
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Chuanlei Zhang,
Tianjin University of Science and
Technology, China

REVIEWED BY

Bingbo Cui,
Jiangsu University, China
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Accurate navigation is crucial in the construction of intelligent orchards, and the

need for vehicle navigation accuracy becomes even more important as

production is refined. However, traditional navigation methods based on global

navigation satellite system (GNSS) and 2D light detection and ranging (LiDAR) can

be unreliable in complex scenarios with little sensory information due to tree

canopy occlusion. To solve these issues, this paper proposes a 3D LiDAR-based

navigation method for trellis orchards. With the use of 3D LiDAR with a 3D

simultaneous localization and mapping (SLAM) algorithm, orchard point cloud

information is collected and filtered using the Point Cloud Library (PCL) to extract

trellis point clouds as matching targets. In terms of positioning, the real-time

position is determined through a reliable method of fusing multiple sensors for

positioning, which involves transforming the real-time kinematics (RTK)

information into the initial position and doing a normal distribution

transformation between the current frame point cloud and the scaffold

reference point cloud to match the point cloud position. For path planning,

the required vector map is manually planned in the orchard point cloud to specify

the path of the roadway, and finally, navigation is achieved through pure path

tracking. Field tests have shown that the accuracy of the normal distributions

transform (NDT) SLAM method can reach 5 cm in each rank with a coefficient of

variation that is less than 2%. Additionally, the navigation system has a high

positioning heading accuracy with a deviation within 1° and a standard deviation

of less than 0.6° when moving along the path point cloud at a speed of 1.0 m/s in

a Y-trellis pear orchard. The lateral positioning deviation was also controlled

within 5 cm with a standard deviation of less than 2 cm. This navigation system

has a high level of accuracy and can be customized to specific tasks, making it

widely applicable in trell is orchards with autonomous navigation

pesticide sprayers.
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1 Introduction

As a labor-intensive industry (Lyu et al., 2020), fruit production

relies heavily on manual labor for its production process. With today’s

increasing labor costs and population pressure, traditional production

methods are unsustainable. In order to overcome these problems,

many studies have been devoted to the use of orchard robots to replace

manual labor, and devices such as automated orchard picking robots

(Wang X. et al., 2023; Wang Y. et al., 2023) and mobile orchard

applications and fertilization robots (Yayan et al., 2015; Gao et al.,

2020) have emerged. How to achieve accurate and efficient

autonomous navigation in a complex orchard environment by

determining its own position through various sensors is the focus of

all orchard operation robots. Early autonomous navigation devices in

orchards were mainly based on physical tracks (Keicher and Seufert,

2000; Yayan et al., 2015) with global navigation satellite system (GNSS)

(Ryu et al., 2016; Yin et al., 2018). Bakker et al. (2011) developed a real-

time kinematics–Differential Global Positioning System (RTK-DGPS)

automatic navigation platform for sugar beet fields, which can achieve

centimeter-level navigation accuracy. Bin et al. (2017) designed an

orchard sprayer based on the BeiDou satellite navigation system, which

was tested to have an average positioning accuracy of 0.03 m at 2 km/h

operating conditions. Some orchards may pose a challenge for GNSS-

based navigation devices as agricultural robots often work under the

plant canopy. This can result in satellite signals being blocked and not

reaching GNSS receivers, as highlighted by Li et al. (2009) and Niewola

(2020). Therefore, many researchers have started to replace GNSS as

the main sensor for navigation with light detection and ranging

(LiDAR) for orchard navigation tasks. Bayar et al. (2015) completed

the localization and steering control of orchard vehicles between rows

of fruit trees using LiDAR, which is applicable tomost orchards and has

reliable localization accuracy. Zhang et al. (2020) obtained the trunk

position by using 2D LiDAR acquisition and filtering, then fitted the

navigation path using least squares, and finally used an improved

tracking controller to achieve autonomous navigation. Li et al. (2022)

constructed a raster map for the jujube orchard by LiDAR with the 2D

simultaneous localization and mapping (SLAM) method and used

DWA+A* to plan the path for navigation. Wang et al. (2022)

constructed a map by 3D LiDAR for environment sensing while

fusing multi-source information with millimeter-wave radar for

obstacle avoidance. The navigation test shows its positioning

accuracy within 15 cm.

Computer vision techniques also play an important role in the

navigation of agricultural machinery. Visual navigation usually uses

monocular and binocular cameras with the Hough transform (Hough

and Paul, 1962;Winterhalter et al., 2018), least squares (Cui et al., 2015;

Mao et al., 2019), and other methods to extract paths. With the rise of

image deep learning processing techniques in recent years, many

researchers have started to use deep learning processing orchard

environment information and fit navigation lines to control vehicles

traveling through the orchard. Cao et al. (2022) segmented farm crops
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based on residual networks and fitted the navigation paths by the least

squares method, and their crop row detection accuracy reached 90.9%.

Yang et al. (2022) fitted the navigation paths of orchard hard surfaces

by training a semantic segmentation network based on SegNet

(Badrinarayanan et al., 2017) and UNet (Ronneberger et al., 2015),

and their path recognition rate reached 92%. Opiyo et al. (2021)

obtained the navigation paths by extracting the texture features of fruit

trees and roads, and their lateral accuracy is at the centimeter level.

With the standardized orchard development, trellis orchards are

more adapted to mechanized operation. Due to the interference of the

trellis and dense canopy, the GNSS signal is unstable, and the

positioning method relying on GNSS alone is not reliable. The

navigation method of extracting trunk position information by laser

filtering is prone to failure due to missing path information at orchard

corners. The navigation method of constructing raster maps by LiDAR

tends to lose its own position due to the similarity of information

between orchard rows. The visual extraction filter is too dependent on

the light conditions, which is unsuitable for some working conditions

that require night operation. In addition, today’s orchard navigation

tasks are more focused on the synergy of multiple tasks, and more

intuitive orchard maps are needed to arrange various tasks. Traditional

navigation methods mainly construct two-dimensional maps with little

information and poor readability. It cannot reflect more effective

orchard point cloud information, so a more intuitive way to

construct orchard maps is urgently needed to match various

mechanical operations. To address these problems, this paper

proposes a trellis orchard navigation method based on 3D SLAM

technology to construct maps and fuse RTK and LiDAR sensors for

redundant positioning. The method uses normal distributions

transform (NDT) mapping (Biber and Straßer, 2003) to construct

3D point clouds of orchards and extracts trellis feature points as

reference point clouds by straight pass filtering, voxel filtering, outlier

filtering, etc. The coordinates provided by RTK are transformed into

the initial values of the position in real time and introduced into NDT

matching for point cloud matching. Finally, the vector map (Darweesh

et al., 2017) of the orchard is constructed in the form of manual

planning by marking the paths in the constructed 3D point cloud map

of the orchard to adapt to the navigation of various orchards with

different scales and usage requirements.
2 Materials and methods

2.1 Orchard conditions

The trial site was located in the pear orchard of Jiangsu

Academy of Agricultural Sciences, which was constructed using a

standard Y-trellis with fruit trees spaced 6.0 m apart in rows, 3.0 m

apart in columns, and an average height of 3 m. The trial was

conducted in November 2022. Figures 1A, B show the aerial view of

the orchard and the trellis, respectively.
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2.2 Hardware system

The study uses Songling Scout 2.0 robot as the motion chassis,

which has four-wheel drive capability and uses differential speed for

steering. For robot control, the target line and angular speed were

received from the host computer via CAN bus and output to the

motor for bottom control via STM32. The main technical

parameters of the robot chassis are shown in Table 1. The

navigation system was equipped with a 16-line LiDAR (C16,

Leishen Intelligent System Co., Ltd., Shenzhen, China) and a

nine-axis inertial measurement unit (IMU) (HFI-A9, HandsFree,

Shenzhen, China). It was mounted on a metal bracket at 0.2 m in

the X-axis direction and 0.25 m in the Z-axis direction with the

center of the robot chassis as the origin of the coordinate system.

GNSS (T3-B, QFRTK, Shenzhen, China) equipment was

magnetically mounted to the front and rear center of the vehicle

chassis to provide differential position information and record real-

time trajectories. The laptop was used as a control terminal for

various sensors. The laptop consisted of an Intel Core i7-12700 h

CPU with 16 GB of DDR5 RAM. Ubuntu Linux 18.04LTS was

installed on the computer, together with the Robot Operating

System (ROS). The Laptop communicates with the STM32 in the

chassis via usb2can with CAN signal output speed information.

Figure 2 shows the complete system hardware platform.
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2.3 3D SLAM-based map
construction method

NDT was proposed by Biber and Straßer, 2003. The idea of

NDT can be summarized as filtering the input point cloud in each

frame and then stitching it with the previous frame by matching the

computed bit pose to build a map. NDT mapping first divides the

single-frame point cloud scanned by 3D LiDAR into cubes with

certain voxel dimensions to reduce the data complexity and

introduce an initial set of positional parameters. Formula 1

represents the point cloud intensity of each cube. Then, the

probability density is calculated from Formula 2 for all point

clouds within the cube. Then, a set of discrete point clouds is

expressed directly and approximately in the form of probability

density functions, which are smooth and continuously derivable.

Each probability density function can be considered as an

approximation of a local surface, which not only describes the

location of the surface in space but also contains information about

the orientation and smoothness of the surface.

S =
1
mo

m

k=1

(~yk −~m)(~yk −~m)
T (1)

f (~x) =
1

(2p)
3
2

ffiffiffiffiffiffi
Sj jp e−

(~x−~m)T S−1(~x−~m)
2 (2)

where y!k k=1,…,m are the positions of the reference scan points

contained in the cube.

After the transformation of the input point cloud in one frame

was completed in this way, the NDT SLAM will update the point

cloud in the global map. According to Formula 3, when the point

cloud information was input in the next frame, for the point cloud

X = f~X1,…,~Xng, there exists a set of transformation matrices T

(~p,~x) . For a given probability density function of the scanned point

cloud, the bit pose ~p that makes the best match between the two

frames was the solution of the maximum likelihood function, which

was also the minimal value of its negative logarithm, as shown in

Formula 4.

Y =
Yn
k=1

p(T( p!, x!k)) (3)
TABLE 1 Main parameters of Scout 2.0 robot.

Name Value

Dimensions (L × W × H), m 0.93 × 0.7 × 0.35

Wheelbase, mm 498

Tread, mm
Top speed, m/s

582
1.5

Motor rated voltage
Minimum ground clearance, mm
Maximum grade, °
Maximum load, kg

24V DC
135
30
50
BA

FIGURE 1

Test fields. (A) Aerial view of the orchard. (B) Y-trellis for orchard.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1207742
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xia et al. 10.3389/fpls.2023.1207742
− logY = −o
n

k=1

log(p(T(~p,~xk))) (4)

For Formula 4, the optimal solution was obtained by Newton’s

optimization iteration as the best matching poses, and then the

point cloud of each LiDAR scan frame was updated in the global

map with the result of the matching poses. This process was

repeated to overlay the point clouds to finally obtain the global

map. The flowchart of the NDT mapping algorithm is shown

in Figure 3.

There are several advantages to using the NDT method for

environment construction in an orchard environment. First, it can

adjust the map resolution and reduce the data volume by voxelizing

the point cloud, which has a good downsampling effect on the
Frontiers in Plant Science 04
information of all kinds of branches and leaves noise in the orchard.

Second, the method has higher adaptability to subtle changes in the

environment. When there is a change in the fruit trees within a

divided voxel, the probability density description method can

effectively reduce the error caused by subtle changes in the point

cloud matching.
2.4 GNSS fusion NDT point cloud matching
based on localization method

The NDTmatching approach to localization is also based on the

above-mentioned principle of great likelihood estimation for

positional computation. By continuously comparing the input

point cloud with the already recorded point cloud in each frame,

the position corresponding to each frame is continuously output.

However, this approach needs to give the initial value of the locus

pose during the point cloud matching calculation, and the

approximate solution of the locus pose is used to obtain the

optimal result faster by subsequent Newtonian iterative

optimization. If completely relying on NDT positioning, the

system can only set the initial value of the positional pose once at

the beginning, which will lead to positioning failure and no

automatic correction. When the initial value is set incorrectly or

the subsequent matching cannot obtain the result, the vehicle

position falls into robot abduction. In order to solve this problem,

the best method is to continuously provide the NDT with the initial

position value and recalculate it through external data when the

NDT fails. Considering that the orchard is outdoors, it is suitable to

introduce GNSS information with high position positioning

accuracy and convert the longitude and latitude data provided by
FIGURE 2

Photograph of the mobile platform.
FIGURE 3

NDT mapping. NDT, normal distributions transform.
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GNSS into the initial position parameters of the vehicle and use

them as iterative initial values for NDT position calculation, which

changes the positioning method from single sensor work to multi-

sensor fusion positioning.

For the specific practice of converting RTK latitude and

longitude information to vehicle position, this paper proposes a

conversion procedure to convert it in real time, and its pseudo-code

is shown in Figure 4. The program first records the latitude and

longitude of the origin of the point cloud map and aligns the world

coordinate system with it. Then, the relative latitude and longitude

are obtained by subtracting the original world coordinate of the

map from the input GNSS. Finally, the relative coordinate

information is transformed into the map coordinate system in

real time.

Considering the large variety of fruit trees, the timeliness and

reliability of the point cloud generated by NDT mapping are poor,

and the efficiency of the solution will be affected by a large amount

of data in the subsequent point cloud matching. The trellis is a fixed

and not easily deformed marker in the orchard, and it is the most

ideal reference point cloud for alignment. The research uses the

Point Cloud Library (PCL) to filter and extract it as the reference

point cloud for NDT pose calculation. The specific flow of the point

cloud processing and positioning method is shown in Figure 5. The

input point cloud is first voxel filtered to reduce the overall data

volume of the point cloud, then the lower height point cloud is cut

in the form of straight pass filtering to retain the fruit tree and trellis

point clouds, and finally, the redundant point clouds within the two

trellises are cut by rows in the form of outlier filtering with straight

pass filtering to retain the trellis point cloud alone. After the scaffold

reference point cloud has been processed, the height of the input

LiDAR point cloud is controlled to maximize the proportion of the

input scaffold point cloud among all input point clouds, and the

RTK-supplied positional information is used as the initial value for

the NDT iterative algorithm to match the scaffold reference point

cloud with the LiDAR input point cloud. The NDT first constructs a

transformation matrix T containing six degrees of freedom

according to the initial value of the pose and projects the input

LiDAR point cloud into the reference point cloud coordinate system

via the transformation matrix T. The algorithm calculates the

matching score by comparing the position distribution of each

cell of the input point cloud in the reference point cloud and
Frontiers in Plant Science 05
superimposing the cells generated from the two sets of point clouds.

When the matching score is less than the pre-defined matching

threshold, the alignment parameter T is calculated by iterative

Newtonian optimization to make the matching score meet the

requirement, and the result is the position of the input point

cloud. When the matching score does not meet the

predetermined threshold, the positioning is judged to be lost. At

this time, the positioning process is restarted, and the initial

position information is recalculated from the previously obtained

RTK coordinate information. The NDT calculation process is

repeated to obtain the vehicle position information.
2.5 Vector map navigation path generation
and tracing method

The task of mapping driveable paths in a 3D point cloud map is

usually performed by means of high-precision vector maps in the

field of autonomous driving. A vector map consists of point

elements, lane elements, line elements, pole elements, surface

elements, and so on. The lane information is generated by

manually or automatically marking the position of each element

in the point cloud. The complete vector map in the autonomous

driving domain also has elements such as stop lines, traffic lights,

and footpaths. Fruit trees are regularly arranged, which provides

good conditions for map vectorization. Therefore, this paper uses a

manually annotated vector map to plan the driving rules and only

takes the four elements of the point node lane to form the basic

elements of the navigation path. Each point element has its own ID

number and coordinates position in a vector map, and the specific

location of each point can be marked in the point cloud map. When

a path is specified, the point element in the lane is converted into a

node element. The node element defines the points on the driveable

lane in the point cloud, and the location information of the lane

elements can be defined by the node. The dtlane element is a point

element that complements the lane shape information, including

the directional angle between points and the curvature radius of the

steering path. Lane elements are sequentially connected by node

elements to build lanes and define the center of the driving route.

These four elements are recorded in tabular form with their

respective attributes and finally published separately in the point
FIGURE 4

Pseudo code for conversion.
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cloud map through the ROS system. Unity 3D Maptool plug-in is

used to carry out manual vector map annotation in the orchard

point cloud. The planned path is shown in Figure 6. The navigable

path in the orchard is constructed by adding a point element and

connecting each point to lane element. The same method is used to

construct and transform road edges. The U-shaped line is taken as

the fruit tree inter-row steering route, and the driving route map is

built with three rows of fruit trees as the main object. Among them,

the pink dotted line is the calibrated navigation route, the blue solid

line is the prescribed form range, and the green part is the orchard

point cloud. They are used to assist in labeling the driving line of a

vector map to precisely locate the position of each element.

When the trajectory is generated, the final task of the navigation

vehicle is to follow the trajectory. The planned trajectory in the

orchard is relatively simple, and the mobile robot is a wire-

controlled chassis satisfying the differential kinematic model,

which can directly receive the linear and angular velocity

commands sent from the ROS to achieve trajectory tracking. The

kinematic model of the four-wheel chassis during tracing is

modeled in Figure 7. Refer to pure path tracking (Coulter,1992).

For the target trajectoryM, a pre-sighting point C is selected on the

reference path to be tracked, which is at a distance Ld from the

vehicle’s center of mass position, and the rear wheel center of

the vehicle can be driven along a certain turning radius R to reach

this point.
Frontiers in Plant Science 06
In triangle OAC, AC and OC satisfy the sine rule, and because

angle OCA is complementary to angle CAB, Formula 5 can be

obtained by using the sine rule.

Ld
sin (2a)

=
R

sin ( p2 �a)
(5)

where Ld is the chord of the steering curvature arc, a is the heading

angle at point A, and R is the radius of the steering curvature circle.

By simplifying Formula 5, the expression for the radius of

curvature in terms of turning can be obtained, which is given by

Formula 6.

R =
Ld

2 sina
(6)

In order to determine the heading angle at each position during

tracking, assume that the vehicle travels from point A to point B.

Because b is complementary to angle OBA, and angle OBA is

complementary to angle AOB, the expression for the heading

angle b can be obtained in triangle AOB using trigonometric

relationships, which is given by Formula 7.

b = arctan
L
R

(7)

where b is the heading angle and L is the distance from the center of

the vehicle to the next position.
Transform RTK data into

robot initial posture

Calculate the NDT score of

the Scaffolding point cloud

The matching result

reaches the set value 

No

Output posture

Yes

Newton optimisation

Voxel, straight-through,

outlier filtering

Scaffolding point cloud

Limit scanning height

Lidar scan point cloud GNSS Date

Original point cloud

Start

End

FIGURE 5

Flowchart of RTK fusion NDT location algorithm. RTK, real-time kinematics; NDT, normal distributions transform.
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FIGURE 7

Pure pursuit model. Point A in the figure represents the current position, C represents the lookahead point position, and B represents the position of
the vehicle during turning. The blue curve M represents the planned path, and the red curve AC represents the turning path. a is the heading angle
at point A, b is the heading angle at point B, L is the distance from the center of the vehicle to the next position, Ld is the chord of the steering
curvature arc, and ey is the error in the lateral direction between the rear wheel center position and the lookahead point.
FIGURE 6

Vector map with manually labeled paths. The green part of the figure is the orchard point cloud, the pink route is the driving path, and the blue line
is the driving boundary.
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https://doi.org/10.3389/fpls.2023.1207742
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xia et al. 10.3389/fpls.2023.1207742
By substituting Formula 6 into Formula 7, a further simplified

expression for the turning angle can be obtained, which is given by

Formula 8.

b = arctan
2L sina

Ld
(8)
The lateral error ey is defined as the error in the lateral direction

between the rear wheel center position and the lookahead point. In

triangle ABC, the expression for the forward distance Ld can be

obtained using the sine rule, which is given by Formula 9.

Ld =
ey

sina
(9)

where ey is the error between the rear wheel center position and the

pre-sighting point in the lateral direction.

By substituting Formula 9 into Formula 8, the final expression

for the heading angle can be obtained, which is given by Formula

10.

b = arctan
2Ley
Ld 2

� �
(10)

During the motion at each moment, the turning angle is

relatively small. Therefore, Formula 10 can be simplified to the

form of Formula 11, which leads to the final heading angle control

model.

b =
2L
Ld

2 ey (11)
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3 Results and discussions

3.1 NDT mapping trials

The NDT mapping test was conducted in a pear orchard. After

connecting the hardware, the NDT mapping process was opened in

ROS. The mobile platform was remotely controlled to move along

the rows of trees and steered in a U-shaped trajectory at the end of

each row. The final point cloud map of three rows of fruit trees is

shown in Figure 8A. The point cloud of the orchard is very complex,

it is unreliable to use the NDT-generated map as a reference map

directly, and the original point cloud map needs to be processed

using point cloud filtering to eliminate noise and compress map

data. For the collected point clouds of Y-trellis orchards, the

generated original point clouds were first retained 70% by

downsampling to reduce the data volume. Then, the smaller

dense point clouds were combined by voxel filtering and outlier

filtering to reduce the overall resolution. The results are shown in

Figure 8B, where the overall number of point clouds was effectively

reduced. Three columns of fruit trees were selected as the test object,

and the extra columns of fruit trees were removed by conditional

direct-pass filtering, as in Figure 8C. Considering that the orchard

has the characteristics of a trellis, it was chosen as a retained point

cloud. In this way, the cluttered point cloud of the whole orchard

can be preserved as a trellis point cloud, and it can be used as a high-

precision map for positioning. The final processed localization

point cloud is shown in Figure 8D, where the noisy and

changeable canopy point clouds were filtered.
B

C D

A

FIGURE 8

Orchard point cloud map processing method. (A) Original point cloud map. (B) Voxel filtering point cloud. (C) Pass-through filtering point cloud.
(D) The trellis point cloud.
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After the trellis point clouds were processed, the relative

position of each point cloud was measured in RVIZ using the

measure plugin and compared with the real distance of the orchard

to verify the accuracy of the mapping. Figure 9A shows the initial

point cloud obtained in RVIZ, where the red curve is the movement

trajectory of the vehicle. The mapping effect test method is shown in

Figure 9B, where the trellis structure was divided into two rows. In

an ideal situation, the horizontal distance between the trellis is 3 m,

and the vertical distance between the vertical vertices is 6 m.

The results of the point cloud distance measurement tests in

RVIZ are shown in Table 2. The maximum and minimum absolute

errors of the point cloud in each row were 8 and 3 cm, respectively.

The average measured value of the distance between rows was

3.02 cm, with an average standard deviation of 0.059 cm. The

maximum and minimum absolute errors between reference points

in each column were 11 and 8 cm, respectively. The average

measurement of the inter-column distance was 5.975 cm with a

standard deviation of 0.096 cm. The average error between rows

and columns were within 3 cm, and the accuracy level meets the

requirements of subsequent NDT matching localization. In order to

understand the consistency of the point cloud measurements

between rows and columns, the coefficient of variation (CV) was

used to compare the three ABC data sets to verify the dispersion

errors. The average CV of the three data sets was less than 2%, and

the errors in both column and row directions were stable, which

means that NDT mapping is reliable as a method for large-scale

orchards. Compared to the application of extended Kalman filter

(EKF)–SLAM in orchards (Wu, 2019), the accuracy level of NDT

mapping is not much different from that of EKF–SLAM because

this type of SLAM method determines the location of each point

cloud by randomly scattering particles and calculating their

distribution probability density, which is essentially similar to the

probabilistic estimation method of NDT. However, NDT mapping

uses 3D gridding to calculate probabilities, and the resulting

orchard map was more informative and intuitive, which has the

advantage of better map readability. Compared to the use of

Cartographer in orchards (Xiong, 2021), this method has higher

accuracy and is more advantageous in terms of mapping speed, as

Cartographer needs to continuously optimize the already generated

map, while this method only needs to overlay point clouds based

on position.
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3.2 Fixed-point navigation test

The fixed-point navigation test was conducted to verify whether

the GNSS with NDT point cloud matching in the orchard could

achieve the desired accuracy. The test site is shown in Figure 10A,

and the specific test plan is shown in Figure 10B. The intersection

points of navigation paths were selected, and the column-wise trellis

was selected as the reference point. The measured distances between

the bottom of the scaffold in the point cloud map and each reference

point were taken as the true value 0 for localization. The vehicle was

controlled to pass through points M1, M2,…, M14 in the order, and

the distance to the reference point was measured when it reaches

each point to obtain the lateral deviation. For heading positioning,

the heading of the navigation track was taken as the true value 0.

Since the path generated by the vector map was actually constructed

in the form of points, the Angle between the two points adjacent to

the measurement position and the due east direction was selected as

the ideal course Angle, and the course deviation during its

movement was recorded by the on-board IMU. The speed of the

vehicle was set at 1.0 m/s and the lateral, heading deviations were

recorded as absolute values. Meanwhile, in order to compare the

effect of NDT point cloud matching positioning more clearly, three

methods of GNSS positioning, NDT matching positioning, and

GNSS fusion NDT positioning were selected for the above

positioning tests. The lateral and heading errors of the three

methods at 14 reference points were recorded, and the results of

the box line plot are shown in Figure 11.

When the vehicle speed was 1.0 m/s, the average lateral

deviation of RTK positioning was less than 3 cm, and the SD was

less than 2 cm, while the average heading deviation was less than

3.5°, and the SD was less than 1°. Compared with that of the other

two positioning methods, the lateral accuracy of RTK positioning

was the highest and the data stability was strong, but compared with

the point cloud matching-based positioning method, it was more

susceptible to lateral and heading deviations due to obstruction in

the orchard. The average lateral deviation of the NDT point cloud

matching method was less than 5 cm, and the SD was less than

2 cm, while the average heading deviation was within 1°, and the SD

was less than 0.6°. This positioning method was better in terms of

lateral and heading accuracy, but during long-time operation, it can

be interfered with by similar point cloud scenes and lead to
BA

FIGURE 9

Orchard point cloud mapping test. (A) Initial orchard point cloud and data collection trajectory in RVIZ. (B) Mapping effect test schematic. A1 to A8
and B1 to B8 are the relative horizontal distances between the trellis, and C1 to C8 are the vertical relative distances between the vertical vertices.
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positioning failure. It can be inferred that relying solely on NDT

positional estimation as a navigation method is not stable. The

GNSS fusion NDT positioning was comparable in accuracy

performance to the NDT-only positioning method, with an

average lateral deviation of less than 5 cm and an SD of less than

2 cm. The average heading deviation was within 1° and an SD of less

than 0.6°, in accordance with its positioning theory. However, it is

re-positioned by GNSS when NDT matching fails, and the method

lasts longer in operation than pure RTK positioning. It can still rely
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on aligned trellis point clouds to maintain accurate positioning

under some heavily shaded fruit tree canopies. It also provides a

more stable heading position by means of point cloud matching and

correcting deviations in the heading by numerous key point clouds,

which can be more effective in tasks requiring high orientation

accuracy. At the same time, the redundant positioning approach by

combining two positioning information is more fault tolerant in

real-life positioning tasks than relying on one sensor alone

for positioning.
BA

FIGURE 10

Fixed-point navigation tests. (A) Reference point distance measurement. (B) Schematic diagram of a fixed-point navigation test. M1 to M14 are
measuring points on navigation path, and M is the distance between the tree column and the vehicle center.
TABLE 2 Reference point cloud relative distance measurement results.

No
Scaffold sampling point distance measurements (m)

Mean Standard deviation CV
1 2 3 4 5 6 7 8

Line A
A1 A2 A3 A4 A5 A6 A7 A8 3.015 0.064 0.021

3.07 2.92 3.05 3.07 3.06 2.93 2.97 3.05

Line B
B1 B2 B3 B4 B5 B6 B7 B8 3.026 0.054 0.018

3.08 3.05 3.06 3.03 2.92 3.04 2.97 3.06

Line C
C1 C2 C3 C4 C5 C6 C7 C8 5.975 0.096 0.016

5.91 5.91 5.90 6.11 6.08 5.89 5.92 6.08

Total 0.018
frontier
BA

FIGURE 11

Fixed-point navigation test results. (A) Lateral deviation results. (B) Heading deviation results. The top and bottom horizontal lines are the maximum
and minimum values, respectively. Three-quarters of the experimental error data points are in the box.
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3.3 Navigation effect test

Figures 12A–F show different navigation positions when the

speed was 1 m/s; the yellow path is the planning path, and the white

line is the motion control line of pure path tracking planning. It was

found that the planning line keeps changing with the path

curvature, and the curvature was larger when navigating in a

straight line and smaller when curving. Meanwhile, during the
Frontiers in Plant Science 11
actual operation, the navigation effect changes significantly when

different speeds were used for navigation. In order to explore the

influence of different speeds on navigation accuracy, three driving

speeds of 0.5, 1.0, and 1.5 m/s were selected, and the driving

trajectories under each speed were recorded by RTK. The driving

trajectories are shown in Figure 12G; the black curve is the planned

path, and the round dots, stars, and triangular scatter points are the

vehicle tracing paths under the three driving speeds. At the speed of
B

C D

E F

G

A

FIGURE 12

Navigation tests at different speeds. (A–G) The control line planning under straight and curved roads.
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0.5 m/s, the maximum and minimum positioning errors of the

tracing path were 13 and 3 cm, respectively, and the overall average

error of the sampling points was 8 cm. At the speed of 1.0 m/s, the

maximum and minimum errors of the tracing path were 6 and

1 cm, respectively, and the overall average error of the sampling

points was 3.5 cm. At the speed of 1.5 m/s, the maximum and

minimum errors of the tracing path were 15 and 5 cm, respectively,

and the overall average error of the sampling point was 7 cm. When

the speed was too slow, the heading adjustment of the navigation

system was very frequent, and the tracing was incoherent. After it

was combined with the pure path tracking, it can be found that the

front view distance of the controller becomes smaller when the

speed was too small, and the heading angle adjustment was large. At

the same time, it can be found that the front view distance becomes

longer when the speed was faster, and the tracking effect was stable

in the straight trajectory, but the steering curvature was larger when

passing through curves, resulting in a large radius through the

curves. If the response lag of each sensor on the control platform

was too fast, it will affect the navigation effect. When the vehicle was

running at 1.0 m/s, the best tracing effect was achieved, as the speed

setting affects the front view distance and thus changes the steering

curvature. The best steering speed should be set according to the

tree spacing. Based on the test, the best driving speed is 1.0 m/s, and

the best forward-looking distance is 5.5 m.
4 Conclusion

Conducting various agronomic processes with an orchard

autopilot platform is important for reducing human work time and

improving operational accuracy in orchard production. Unlike

scenarios in open environments such as field harvesting, the

navigation system of an autonomous driving platform in an orchard

environment is more difficult in terms of complex canopy handling

and unstructured ground travel. In order to make the navigation in the

orchard more suitable for continuous inter-row navigation and

obstruction environment, this study used a four-wheel differential

robot as the platform, constructed the environment using NDT

Mapping’s 3D SLAM method, and processed it with the PCL for the

Y-shaped trellis environment. At the same time, the problem of easy

loss of positioning in complex scenes in orchards was solved by GNSS

fusion NDT point cloud matching for positioning. The results showed

that the accuracy of NDT mapping was 10 cm. The positioning

accuracy reached 5 cm in the lateral direction and 1° in the aerial

direction. During the practical tests, the method was able to perform

continuous navigation in the orchard, but there were problems such as

the large amount of point cloud processing, which caused the chassis

motion control to stutter, and the controller forward-looking distance

parameters could not be applied to different scale scenarios.

In future research, we plan to explore a point cloud localization

method that is less computationally intensive to suit devices with lower

computing power and reduce system latency. To address the issue of

control algorithms, controllers with variable parameters or control

methods such as Model Predictive Control (MPC) and Linear

Quadratic Regulator (LQR) should be used to improve the stability
Frontiers in Plant Science 12
of navigation control, enabling autonomous navigation of orchard

vehicles in a cost-effective, efficient, and accurate manner.
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