pathways among up- (B) and down-regulated
(C) proteins in DT(D/C), DS(D/C) and DT(C)/DS(C) comparisons. Top 20 pathways with P-value ≤ 0.05 were selected. The bubble size defines the
number of proteins assigned to the pathway and bubble color represents P-value as per the given scale.
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3.4 Co-expression network analysis of
genes, proteins and metabolites

Co-expression analysis was performed via WGCNA to

investigate the co-expressed transcripts, proteins and metabolites

among DT(C), DT(D), DS(C) and DS(D) samples. The WGCNA is

a co-expression network analysis utilized for the analyses of gene

expression data providing the correlation of coexpressed genes with

the samples (Langfelder and Horvath, 2008). For the transcriptome

data, hierarchical clustering of 9847 genes (with variance > 0.1) via

WGCNA generated 30 co-expressed modules. These modules were

further clustered according to dissimilarity measure (1-TOM) and

11 highly co-expressed modules were obtained (Figure S5A). The

module size varied from 60 (steelblue) to 2252 (black) genes.

Further, the co-expressed modules were correlated with the

samples (Figure S6A), and the modules with correlation

coefficient (r) of ≥ 0.50 were assigned to the respective tissue

sample. In total, five [brown (r = 0.98), grey60 (r = 0.83),

midnightblue (r = 0.75), darkorange (r = 0.64) and blue (r =

0.54)] modules were found correlated with DT(C) and four [cyan

(r = 0.78), black (r = 0.54), white (r = 0.95) and orange (r = 0.64)]

modules with DT(D). One module, blue (r = 0.68) and steelblue (r =

0.53) was correlated with each of DS(C) and DS(D), respectively.

Similarly, WGCNA analysis for 2430 proteins generated 9 co-

expressed modules (Figure S5B). The number of proteins identified

in the modules ranged from 34 (darkgrey) to 551 (blue). The co-
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expressed modules showing correlation coefficient (r) of ≥ 0.35 with

their respective samples were selected. The darkturquoise (r = 0.36)

module showing correlation with DT(C); blue (r = 0.99), grey60 (r =

0.65) and darkturquoise (r = 0.37) with DT(D); darkgreen (r =

0.52), royalblue (r = 0.92), green (r = 0.49) and brown (r = 0.82)

with DS(C); and darkgrey (r = 0.53) and royalblue (r = 0.85) with

DS(D) were selected for further analysis (Figure S6B). TheWGCNA

analysis for 133 metabolites generated 5 modules comprised of 15

(green) to 48 (darkturquoise) metabolites. The co-expressed

modules, highly correlated (r ≥ 0.50) with the samples, including

darkturquoise (r = 0.74) module for DT(C); brown (r = 0.67) and

darkturquoise (r = 0.82) for DT(D); yellow (r = 0.75) and

darkturquoise (r = 0.97) for DS(C); and blue (r = 0.53) and green

(r = 0.88) for DS(D), were identified (Figure S6C).
3.5 Integrated transcriptome, proteome
and metabolome analysis

Integration of transcriptome, proteome and metabolome data

was performed using module eigenvalues obtained for each data

individually via WGCNA analysis. The module eigenvalue

represents the first principal component and reflects the

expression profiles of the given module. The integration of 11 co-

expressed gene modules (eigengenes) and 9 co-expressed protein

modules (eigenproteins) revealed five highly correlated eigengene-
A B

C

FIGURE 3

Differentially abundant metabolites (DAMs) in drought-tolerant (DT) and drought-sensitive (DS) chickpea genotypes under control (C) and drought
stress (D) conditions. DAMs in the DT and DS genotypes were identified under drought stress as compared to control, DT(D/C) and DS(D/C)
respectively, and between DT and DS genotypes under control condition, [DT(C)/DS(C)]. (A) Venn diagram showing common and specific DAMs in
DT(D/C), DS(D/C) and DT(C)/DS(C) comparisons, where total number of metabolites are shown by black color font, and up- and down-regulated
metabolites are presented by red and blue color fonts, respectively. (B) Heatmap of DAMs identified in DT(D/C), DS(D/C) and DT(C)/DS(C)
comparisons. DAMs with log2 fold change (FC) of ≥1 (up-regulated) or ≤-1 (down-regulated) at P-value ≤ 0.05 are shown. Various classes of
metabolites represented among the DAMs are given. The name of each metabolite along with fold change value is given in Figure S3C. Scale at the
bottom represents log2 FC. (C) Enrichment ratio of the significantly enriched metabolic pathways represented among up- and down-regulated
metabolites for DT(D/C), DS(D/C) and DT(C)/DS(C) comparisons are shown.
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eigenprotein modules (Figure 4A). Similarly, 11 co-expressed gene

modules (eigengenes) and 5 co-expressed metabolite modules

(eigenmetabolites) identified highly correlated eigengene-

eigenmetabolite modules (Figure 4B). The transcriptome modules

correlated with both proteome and metabolome modules were

selected for further analysis. Therefore, three transcriptome

(mignightblue, brown and blue), one proteome (darkturquoise)

and one metabolome (darkturquoise) modules were found

correlated with DT(C), whereas four transcriptome (cyan, black,

white and orange), three proteome (blue, darkturquoise and grey60)

and two metabolome (brown and darkturquoise) modules were

associated with DT(D). Similarly, one transcriptome (blue), two

proteome (brown and darkgreen), and two metabolome (yellow and

darkturquoise) modules were selected for DS(C). However, one

module each of transcriptome (steelblue), proteome (darkgrey) and

metabolome (green) was correlated with DS(D). These selected

modules comprising of co-expressed genes, proteins and

metabolites were analyzed together to identify the represented

metabolic pathways and transcription factors among them. The

stress-responsive pathways, including phosphatidylinositol (PI)

signaling, glutathione metabolism and glycolysis/gluconeogenesis

were found to be enriched and investigated further in more detail

along with transcription factors to reveal the regulation of genes,

proteins and metabolites involved.

3.5.1 Phosphatidylinositol signaling pathway
PI signaling related membrane lipids, phosphatidylinositols

(PIs), phosphatidylinositol phosphates (PIPs) and inositol
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phosphates (IPs) play a significant role in plant adaptation to

abiotic stress (Heilmann, 2016). We found genes and proteins

related to the PI signaling pathway to be co-expressed in one or

more of the conditions analyzed (Figure 5; Table S8). Notably, the

genes encoding inositol monophosphatase (IMPase; Ca_00700),

diacylglycerol kinase 3 (DGK3; Ca_03279), phosphoinositide

phosphatase (PIPase; Ca_10733), phosphatidylinositol-4-

phosphate 5-kinase (PI4P5K; Ca_03113, PI4P5K1; Ca_04252),

inositol-4-phosphate 5-kinase2 (I4P5K2; Ca_23825), vacuolar

protein sorting 34 (Vps34)/phosphatidylinositol-3-kinase (PI3K;

Ca_21468), phosphatidylinositol 3- and 4-kinase (PI3K, PI4K;

Ca_04796), phosphatidylinositol 3-phosphate 5-kinase (PI3P5K;

Ca_04329), and phosphatase and TENsin homolog 2 (PTEN 2;

Ca_02178) were co-expressed specifically in DT(D). Furthermore,

IMPase (Ca_00700 and Ca_05134), DGK3 (Ca_03279) and PIPase

(Ca_10733) proteins were also found to be co-expressed in DT(D).

The IMPase protein (Ca_05134) was up-regulated in DT(D/C).

Moreover, an enhanced level of myo-inositol (an osmoprotectant)

was detected in DT(C), DT(D) and DS(C). These co-expressed/

stress-responsive genes, proteins and metabolites might contribute

to coordinated regulation of PI signaling to impart better drought

adaptation in the DT genotype.

3.5.2 Glutathione metabolism pathway
Glutathione metabolism is an antioxidant defense system that

prevents cellular damage during abiotic stress (Banerjee and

Roychoudhury, 2019). We identified genes, proteins and

metabolites related to glutathione metabolism co-expressed in DT
A B

FIGURE 4

Integrated analysis for transcriptome, proteome and metabolome using weighted gene co-expression network analysis (WGCNA). (A) Integration of
transcriptome and proteome data using eigenvector for co-expressed gene modules (eigengenes) and co-expressed protein modules
(eigenproteins). A total of 11 eigengenes and 9 eigenproteins generated a matrix showing correlated eigengenes-eigenproteins. Highly correlated
modules were selected at correlation coefficients (r) ≥ 0.5. (B) Integration of transcriptome and metabolome data using eigenvector for co-
expressed gene modules (eigengenes) and co-expressed metabolite modules (eigenmetabolites). A total of 11 eigengene and 5 eigenmetabolite
generated a matrix showing correlated eigengenes-eigenmetabolites. Highly correlated modules were selected at correlation coefficients (r) ≥ 0.35.
Correlation coefficient (r) for each module pair is shown as per scales shown on the right side. The total number of genes, proteins and metabolites
included in each module are shown in parenthesis.
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(C), DT(D), DS(C) and DS(D) samples (Figure 6; Table S9). The

genes of glutathione S-transferase classes, namely, lambda (GST;

Ca_12001) and TAU (GSTU25; Ca_03087, GSTU7; Ca_05354), and

ascorbate peroxidase 3 (APX3; Ca_01955), and protein, GSTU8

(Ca_08326) were found to be co-expressed in DT(C), DT(D) and

DS(C). The co-expression of these genes and proteins in both DT

and DS genotypes may represent their fundamental role in the

glutathione metabolism (Moons, 2005). However, genotype-specific

co-expression was observed for GSTU19 (Ca_14389) gene, and

GST7 (Ca_03442), glutathione peroxidase 3 (GPX3; Ca_10409) and

glucose-6-phosphate dehydrogenase 6 (G6PDH; Ca_14672)

proteins in DT(C) and DT(D). Importantly, correlation of genes

including, GPX4 (Ca_07849), APX6 (Ca_01758), cysteine

peroxiredoxin 1 (CysPrx1; Ca_05125), GSTU20 (Ca_23113), and

proteins, 6-phosphogluconate dehydrogenase (6PGDH; Ca_05800,

Ca_16508), cytosol aminopeptidase (AP; Ca_03329), peptidase M1

(PepM1; Ca_05761), isocitrate/isopropyl malate dehydrogenase

(IDH; Ca_12583), thylakoidal ascorbate peroxidase (tAPX;

Ca_12653), glutamate-cysteine ligase (GCL; Ca_05741) and

G6PDH1 (Ca_10123) specifically in DT(D) indicated their

important role in drought stress. Furthermore, genes of

glutathione S-transferase classes, GSTU7 (Ca_05354) and GST

(Ca_12001), and G6PDH1 (Ca_10123) protein were differentially

abundant in DT(D/C). L-threonine was co-expressed mainly in DT

(D), whereas cadaverine, leucine and asparagine were co-expressed

in DT(C), DT(D) and DS(C). The co-expressed/stress-responsive

genes, proteins and metabolites may confer an improved

glutathione metabolism in the DT genotype.
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3.5.3 Glycolysis/gluconeogenesis pathway
Glycolysis/gluconeogenesis is a fundamental carbohydrate

metabolism pathway regulating cellular carbon metabolism and

energy requirement. We found several glycolysis/gluconeogenesis

associated genes, proteins and metabolites to be co-expressed in DT

(C), DT(D), DS(C) and DS(D) (Figure 7; Table S10). The genes,

namely aldolase (Ca_27205), glyceraldehyde-3-phosphate

dehydrogenase C2 (GAPDHC2; Ca_11318) , pyruvate

decarboxylase-2 (PDC2; Ca_00374), pyruvate dehydrogenase

( PDH ) c omp l e x E 1 a l p h a s u b u n i t (C a _ 2 5 0 9 1 ) ,

phosphofructokinase (PFK; Ca_00673), aldehyde dehydrogenase

11A3 (ALDH11A3; Ca_03341), pyruvate orthophosphate dikinase

(PPDK) (Ca_06801), and proteins encoding GAPDHC2

(Ca_11318), PDC2 (Ca_00374), PFK (Ca_00673), ALDH11A3

(Ca_03341), triosephosphate isomerase (TPI; Ca_00722) and

pyruvate kinase (PK) (Ca_00753) were co-expressed in both DT

(C) and DS(C). These co-expressed genes and proteins were

considered key regulators of glycolysis/gluconeogenesis. However,

PK (Ca_12631, Ca_06556), galactose mutarotase-like (GALM-like;

Ca_02027, Ca_15348), PFK (Ca_14808), PFK4 (Ca_08339),

phosphoglycerate kinase (PGK; Ca_22673), phosphoenolpyruvate

carboxykinase 1 (PEPCK1; Ca_11524), lipoamide dehydrogenase 2

(LPD2; Ca_03055), ALDH7B4 (Ca_22351), phosphoglycerate

mutase (PGAM; Ca_09253) and fructose 1,6-biphosphatase

(FBPase; Ca_00102) genes, and GALM-like (Ca_15348);

ALDH7B4 (Ca_22351); PGAM (Ca_09253), TPI (Ca_02616),

enolase (ENO; Ca_00761), ENO1 (Ca_25827), glucose-6-

phosphate isomerase (GPI; Ca_10559), dihydrolipoamide
FIGURE 5

Phosphatidylinositol (PI) signaling pathway showing co-expressed genes, proteins and metabolites in drought-tolerant (DT) and drought-sensitive
(DS) chickpea genotypes under control (C) and drought (D) conditions. Co-expressed genes, proteins and metabolites are shown by orange, green
and blue colored boxes, respectively. The up-regulated genes, proteins and metabolites are marked (*). PP-IPs- Diphosphoinositol phosphates; PI-
Phosphatidylinositol; PIP, Phosphatidylinositol phosphate; IP, Inositol phosphate. Down-regulated genes, proteins and metabolites were not reported
in this pathway.
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acetyltransferase (Dlat; Ca_08401) and acyl-activating enzyme 7

(AAE7; Ca_02996) proteins were correlated mainly with DT(D).

Notably, FBPase (Ca_00102), PEPCK1 (Ca_11524), GALM-like

(Ca_15348) and PGAM (Ca_09253) were differentially abundant

in DT(D/C). The metabolites, including D-glucose, D-mannose and

glycerol were co-expressed in DT(C), DT(D) and DS(C). However,

D-mannitol was co-expressed mainly in DT(D) and DS(C); sorbitol

in DT(C) and DS(C), and D-allose in DT(D). The up-regulation of

D-glucose and D-mannitol was observed in DT(C)/DS(C) and DT

(D/C), respectively. These co-expressed/stress-responsive genes,

proteins and metabolites in the glycolysis/gluconeogenesis

pathway possibly contribute to drought stress adaptation in the

DT genotype.
3.6 Transcription factor encoding genes

TF encoding genes represented among the co-expressed genes

of DT(C), DT(D), DS(C) and DS(D) were investigated. In total, 735

TFs (belonging to 79 families), including 319, 267, 143 and 6 were

identified in DT(C), DT(D), DS(C) and DS(D), respectively (Figure

S7A). The members of TF families, including MYB (55, 7.51%),

bHLH (55, 7.51%), AP2-EREBP (45, 6.14%), HB (38, 5.2%), C3H

(28, 3.8%), MADS, (26, 3.55%), bZIP (26, 3.55%), WRKY (26,
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3.55%) and NAC (24, 3.27%) were most represented (Figure S7B).

MYB, bHLH, HB and AP2-EREBP were the most abundant TF

families identified in DT(C) and DT(D). A total of 39 TFs (14 up-

and 25 down-regulated) were identified in black, cyan, orange and

white modules correlated with DT(D). The DT(C) correlated

modules (blue, brown, midnight blue and grey60) harbored 28

differentially abundant TFs (18 up- and 10 down-regulated). These

modules represented the members of several TF-families (GNAT,

GRAS, C3H, HB, G2-like, bZIP, PLATZ, sigma70-like, CCAAT,

WRKY, Aux/IAA and C2C2-Dof) that are well known to be

involved in the regulation of drought stress response (Figure S7C).
3.7 Identification of QTL-hotspot
associated candidate genes/proteins
involved in drought stress

A QTL-hotspot region spanning 3 Mb (Ca4_11,276,225 to

Ca4_14,146,315 bp) harboring several QTLs for drought tolerance

related traits has been identified in linkage group 4 (CaLG04) in

chickpea (Varshney et al., 2014). We identified a total of 286

annotated protein-coding genes located within the QTL-hotspot

region (Figure 8A). The QTL-hotspot region (11,284,553 bp to

14,082,277 bp) comprised of co-expressed genes was considered
FIGURE 6

Glutathione metabolism pathway showing co-expressed genes, proteins and metabolites in drought-tolerant (DT) and drought-sensitive (DS)
chickpea genotypes under control (C) and drought (D) conditions. Co-expressed genes, proteins and metabolites are shown by orange, green and
blue colored boxes, respectively. Up- (*) and down-regulated (**) genes, proteins and metabolites are marked. GSH- Glutathione reduced; GSSG-
Glutathione oxidized.
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as co-expression QTL-hotspot (Figure 8A). The co-expression QTL-

hotspot contained a total of 121 co-expressed genes. Among these,

57 genes (blue, brown, midnightblue, grey60 and darkorange

modules) in DT(C), 42 genes (black, cyan, orange and white

modules) in DT(D) and 22 genes (blue module) in DS(C) were

co-expressed (Figure S8A). Twenty genes in blue module were

found to be common between DT(C) and DS(C), however no genes

were co-expressed in DS(D) and DT(D). Notably, at least 12 co-

expressed genes encoded TFs, such as MADS-box (Ca_04518), OFP

(Ca_04584), RWP-RK (Ca_04456), and AP2-EREBP (Ca_04503,

Ca_04504) were specific to DT(C), Alfin-like (Ca_04596), SNF2

(Ca_04622), HSF (Ca_04488) and MYB (Ca_04621) were present in

DT(D), whereas Trihelix (Ca_04385, Ca_04387) and AP2-EREBP
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(Ca_04370) were co-expressed in both DT(C) and DS(C) (Figure

S8B). Further, QTL-hotspot region (11,396,081 to 14,093,770 bp)

comprised of 38 co-expressed proteins was considered as protein

QTL-hotspot (pQTL-hotspot) (Figure 8A). The pQTL-hotspot region

associated proteins were present in darkturquoise module of DT

(C); darkturquoise, grey60 and blue of DT(D); royalblue, green,

darkgreen and brown of DS(C) and, royalblue and darkgrey

modules of DS(D) (Figure S8C).

We further investigated the differential abundance behavior of

QTL-hotspot associated co-expressed genes and proteins. In total,

seven (6 up- and 1 down-regulated) DATs including one TF in DT

(C)/DS(C) were identified within the co-expression QTL-hotspot.

The genes encoding receptor like protein 21 (RLP21; Ca_04471),
FIGURE 7

Glycolysis/gluconeogenesis pathway showing co-expressed genes, proteins and metabolites in drought-tolerant (DT) and drought-sensitive (DS)
chickpea genotypes under control (C) and drought (D) conditions. Co-expressed genes, proteins and metabolites are shown by orange, green and
blue colored boxes, respectively. Up- (*) and down-regulated (**) genes, proteins and metabolites are marked.
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stabilizer of iron transporter SufD/polynucleotidyl transferase

(PNT; Ca_04545), cytochrome P450 family 76 (cyt 450;

Ca_04587), copper amine oxidase (CuAOs; Ca_04604) and

myosin heavy chain-related protein (Ca_04474) were up-

regulated, whereas PLAT/LH2 domain-containing lipoxygenase

(Ca_04606) was down-regulated in DT(C)/DS(C) (Figure 8B). In

addition, one co-expression QTL-hotspot region associated gene

encoding dehydration-responsive element binding (DREB;

Ca_04504) TF was up-regulated in DT(C)/DS(C) (Figure 8B).

Among the pQTL-hotspot region associated co-expressed proteins,

nucleic acid binding protein (Ca_04399) was down-regulated in DT

(D/C), whereas PLAT/LH2 domain-containing lipoxygenase family

protein (Ca_04606) was up-regulated in DS(D/C). However,

oligosaccharyltransferase (OST) complex/magnesium transporter

family protein (Ca_04632) was up-regulated, and carboxylesterase

20 (Ca_04524) and membrane-associated progesterone binding

protein 3 (Ca_04482) were downregulated in DT(C)/DS(C)

(Figure 8C). Overall, the co-expressed/up-regulated genes,

proteins and/or TFs located within the QTL-hotspot region

represent important candidates for drought tolerance in chickpea.
3.8 Validation of differential abundance of
selected genes via RT-qPCR

The differential abundance of selected candidate genes in

different comparisons was determined by RT-qPCR. A total of 17
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selected genes involved in PI signaling, glutathione metabolism and,

glycolysis/gluconeogenesis pathway, and those located in QTL-

hotspot and TF related genes that exhibited differential abundance

in RNA-seq data were analyzed by RT-qPCR analysis. The

expression analysis of the genes revealed a high correlation

(Pearson correlation, 0.76) between the results obtained from RT-

qPCR and RNA-seq (Figure S9).
4 Discussion

Drought stress significantly affects chickpea growth and

productivity via altering the underlying molecular mechanism/

response (Nayyar et al., 2006). An integrated multi-omics analysis

can elucidate important biological processes, metabolic pathways

and regulatory networks in plants (Amiour et al., 2012; Srivastava

et al., 2013; Sudre et al., 2013; Zeng et al., 2013 Remmers et al., 2018;

Li et al., 2019b; Wang et al., 2019; Yun et al., 2019; Chin et al., 2020;

Moreno et al., 2021; Bittencourt et al., 2022; Leão et al., 2022; Shu

et al., 2022). However, such integrated analysis to decipher plant

response to abiotic stress is lacking in chickpea. In this study, we

performed transcriptomics, proteomics and metabolomics analyses

of two well-characterized genotypes with contrasting drought

response/tolerance (ICC 4958 as DT and ICC 1882 as DS) to gain

insights into the molecular mechanisms underlying drought stress

in chickpea. Further, integration of multi-omics data was performed

to provide a better understanding of drought tolerance in chickpea.
A B

C

FIGURE 8

Identification of quantitative trait loci-hotspot (QTL-hotspot) associated drought responsive genes, proteins and transcription factors (TFs) in
drought-tolerant (DT) and drought-sensitive (DS) chickpea genotypes under control (C) and drought (D) conditions. (A) QTL-hotspot region
spanning 3Mb (Ca4_11,276,225 to Ca4_14,146,315 bp) harboring several QTLs for drought tolerance related traits in linkage group 04 (CaLG04) in
chickpea. QTL-hotspot region (11, 284,553 bp to 14,082,277 bp) comprised of co-expressed genes is considered as co-expression QTL-hotspot
region. QTL-hotspot region (11,396,081 to 14,093,770 bp) comprised of co-expressed proteins is considered as protein quantitative trait loci-hotspot
(pQTL-hotspot). Differentially abundant transcripts (DATs) and differentially abundant proteins (DAPs) of co-expression QTL-hotspot and pQTL-
hotspot, respectively, are shown with their co-ordinates. (B) Heatmap of co-expression QTL-hotspot region associated DATs and DA-TFs identified
in different modules of DT(C)/DS(C). (C) Heatmap of pQTL-hotspot region associated DAPs identified in different modules of DT(C)/DS(C), DT(D/C)
and DS(D/C). * denotes differentially abundant TF.
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4.1 DATs, DAPs and DAMs participate in
specific metabolic pathways/processes

Plant adaptation to abiotic stress is mainly initiated by stress-

responsive genes and/or proteins (Kosova et al., 2018; Nawae et al.,

2020; Kosova et al., 2021; Kausar et al., 2022). We investigated the

differential abundance of genes, proteins and metabolites in DT and

DS genotypes under drought and control conditions. The identified

DATs and DAPs were found to participate in various metabolic

pathways and biological processes. The up-regulated genes and

proteins were involved mainly in glycolysis/gluconeogenesis and

galactose metabolism in DT genotype under drought stress. On

contrary, the DS genotype exhibited down-regulation of glycolysis/

gluconeogenesis associated genes and proteins under drought stress.

In addition, metabolites involved in carbohydrate metabolism were

found to be differentially abundant in both DT and DS genotypes.

The carbohydrate metabolism is a major pathway regulating cellular

carbon and energy requirement for plant survival under drought

stress, and genes and proteins encoding the key enzymes of

carbohydrate metabolism were found to be differentially

expressed under drought stress in chickpea (Khanna et al., 2014).

Indeed, sugars are considered an important player in mitigating

abiotic stress tolerance in plants (Keunen et al., 2013; Gangola and

Ramadoss, 2018). These results demonstrated the important role of

carbohydrate metabolism to withstand drought stress in the DT

genotype. The amino acids are the precursors of secondary

metabolites and signaling molecules, and promote ATP

production and detoxification under abiotic stress (Batista-Silva

et al., 2019). In our study, up-regulation of several genes/proteins of

amino acid metabolism, and differential abundance of amino acids

in DT and DS genotypes was suggested to be involved in drought

response. Higher amino acid accumulation is a general attribute to

drought stress in the plants (Martinelli et al., 2007). Furthermore,

hormone signaling and its cross-talk improve abiotic stress

tolerance by inducing stress-responsive genes (Ku et al., 2018).

Therefore, up-regulation of hormone signaling related genes and

proteins in DT(C)/DS(C) might contribute to encountering

drought stress. Overall, the activation of stress-responsive genes,

proteins and metabolites might be involved in the better adaptation

of DT genotype to drought stress.
4.2 TFs confer genotype-specific response
under drought stress

TFs are important regulators contributing to abiotic stress

tolerance in the plants (Yoon et al., 2020). In our study, up-

regulation of members of GNAT, GRAS, C3H, HB, bZIP, PLATZ,

sigma70-like, CCAAT, WRKY, Aux/IAA and C2H2-Dof TF

families in DT(C)/DS(C) suggested the genotype-specific

involvement of TFs. A significant increase in the expression of

GNAT family members, histone acetyltransferase (HAT) and

acetylation of histone H3 and H4 has been reported in rice under

drought stress (Fang et al., 2014). Importantly, drought-induced

genome-wide histone acetylation changes the expression of
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drought-responsive genes (Li et al., 2021). The over-expression of

OsGRAS23 and TaWRKY2 induced drought tolerance in rice and

wheat, respectively (Xu et al., 2015; Gao et al., 2018). Likewise, over-

expression of homeobox (HB) genes, OsHOX24 and OsWOX13

enhanced abiotic stress tolerance in rice (Bhattacharjee et al., 2016;

Minh-Thu et al., 2018). Rice OsbZIP62, involved in ABA signaling,

positively regulates the expression of drought-responsive genes

(Yang et al., 2019). However, over-expression and RNAi

knockdown of OsbZIP71 generated drought-tolerant and sensitive

phenotype, respectively (Liu et al., 2014). The C3H ZF-TF

(AetTZF1) has been suggested to enhance drought tolerance by

promoting root growth in Arabidopsis (Jiang et al., 2014), and

C2H2-ZFPs provided abiotic and oxidative stress tolerance (Huang

et al., 2009). Likewise, WRKY TF provided adaptation to abiotic

stress tolerance by modulating stress-responsive genes (Sen et al.,

2017). Therefore, the differential abundance of TFs can contribute

to better transcriptional control in multiple regulatory pathways for

enhanced drought tolerance in DT genotype.
4.3 Implication of QTL-hotspot region
associated factors in drought tolerance

QTL-hotspot region plays a major role in drought tolerance in

chickpea, and its introgression in an elite variety (JG 11) improved

the root traits and drought tolerance (Varshney et al., 2013b).

Integration of QTL information and co-expression network

analysis has been exploited successfully for the identification of

potential candidate genes associated with the maize kernel starch

content (Lin et al., 2019a). We applied a similar strategy for the

identification of drought-responsive candidate genes and proteins

within the QTL-hotspot. The QTL-hotspot region associated genes

and proteins in DT(C)/DS(C) have been investigated for their

involvement in drought tolerance/response in previous studies.

Among the identified genes of co-expression QTL-hotspot,

cytochrome P450 (CYP), OsDSS1 is known to be involved in

growth and drought stress response in rice (Tamiru et al., 2015).

Drought-responsive miR-114 and its target gene, namely stabilizer

of iron transporter SufD/polynucleotidyl transferase, participated in

drought tolerance in Sorghum bicolor (Katiyar et al., 2015).

Likewise, HORVU2Hr1G023890 encoding myosin-J heavy chain is

associated with drought tolerance during seed germination in barley

(Thabet et al., 2018). The over-expression of receptor-like kinases

(RLKs) enhanced abiotic stress tolerance (Osakabe et al., 2010), and

cysteine-rich receptor-like protein kinase 5 (CRK5) improved

drought tolerance in Arabidopsis (Lu et al., 2016). Furthermore,

over-expression of copper amine oxidase 1 mediates proper xylem

development and differentiation in Arabidopsis roots, and xylem

morphology determines drought response (Ghuge et al., 2015).

Moreover, the co-expression QTL-hotspot region associated up-

regulated TF, DREB (Ca_04504) is known to contribute in drought

tolerance (Haake et al., 2002; Zhang et al., 2009). Similarly, up-

r egu l a t ed pQTL -ho t s po t a s so c i a t ed p ro t e in , o l i go -

saccharyltransferase complex/magnesium transporter family

protein (Ca_04632), has been reported previously to participate in

drought tolerance (Farid et al., 2013). These results suggested that
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the QTL-hotspot region associated drought-responsive genes,

proteins and TFs contribute to improved drought tolerance in the

DT genotype.
4.4 Lipid signaling, glutathione metabolism
and glycolysis/gluconeogenesis pathways
are involved in drought tolerance

PI signaling is crucial for regulating cellular homeostasis during

abiotic stress (Hou et al., 2016). Under stress conditions, the PI

signaling pathway influences membrane integrity and cellular

signaling via phosphorylation and de-phosphorylation of its

related enzymes by kinases and phosphatases, respectively

(Heilmann, 2016). The co-expression of various kinases and

phosphatases encoding genes and proteins suggested a more

pronounced regulation of PI signaling in DT genotype under

drought. It has been demonstrated that the identified kinases and

phosphatases are involved in cell cycle regulation, histone

modifications, cytoskeleton organization and protein sorting in

response to abiotic stress (Williams et al., 2005; Pribat et al., 2011;

Dieck et al., 2012; Akhter et al., 2016). Further, FAB1D/PI3P5K

allows protein trafficking in cortical and stele cells for proper root

development (Hirano and Munnik, 2015), and OsDGK1 restores

lateral root (LR) density and seminal root (SR) formation (Yuan

et al., 2019). Accordingly, we also suggest the involvement of

kinases and phosphatases in better root development and hence

drought tolerance in the DT genotype. The myo-inositol acts as an

osmoprotectant and maintains plant adaptation to drought stress

(Li et al., 2020). The over-expression of IMPase increases myo-

inositol content and results in an enhanced abiotic stress tolerance

(Zhang et al., 2017). Likewise, up-regulation of IMPase (Ca_05134)

leading to accumulation of myo-inositol in DT(D/C) suggested its

specific role in drought stress tolerance.

Glutathione metabolism is known to be involved in maintaining

cellular redox homeostasis during drought stress (Nahar et al.,

2015). This adaptive mechanism encounters oxidative damage by

utilizing various ROS scavengers (antioxidants) and redox

responsive genes (Aquilano et al., 2014). The glutathione

metabolism related genes and proteins are well known for

regulating cellular redox homeostasis during abiotic stress (Chen

et al., 2003). We observed differential regulation of glutathione

metabolism in both the genotypes, and genes and proteins of

glutathione metabolism were found to be co-expressed specifically

in DT(D). The identified genes have previously been reported to

contribute to abiotic stress tolerance. For example, the over-

expression of glutathione metabolism related gene/proteins,

including GST, G6PDH, PGDH, APX, GSTU and GPX improved

drought tolerance in the transgenic plants (Badawi et al., 2004; Miao

et al., 2006; Ji et al., 2010; Lin et al., 2013; Srivastava et al., 2019). The

peptidases and GCL positively regulate plant tolerance to abiotic

stress via regulating cellular redox homeostasis (Hicks et al., 2007;

Simova-Stoilova et al., 2009). Likewise, GPx/Prx system efficiency

regulates H2O2 concentration in balancing the cellular glutathione

level (Molavian et al., 2015). Moreover, PGDH and G6PDH

maintain cellular redox homeostasis by elevating NADPH/
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NADP+ levels in response to drought and salt stresses (Chen

et al., 2003). In accordance, co-expression of glutathione

metabolism related gene and proteins in DT(D) might explain, in

large extent, the enhanced drought tolerance in the DT genotype. In

addition, differential abundance of GST (Ca_12001), GSTU

(Ca_05354) and G6PDH (Ca_10123) may further contribute to

improved drought tolerance in DT. Higher amino acids level has

been suggested to improve drought performance (Hildebrandt,

2018), and regulating meristem activity and root architecture

during drought stress (Walch-Liu et al., 2006). Similarly, amino

acids accumulation via glutathione metabolism is indicative of

stress-adaptive responses in DT. Considering the intricate

regulation via stress-responsive genes, proteins and metabolites,

an improved glutathione metabolic pathway seems to contribute to

the enhanced drought tolerance in the DT genotype.

The glycolysis/gluconeogenesis is an important metabolic

pathway that regulates carbohydrate metabolism under drought

stress (Zhu et al., 2019). Glycolysis/gluconeogenesis associated co-

expressed genes and proteins identified in DT(D) are known to be

involved in abiotic stress tolerance (Pan et al., 2016; Lin et al., 2019b;

Zeng et al., 2019). Among the identified co-expressed genes and

proteins in DT(D), PK, PGAM, LDH, PFK, TPI and GPI have been

reported to express differentially under drought (Sharma et al.,

2012; Khanna et al., 2014; Pan et al., 2016; Yao and Wu, 2016;

Li et al., 2019a). Moreover, ENO is known to promote transcription

of glycolysis related genes under abiotic stress (Lee et al., 2002).

Likewise, GALM maintains drought adaptation and recovery

(D’Andrea et al., 2015), and FBPase undergoes post-translation

modification to regulate glycolysis during drought stress (Harn and

Daie, 1992). Moreover, over-expression of OsPgk2a-P, ScALDH21,

ZmPCK2, LDH and TraeALDH7B1-5A confer improved abiotic

stress tolerance (Chen et al., 2015; Joshi et al., 2016; Yang et al.,

2016; Jain et al., 2020; Jiang et al., 2022). Notably, the role of co-

expressed genes in DT(D), namely Dlat and AAE, have not been

reported in drought response/tolerance in plants yet. Therefore,

further studies are required to elucidate their role in drought

response. The up-regulation of FBPase (Ca_00102), PEPCK1

(Ca_11524), GALM-like (Ca_15348) and PGAM (Ca_09253) in

DT(D/C) may further contribute to enhanced drought tolerance in

the DT genotype. Glucose is a precursor of glycolysis/

gluconeogenesis pathway and, is necessary for coordinate

regulation of both glycolysis and gluconeogenesis. Moreover, D-

glucose is known to induce the expression of abscisic acid (ABA)

signaling related genes (Dekkers et al., 2008; Fukumoto et al., 2013),

and certainly ABA is critical for controlling abiotic stress responses

(Tuteja, 2007). However, D-mannitol is an important osmolyte and

compatible solutes providing enhanced tolerance to salt and

drought stress (Pujni et al., 2007). Accordingly, accumulation and

differential abundance of D-mannitol and D-glucose in DT

genotype is an indicative of improved drought tolerance. These

results highlighted that DT genotype possesses an improved

carbohydrate metabolism to withstand drought stress. Altogether,

the synergistic response of co-expressed genes, proteins and

metabolites involved in PI signaling pathway, glutathione

metabolism and carbohydrate metabolism circumvent the

enhanced drought stress tolerance in the DT genotype.
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5 Conclusions

To provide a better understanding of drought tolerance, we

performed integrated multi-omics analysis in two chickpea genotypes

with contrasting responses to drought stress. The WGCNA analysis

revealed the co-expressed genes, proteins and metabolites in DT and DS

genotypes under control and/or drought conditions. The integrated

transcriptome, proteome, and metabolome analysis identified important

stress-responsive pathways, including PI signaling, glutathione

metabolism and glycolysis/gluconeogenesis that plausibly, in large part,

contribute to the drought tolerance in chickpea. Moreover, up-regulated

genes, proteins and TFs associated with the QTL-hotspot region seem to

determine drought tolerance in the DT genotype. Overall, these results

provide new insights into drought stress response in chickpea and reveal

candidate genes/proteins that can serve as potential targets for further

functional characterization and improving chickpea drought tolerance

via genome engineering approaches.
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