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of Mechanical Engineering, Yangzhou University, Yangzhou, China
Visual recognition is the most critical function of a harvesting robot, and the

accuracy of the harvesting action is based on the performance of visual

recognition. However, unstructured environment, such as severe occlusion,

fruits overlap, illumination changes, complex backgrounds, and even heavy fog

weather, pose series of serious challenges to the detection accuracy of the

recognition algorithm. Hence, this paper proposes an improved YOLO v4 model,

called YOLO v4+, to cope with the challenges brought by unstructured

environment. The output of each Resblock_body in the backbone is processed

using a simple, parameterless attention mechanism for full dimensional

refinement of extracted features. Further, in order to alleviate the problem of

feature information loss, a multi scale feature fusion module with fusion weight

and jump connection structure was pro-posed. In addition, the focal loss

function is adopted and the hyperparameters a, g are adjusted to 0.75 and 2.

The experimental results show that the average precision of the YOLO v4+

model is 94.25% and the F1 score is 93%, which is 3.35% and 3% higher than the

original YOLO v4 respectively. Compared with several state-of-the-art detection

models, YOLO v4+ not only has the highest comprehensive ability, but also has

better generalization ability. Selecting the corresponding augmentation method

for specific working condition can greatly improve the model detection

accuracy. Applying the proposed method to harvesting robots may enhance

the applicability and robustness of the robotic system.

KEYWORDS

harvesting robot 1, picking robot 2, YOLO 3, object detection 4, attention mechanism 5,
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1 Introduction

In recent years, with the increase of population, the demand for fruits and vegeTables

has increased. However, in order to save costs, the harvest of fruits and vegeTables mainly

relies on untrained workers rather than skilled farmers, which inevitably leads to damage of

fruits and vegeTables. Therefore, traditional manual picking of fruits and vegeTables not
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only consumes essential labor resources (Lawal, 2021), but also

reduces efficiency. As most countries in the world are gradually

stepping into the aging society, the problem of labor shortage will

follow. It is vital to replace traditional agriculture with intelligent

agricultural relying on mechanical automation. Robots with human

visual perception capabilities provide the possibility for intelligent

automated harvesting (Li et al., 2021). Improving the accuracy of

fruits and vegeTables recognition has become a crucial research

field (Silwal et al., 2017).

In order to realize the vision function of harvesting robots, a

great amount of researchers have proposed various target detection

algorithms based on the contour, color, texture and other

characteristics of fruits and vegeTables. Lin (Lin et al., 2020)

proposed a probabilistic Hough transform to aggregate shape

segments matched based on contour information to obtain

candidate fruits. This method is not scale-invariant and fails to

detect fruits with large scale changes, which is caused by using the

difference of scale variables to determine the probability value.

Chaivivatrakul (Chaivivatrakul and Dailey, 2014) proposed a

method to analyze the texture information of green fruits by

using different combinations of Scale-invariant Feature Transform

(SIFT), Speeded-Up Robust Feature (SURF), Oriented FAST and

Rotated BRIEF (ORB), etc. According to the matching of extracted

points of interest, the fruit detection accuracy reached more than

90%, but detection effect is easily affected by strong sunlight and

occlusion, which leads to the low robustness of system. Payne

(Payne et al., 2013) proposed a night detection algorithm based

on RGB and YCbCr color features and texture segmentation of

adjacent pixels variability. In order to eliminate the problem of the

algorithm overly relying on color features, the hessian filter was

used to remove the texture features of leaves, trunk and stems. Even

though this algorithm only has an error rate of 10.6%, it needs to

adjust the corresponding filter settings according to different in-

field systems, which does not have high compatibility.

The above-mentioned traditional algorithms based on contour,

color, and texture information generally suffer from poor stability

and are difficult to apply to unstructured environment, especially in

dynamic weather conditions. With the continuous development of

machine learning, especially deep convolutional neural networks,

object detection algorithms have been widely used in harvesting

robots to identify and locate fruits and vegeTables in recent years

(Darwin et al., 2021) (Cecotti et al., 2020). Deep learning can

effectively reduce the impact of light fluctuations, occlusion of

branches and leaves, and overlap of fruits when processing fruit

detection tasks (Yin et al., 2021).

Generally, object detection algorithms in deep learning can be

divided into two categories, one is the two-stage object detection

models represented by Fast R-CNN (Girshick, 2015), Faster R-CNN

(Ren et al., 2017), Cascade R-CNN (Cai and Vasconcelos, 2018),

and Libra R-CNN (Pang et al., 2019). This type of algorithm has a

special region proposal network (RPN) for candidate target

extraction, and then input the pre-extracted region of interest

(RoI) into convolutional neural network (CNN) for regression

classification prediction. The other type is the one-stage network

that uses a single CNN network to perform regression prediction on

the input image, which predicts the target category while generating
Frontiers in Plant Science 02
the bounding box for location. Representative networks of this type

are Single Shot Multi-Box Detector (SSD) (Liu et al., 2016),

RetinaNet (Lin et al., 2017), EfficientDet (Tan et al., 2020) and

You Only Look Once v4 (YOLO v4) (Bochkovskiy et al., 2020. In

the one-stage object detection models, target positioning and

classification are completed at the same time, so their advantage

is faster detection speed. However, due to the lack of high-quality

candidate anchors extracted by RPN, the detection accuracy of one-

stage network is not as good as that of two-stage network. In

addition, there are detection algorithms different from the above

anchor-base network, such as YOLO v8 (Jocher, 2023), CornerNet

(Law and Deng, 2020), CenterNet (Zhou et al., 2019), FCOS (Tian

et al., 2019), SAPD (Zhu et al. 2020). These anchor-free detection

algorithms get rid of the huge amount of anchors generated by

model predictions and complex hyperparameters. These models

represent the highest performance of object detection algorithms

and often serve as the basis for many optimized models.

Many researchers apply deep learning algorithms to the

identification and location of fruits and vegeTables. Song

developed a Faster R-CNN model implemented by VGG16 to

detect kiwifruit in the natural field, which can work stably during

the day and night (Song et al., 2019). The mean Average Precision

(mAP) of this detector can reach 87.61%, and it takes 0.347s to

detect each picture using NVIDIA TITAN XP 6GB GPU, but there

are cases of missed or wrong detection of dense fruits. Cai designed

an improved SSD algorithm, which uses soft Non-Maximum

Suppression (NMS) to filter out suiTable bounding boxes (Cai

et al., 2020). In order to obtain sTable and predicTable gradient

of algorithm, batch normalization was used to initialize the de-

random training model. The average precision of this model

reached 92.4%, and the detection speed using NVIDIA Titan

RTX1070 GPU was 36 frames per second (FPS). Moreira

compared the detection ability of YOLO v4 and SSD for tomatoes

and found that YOLO v4 performed better with an F1 score of

85.81% (Moreira et al., 2022). Su proposed a lightweight model

based on YOLO (Su et al., 2022). The backbone of the model adopts

Uniform, and the neck adopts a Bi-PAN structure, which combines

Bi-FPN and path aggregation network (PAN). NMS is replaced with

R-NMS to filter out redundant boundary frames. This method uses

NVIDIA RTX 2080Ti GPU with a mAP of 87.7%, F1 score of 83.1%,

and FPS of 46 in WGISD. Li proposed an L-YOLO model based on

YOLOv3, which replaced DarkNet with the SE_ResGNet34

structure (Li et al., 2021). Squeeze-and-Excitation network

(SENet) and grouped convolutions are applied to SE_ResGNet34,

and the new backbone can achieve more accurate detection

performance while requiring fewer parameters. That is why the

average accuracy and detection speed of L-YOLO using NVIDIA

Tesla V100 GPU reached 96% and 106 FPS, respectively. However,

this model is difficult to detect tiny lemon, especially fruits largely

obscured and overlapped. Zhang reduced the width and depth of

YOLO v5s, and achieved 344.83 FPS using NVIDIA RTX 2080Ti

GPU, but reduced accuracy (Zhang et al., 2022). Pinheiro created

and published two datasets for grape detection and classification,

and applied YOLO v5, YOLO v7, and YOLO R models to grape

detection. The results showed that for identifying bunches, the

YOLOv7 model presenting the best performance, achieving 98% of
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precision, 90% of recall, 94% of F1-score and 77% mAP, and for the

classification task, YOLOv5 being the best one, achieving 72% of

mAP. (Pinheiro et al., 2023). Meanwhile, Sozzi also compared the

performance of six different YOLO series models in detecting green

grapes and found that the standard version of YOLO v4 was

superior to YOLO v5-x in terms of accuracy and speed, while the

Tiny version of YOLO v4 best considered both accuracy and speed

(Sozzi et al., 2022) (Nguyen et al., 2023).

According to the above review, most of the detection models are

limited by severe occlusion, fruits overlap and illumination

fluctuations. In order to improve the performance of the model in

response to complex environmental conditions, this paper proposes

an improved detection model based on YOLO v4 model, which has

a trade-off between average precision and detection speed. SimAM

attention mechanism (Yang et al., 2021) and improved

feature fusion structure are applied to this model. Moreover,

the adapted focal loss function is used in model training.

These optimizations help YOLO v4 algorithm to make more

reasonable use of computing resources and have stronger feature

propagation performance when processing grape images in

unstructured environment.

The remainder of this paper is organized as follows: Section 2

describes the construction of improved YOLO v4 model, including

the introduction of SimAM block and optimized feature fusion

module. Section 3 describes the hardware equipment,

hyperparameter settings, image enhancement methods, evaluation

indicators, anchor boxes, and loss functions used in the

experiments. Section 4 describes the relevant experiments of the

detection performance of the proposed model in unstructured

environment and discusses the experimental results. Section 5

provides conclusions drawn based on the results.
2 Methodologies

2.1 YOLO v4 model

YOLO v4 is a detection model optimized by a series of state-of-

the-art (SOTA) tricks based on YOLO v3. The architecture of the

YOLO family can be divided into three parts: backbone, neck, head.

In terms of architecture, the two parts are optimized except for the

head of the model. The backbone of YOLO v4 uses CSPDarkNet 53,

which replaces the original DarkNet 53 for feature extraction. The

feature fusion module in the neck adopts a spatial pyramid pooling

(SPP) structure and PAN.

Moreover, the tricks selected in the training process include

Mosaic data augmentation, Label smoothing, CloU regression loss,

Cosine annealing scheduler, etc. Another improvement is to replace

the activation function from LeakyReLU to Mish, which has

smoother gradient and better generalization (Misra, 2019). The

Mish activation function is defined as follows:

Mish = x*tanh½ln (1 + ex)�; (1)

The SOTA tricks mentioned above are part of the optimization

methods adopted in YOLO v4. As one of the most widely used
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detection models, YOLO v4 takes into account the speed and

accuracy of detection. Therefore, the optimization model

proposed in this paper is a further improvement of YOLO v4.
2.2 SimAM attention mechanism

In computer vision, the attention mechanism redistributes

computing resources according to the importance of features. The

weighted feature layer has more useful information about the target,

which can increase model performance. However, since the essence

of existing attention mechanisms is convolution operations, the

number of parameters of the model increases (Woo et al. 2018),

which imposes a burden on detection speed. Fortunately, the

SimAM, a simple and parameter-free attention module, can

alleviate the above burden. The SimAM attention mechanism is

inspired by the way human brain neurons are activated, and its

main idea is the energy function based on neuroscience theory.

After simplification and regularization, the final energy function is

shown as follows:

et(wt , bt , xi) =
1

M − 1 o
M−1

i=1
( − 1 − (wtxi + bt))

2 + (1 − (wt t

+ bt))
2 + lw2

t ; (2)

where xi represents non-target neurons in one channel of the

input feature map; I is index over spatial dimension and M

represents the number of pixels on a single channel; wt and bt
respectively represent weight and bias of the transformation; l is

the hyperparameter which is set to 10−4.

Studies have shown that our brains use spatial attention and

channel attention at the same time when processing visual

information (Carrasco, 2011). Therefore, the SimAM attention

mechanism evolved by simulating neuron activity can estimate

3D weights for feature maps. According to the spatial suppress

effect of activated neurons (Webb et al., 2005), these full 3D weights

will be assigned to each neuron, which can strengthen target

neurons and suppress other neurons. In order to find these

neurons with spatial suppress effect, the linear separability

between an interesting neuron and uninteresting neurons is

obtained by minimizing the equation 2. After a series of iterative

solvers like Stochastic Gradient Descent (SGD) processing, a fast

convergent solution is calculated. And, a reasonable assumption

that all pixels in a single channel follow the same contribution is

applied to this solution. Finally, an equation for computing the

minimum energy is derived and shown below:

e*t =
4(ŝ 2 + l)

(t − m̂ )2 + 2ŝ 2 + 2l
 ; (3)

where m̂ and ŝ 2 represent mean and variance of all neurons in a

single channel of the feature map. Equation 3 indicates that the

uniqueness of the pixel becomes more obvious as the minimum

energy e*t decrease. In other words, the importance of the pixel is

proportional to the minimum energy 1=e*t . In order to achieve the

weighted feature map, Sigmoid activation function is performed on
frontiersin.org
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1=e*t , and then the activated energy is multiplied by the input

feature map xi. This refinement phase is shown as follows:

~X = Sigmoid(
1
E
)*X  ; (4)

The SimAM attention block is different from traditional

attention mechanisms in that there are no layers of convolution,

pooling and full connection. Instead, SimAM block derives an

energy function to estimate the importance of each feature point.

Because of this, SimAM will be used to optimize YOLO v4.
2.3 Improved feature fusion structure

The feature fusion module is a structure that combines low-

resolution feature maps with rich semantic information and high-

resolution feature maps with rich positioning information. This

multi-scale fusion method is essential to improve model detection

performance (Hu et al., 2021). In order to strengthen the feature

propagation ability of feature map, we refer to the feature fusion

module named Bi-FPN proposed in EfficientDet to optimize the

PAN structure used by YOLO v4. The improved PAN module can

provide YOLOhead with feature maps that carry efficient target

information, so that the model can perceive more detailed features.

Paying attention to the connection structure of Bi-FPN (Tan

et al., 2020), it adds extra fusion paths to the simplified PAN, which

removes those less contribution nodes with only one input path.

After Bi-FPN has completed the bidirectional feature pyramid

fusion, it also connects the final output and the input feature map

of the same resolution. In order to further enrich the target

information contained in the feature map, the Bi-FPN structure

assigns a simple weight to each processed feature map. The

additional fusion process taking P4 in Figure 1 as an example is
Frontiers in Plant Science 04
shown as follows:

P}}
4 = Conv(w0*P

}
4 + w1*Downsample(P}

3) + w2*P4)  ; (5)

where w0, w1, w2 are balance weights; Pi, P
}
i , P

}}
i represent the

input, middle, output feature map, respectively.

To integrate extracted features maps more adequately, an

improved PAN fusion module is proposed in this paper, which

uses a convolution group consisting of 3×3 and 1 × 1 standard

convolutions instead of the depthwise separable convolution.

Considering the cost of video memory and computations,

YOLOv4+ repeats fusion module once, which is different from

Bi-FPN repeating the same module multiple times. In addition, the

fast normalized fusion method (Tan et al., 2020) is used to generate

balance weights in equation 5. The improved PAN module

structure is shown in Figure 1, where CBL block explained

in Figure 2.

Three feature maps P3,  P4,  P5 of different scales are extracted

by backbone and SPP module, and used as the input of improved

PAN feature fusion module. With more convolution

transformations, the resolution of feature map P5 is reduced to

19×19. The purpose of applying up-sampling transformation to P5
is to splice P5 and P4 which scale is 38×38. After that, five

consecutive convolutions adjust the channel information of the

spliced feature map, and then P}
4 is obtained. The fusion of P3 and

P4 is consistent with the above process. Importantly, P}}
3 , the output

feature layer of 76×76 scale, is multiplied by the weight w1 after

down-sampling. And the operation result is added with P4 and P}
4,

which are assigned to weights of w2 and w0 respectively. Similarly,

the summed feature map is processed by the convolution group to

obtain P}}
4 , which is the output of 38x38 scale. Finally, the output

feature map P}}
5 at the 19×19 scale is obtained by splice down-

sampled P}}
4 and P5.
FIGURE 1

The structure of the improved PAN module.
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2.4 Proposed detection model

In view of the full-dimensional correction capability of SimAM

block on feature map and the effective acquisition capability of

weighted feature fusion module for target feature, YOLO v4+ model

with SAM-CSPDarkNet as Backbone and PAN+ as part of Neck

was proposed. The model architecture is shown in Figure 2.
Frontiers in Plant Science 05
Table 1 further describes the extraction process of the backbone,

which specifically shows the changes in the shape of feature maps

and the size of the convolution filters.

As shown in Figure 2, after Resblock_body_AM module

extracts interesting feature pixels, the SimAM attention

mechanism calculates the energy density to generate 3D weights

for feature maps. Through this process, the feature extraction
TABLE 1 The parameters of backbone in YOLO v4+.

Type Size Shape Type Size Shape

CBM 3 × 3 6082 × 32

_body
_AM

CBM 1 × 1

Stage 1:
Resblock
_body
_AM

CBM 3 × 3/2

3042 × 64

CSP 1 × 1
762 × 256

CBM 1 × 1 SimAM —

1 × Resblock —

Stage 4:
Resblock
_body
_AM

CBM 3 × 3/2 382 × 512

CBM 1 × 1 CBM 1 × 1

382 × 256CSP 1 × 1 8 × Resblock —

SimAM — CBM 1 × 1

Stage 2:
Resblock
_body
_AM

CBM 3 × 3/2 1522 × 128 CSP 1 × 1
382 × 512

CBM 1 × 1

1522 × 64

SimAM —

2 × Resblock —

Stage 5:
Resblock
_body
_AM

CBM 3 × 3/2 192 × 1024

CBM 1 × 1 CBM 1 × 1

192 × 512CSP 1 × 1
1522 × 128

4 × Resblock —

SimAM — CBM 1 × 1

Stage 3:
Resblock

CBM 3 × 3/2 762 × 256 CSP 1 × 1
192 × 1024

CBM 1 × 1
762 × 128

SimAM —

8 × Resblock —
fro
FIGURE 2

The architecture of YOLO v4+ detection model.
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performance of the backbone can be optimized. Then, the receptive

field of the feature map processed by the SPP module is significantly

expanded. However, as the input image is repeatedly extracted by

Resblock_body_AM, the feature map is gradually shrinking.

Because of this, the location information contained in the feature

map is inevitably lost, which greatly challenges the accuracy of

model detection. To solve above problem, the feature maps

extracted in stage 3, stage 4 and the feature map processed by

SPP module are input into the improved PAN+ module for feature

fusion. Finally, YOLOhead performs regression prediction on the

target category and location on three feature maps with scales of 76

× 76, 38 × 38, and 19 × 19.

The processings of the five Resblock_body_AM stages are

similar, but the difference lies in the number of times that

Resblock is repeated. The first convolutional CBM block with the

kernel size of 3 × 3 is used to lengthen the channel of the input

image. In order to filter out the noise information in the feature map

and enrich the feature information in the channel dimension, the

feature map is continuously compressed by CBM blocks, which has

a convolution with kernel size of 3×3 and stride of 2, and the size of

the feature map shrinks while the channel dimension increases.
3 Experimental process and analysis

3.1 Experimental setup

This YOLO v4+ model is implemented in the development

framework of Pytorch 1.8.1 that supports CUDA 11.0 in Python

3.8.5 environment. A computer equipped with Intel@CoreTMi9-

10900K@5.1GHz CPU and NVIDIA RTX 2080Ti GPU which has

11GB memory is used to train and evaluate YOLO v4+ model. The

compilation script runs on Ubuntu 18.04.

In order to better match the hardware equipment and improve

the detection effect, the model is trained in two stages. In the first

stage, the parameters of backbone are frozen, and batch size set to 8,

initial learning rate to 0.001, train epochs to 30. In the second stage,

all parameters of model are trained, and the batch size set to 2,

initial learning rate to 0.0001, train epochs to 10. A prerequisite for

the two-stage training strategy is that we employ transfer learning.

Throughout the whole training process, cosine annealing scheduler

and label smoothing method which hyperparameter is 0.005 are

adapted. In addition, the images used for model training adopt the
Frontiers in Plant Science 06
random scale strategy, which magnification factor ranges from 0.7

to 0.9.
3.2 Dataset pre-processing

In this study, Wine Grape Instance Segmentation Dataset

(WGISD) (Santos et al., 2019) is selected as the dataset of YOLO

v4+. The dataset consists of five categories of grape, with a total of

300 images containing 4432 grape clusters identified by bounding

boxes. Images were resized to width of 2048 pixels in order to retain

more detailed information (Wu et al., 2020). The annotated

“YOLO” format in WGISD is converted to “Pascal VOC” format

through programming, which has higher compatibility, because the

annotation can be applied to more supervised learning detection

models. The specific operation is to convert the category index and

the center coordinates, width, and height of the bounding box in

“YOLO” format into corresponding category names and upper left,

lower right coordinates of the bounding box, respectively, and then

store them in XML tags in “Pascal VOC” format.

The advantages of image pre-processing are to enrich the

information contained in the dataset and improve the robustness

of the model. The data augmentation methods used in this study,

which enlarges the dataset by 6 times, include brightness

transformation, blur processing, affine transformation, mirror

transformation, and raindrop processing, and the completed

dataset is shown in Table 2.

The dataset is augmented as shown in Figure 3. Since the angle

and intensity of the illumination are constantly changing

throughout the day, we have performed a brightness

transformation on the dataset. The purpose of Gaussian blur

processing is to reduce the impact of dust on the camera lens and

inappropriate focus shots. For further expand the dataset, affine

transformation and mirror transformation are used. To simulate a

rainy day, the original image is performed on raindrop processing

to enhance the robustness of the model.
3.3 Evaluation indicators

FPS (frames per second), F1 score, AP (average precision) are

selected as indicators to evaluate the quality of detection models.

FPS is used to measure the speed of model detection. The key
TABLE 2 The number of images generated by data augmentation methods.

Variety Original data Brightness Gaussian Blur Affine Mapping Mirroring Raindrop Bounding boxes

Chardonnay 65 65 65 65 65 65 840

Cabernet Franc 65 65 65 65 65 65 1069

Cabernet Sauvignon 57 57 57 57 57 57 643

Sauvignon Blanc 65 65 65 65 65 65 1317

Syrah 48 48 48 48 48 48 563

Total 300 300 300 300 300 300 4432
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parameters for calculating F1 score and AP are P (precision) and R

(Recall), which are defined as follows:

P =
TP

TP + FP
 ;R =

TP
TP + FN

 ; (6)

where TP, FP, FN represent positive samples that are predicted

correctly, negative samples that are predicted incorrectly, positive

samples that are predicted incorrectly respectively. According to the

definition, R represents the search ability of the model for objects.

F1 score is a comprehensive consideration of P and R as they

may contradict. The average precision of each class is called AP,

which value can be expressed by the area under the P-R curve. Their

calculation equations are as follows:

F1score = 2*
P*R
P + R

 ; (7)

AP =
Z 1

0
PdR  , (8)
3.4 Anchor boxes

After feature extraction and fusion through the YOLO v4+

model, three feature maps of different scales (76×76, 38×38, 19×19)

will be imported into YOLOhead to predict the target. The feature

map of each scale will use three corresponding anchor boxes, and

the sizes of these anchor boxes are obtained by the

following method:

The target category detected by this model is now particular, the

K-means clustering algorithm is used to generate 9 anchor boxes
Frontiers in Plant Science 07
which are suiTable for the grape dataset. The flowchart of the K-

means algorithm is shown in Figure 4. The information input to the

algorithm is the width and height of ground truth (GT) Boxes and

the number of clusters. Firstly, 9 data points are randomly selected

as the initial cluster center. Secondly, the program calculates the

distance from each data point to 9 cluster centers and divide them

into the cluster with the shortest distance. Finally, judge whether the

cluster of each point has changed, if it changes, update the cluster

center according to the average distance of all data points in the

same cluster, otherwise output 9 cluster centers. The sizes of the 9

anchors clustering by the K-mean algorithm is shown in Table 3.
3.5 Loss function

Loss function is used to calculate the deviation between the

ground true value and the predicted value. According to loss value,

the weights are updated in the back propagation in CNN, so that

neural network can fits an approximate non-linear model that

meets the established task. The Binary Cross Entropy (BCE)

optimized by focal loss function (Lin et al., 2017), and Complete

Intersection over Union (CIoU) loss function (Zheng et al., 2020)

are adopted in YOLO v4+. The total loss function used for model

training is shown as follows:

Loss = o
2
0lconf Lfl(lconf ) + lclsLfl(lcls) + lloclloc

batch _ size
 ; (9)

where lconf , lcls, lloc are the balance coefficients of confidence,
classification and location loss respectively. In this study, lconf =
lcls = lloc = 1 are selected. The confidence loss lconf is defined as

follows:
B C

D E F

A

FIGURE 3

Image augmentation methods: (A) original image, (B) brightness transformation, (C) blur processing, (D) affine transformation, (E) mirror
transformation, (F) raindrop processing.
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lconf = −os2

i=0oB
j=01

obj
ij ½cij log (bcij) + (1 − cij) log (1 − bcij)�

−os2

i=0oB
j=01

noobj
ij ½cij log (bcij) + (1 − cij) log (1 − bcij)�, (10)

where S2 is scale of the feature map, B is the number of

bounding boxes, 1objij ∈ f0,  1g, if there is an object at the j-th

bounding box of the i-th grid, the value is 1, otherwise the value is 0,

cij is the confidence of true value, ĉij is the confidence of

predicted value.

The classification loss lcls is defined as follows:

lcls = −os2

i=0oB
j=01

obj
ij ½pij log ( bpij) + (1 − pij)log(1 − bpij)�, (11)
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where pij is the true probability of the target, (p̂ij) predicted class

probability of the target. The location loss lloc is defined as follows:

lloc =os2

i=0oB
j=01

obj
ij ½1 − IoU +

r2(b,   bgt)
c2

� �
+ an�, (12)

where n = 4
p2 (arctan wgt

hgt − arctan w
h )

2; a = n
(1−IoU)+n , r(b,  b

gt) is

center distance between bounding box and ground truth box, c is

the diagonal length of the smallest enclosing box covering

two boxes.

In addition, focal loss, which proposed in RetinaNet and is

shown in equation 13, is often used to solve the imbalance of sample

categories and the imbalance of sample classification difficulty.

Lfl =
−a(1 − p)g log (p)        ,       if   y = 1

−(1 − a)pg log (1 − p)  ,   otherwise
,

(
(13)

where p is the probability that the model predicts, y is GT class,

a and g are hyperparameters used to balance loss.

In order to explore whether should focal loss function be used to

optimize the BCE loss function, the loss in different hyperparameter

configurations were tested and these loss curves are shown in

the Figure 5.

The downward trend of all curves is similar and the larger the

value of hyperparameters, the faster the loss convergence speed and

the lower the final saturation value. Reason for the fluctuations in

Figure 5 (epoch 30) is the use of the training strategy of

freezing parameters.

The APs of YOLO v4+ model using different loss function

schemes and the AP of the model without focal loss are shown in

Table 4. Judging from the loss curves, all the effects of using focal

ight
TABLE 3 The width and height of anchor boxes and clustering accuracy.

Anchor Width

1 21.35 34.31

2 28.03 52.07

3 29.71 82.07

4 39.81 62.96

5 39.88 105.56

6 48.79 146.02

7 54.89 77.41

8 65.68 208.82

9 69.43 114.00

Accuracy 78.66%
He
FIGURE 4

The flowchart of the K-means clustering algorithm.
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loss seem to be better than only using the BCE loss function.

However, it can be seen from Table 4. that only when the

hyperparameters are set to a = 0:75 and g = 2, the AP of YOLO

v4+ reaches 94.25%, which exceeds that of model without focal loss

function. Therefore, in order to make the model has better

performance, the optimal parameters should be determined

according to different data sets, different target categories, etc.
4 Results and discussion

4.1 Detection performance of YOLO v4+ in
unstructured environment

It is well known that grapes are grown in a typical unstructured

environment. It is a common scenario for branches and leaves block

the fruit, and grape bunches block each other. In fact, bunch

occlusion does not affect visual recognition results, as the entire

bunch on the front side is visible. The positions of the bunches can

be determined by point clouds of two clusters of grape bunches

located at different distances. Therefore, a quantitative comparative

test experiment of the detection performance of YOLO v4 and the

improved YOLO v4+ detector on leaves occlusion case was carried

out. The sheltered area is 20 to 80 percent of the bunches. The

experimental results are shown in Figure 6.

According to Figure 6, it can be seen that the YOLO v4 model

missed detection when the occlusion reached 60% and 80%, while

YOLO v4+ still successfully detected grapes. In addition, YOLO v4

also mistakenly identifies non regions of interest as positive samples

when the occlusion is 20%.

In addition, the fluctuation of illumination intensity and

illumination angle cannot be ignored, and green grapes have a

similar color to leaves, which are easy to cause interference.

Verification experiments were carried out based on the YOLO v4

+ model in the above several environments, and the detection

results are shown in Figure 7.
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Figure 7A, the color of the grapes becomes whitish under strong

sunlight, causing the detection targets to lose the color

characteristics. Figure 7B shows that opposite shooting direction

also leads to color distortion. The grapes in Figure 7C were obtained

under cloudy weather, and insufficient light makes the target dark.

The overlapping grapes and occluded grapes in Figures 7D, E lose

their complete contour. Inappropriate focus caused the blur of

Figure 7F. And, most grapes are surrounded by green leaves. All

grapes in these environments are identified by the proposed model.

These experimental results prove that the YOLO v4+ model has

robustness to deal with the unstructured environment of grape

growth. Changes in illumination intensity and angle, occlusion of

fruits and overlap of fruits do not affect the accuracy of the proposed

model to detect grapes.
4.2 Ablation experiments

This section demonstrates the effectiveness of data

enhancement, SimAM, PAN+, and Focal loss in improving model

performance through a series of ablation experiments. The AP and

F1 scores for different methods are shown in Table 5. YOLO v4

without data enhancement is selected as the baseline, which is

represented by A. According to Method B in Table 5, the

performance of the model using data enhancement has

significantly improved. When the SimAM module is embedded

into Method B, the AP increases by more than 1%. Similarly, the AP

of method B using the PAN+ has also been improved by 1.58%.

Method E adopts data enhancement, while also integrating SimAM

and PAN+ modules, resulting in an increase of 11.43% and 9% in

AP and F1 compared to baseline, respectively. Method F further

uses Focal loss, and AP has increased by 0.4% over Method E. The

ablation experiments show that the methods used in this paper are

consistent with expectations, which can more fully propagate

features, and improve the robustness of the model to cope with

occlusion and overlap.
FIGURE 5

The curve of different hyperparameters schemes.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1209910
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2023.1209910
4.3 Comparison of different models in
unstructured environment

In order to verify the superiority of the model proposed in this

article, we compare YOLO v4+ with many SOTA detection models,

such as SSD, Faster R-CNN, EfficientDet-D1, YOLO v3, YOLO v4,

YOLO v7, YOLO v8 and CenterNet.
4.3.1 Evaluation indicators of different models
In order to ensure the fairness of the comparison experiment,

the input images’ size of most models is adjusted to 512×512. The

input size marked by “–” represent that the scale of input image is

randomly resized to 8002-13332 pixels, which adopts the strategy of

the official code. The size of the input image of EfficientDet is

determined by its version. The P-R curves, AP and F1 score for
Frontiers in Plant Science 10
these models generated by testing are presented in Figure 8 and

Table 6 respectively.

It can be clearly seen from Figure 8 that the area enclosed by the

red line (YOLO v4+) and the coordinate axis is the largest.

Similarly, Table 6 shows that the AP value of YOLO v4+ is the

highest among several models, with a value of 94.25%, which is

3.35% higher than YOLO v4. And, YOLO v4 is comparable to

YOLO v3 and Faster R-CNN in AP evaluation. There are obvious

differences in the areas covered by the curves of the remaining

models. Clearly, YOLO v7 covers the smallest area, followed by

EfficientDet, YOLO v8, SSD, and then CenterNet. This result

implies that in a natural orchard, the detection accuracy of the

YOLO v4+ model is higher than other models. In other words,

YOLO v4+ has higher reliability. Besides, what stands out in Table 6

is that the F1 score of proposed method is 93%, which is 3% higher

than other models with the highest scores. CenterNet and YOLO v7
B C D

E F G H

A

FIGURE 6

Comparative experiment on the detection performance of YOLO v4 and YOLO v4+ under different occlusion degrees. (A–D) Detection results of
YOLO v4 with occlusion degrees of 20% to 80%, (E–H) Detection results of YOLO v4+ with occlusion degrees of 20% to 80%.
TABLE 4 AP values with and without focal loss.

g
a 0.5 1 2 Only BCE loss function

0.25 91.7 91.91 90.88

93.850.5 93.27 92.85 93.21

0.75 93.44 92.81 94.25
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got the lowest F1 score of 74%. F1 scores of EfficientDet and YOLO

v8 are also unsatisfactory. As the latest models, the poor

performance of YOLO v7 and YOLO v8 in grape detection in

unstructured environment may be due to their improvements focus

on the lightweight in order to pursue faster detection speed. The

scores of the other three models are between 85% and 90%, which

are relatively in the middle level with all experimental models. Based

on the above results and analysis, it is shown that the

comprehensive performance of the proposed model YOLO v4+ is

better than the other SOTA models.

4.3.2 Comparison of detection results under
heavy fog

Heavy fog is a common weather in our lives, and the heavy fog

will obscure the fruit, making fruit detection more difficult. So, we
Frontiers in Plant Science 11
randomly selected a picture from the dataset, which contains 24

bunches of grapes, and masked it by foggy weather transform.

YOLO v4+ and the above-mentioned SOTA detector are used for

grape identification in heavy fog weather. The test results are shown

in Figure 9.

We also counted the TP, FP, and FN values of the selected

image detected by each model, and calculate the Precision, Recall

and F1 score according to equations 6 and 7. The statistical Table is

shown in Table 7.

In this situation, none of these models can achieve 100% F1

score. Figure 9A shows all 24 GT boxes and numbers them for the

convenience of the following description. As can be seen from

Figure 9B, the target grapes numbered 8, 9 and 21 are successfully

detected by the exclusive model, which is YOLO v4+. And, only the

proposed model and Faster R-CNN model correctly identified
B C

D E F

A

FIGURE 7

Detection results of YOLO v4+ in unstructured environment: (A) front-lighting, (B) backlighting, (C) insufficient light, (D) overlapping grapes,
(E) occlusion by leaves, (F) inappropriate focus.
TABLE 5 Performance of different detection models on grape dataset.

Methods Data augmentation SimAM PAN+ Focal loss AP [%] F1 [%]

A × × × × 82.42 83

B √ × × × 90.9 90

C √ √ × × 91.93 90

D √ × √ × 92.48 91

E √ √ √ × 93.85 92

F √ √ √ √ 94.25 93
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No.13 GT boxes. However, Figure 9D demonstrates that Faster R-

CNN detected the grape numbered 13 with unsatisfactory

Intersection over Union (IoU), and produced redundant

bounding boxes on the detection of targets numbered 3 and 4. It

should be noted that except for YOLO v4+, Faster R-CNN, and

CenterNet, the Recall values of other models are all less than 50%.

That is to say, the bunches of grapes identified by these models less

than half of the true numbers. Fortunately, due to the rigorous

detection mechanism, there was no mistaken detection in SSD,

YOLO v3, YOLO v8 and YOLO v4. Unlike them, the proposed

method also achieved 100% Precision with a Recall value of 87.5%.

The other four models had false detections. From Figure 9I, we find

that the number of grapes detected incorrectly by YOLO v7 is the

most. In addition, due to the high concealment of GT boxes

numbered 6, 7 and 20, they were missed by all the models in this

experiment. Except for these three grapes, there are no additional

missing targets in YOLO v4+.

Further, from Table 7, we can see that the number of TP

detected by YOLO v4+ is 21, which is the most among all

experimental models. Although the RPN in Faster R-CNN is

specifically used for location, the number of correct detections is

still 5 less than the proposed method. In addition, YOLO v7 and

CenterNet have 7 and 5 false detections, respectively, which leads to

a decline in their overall performance. As the basic model in this

paper, YOLO v4 correctly identified 8 targets, which is 13 fewer

than that identified by the proposed model. YOLO v4+ not only has

relatively outstanding Recall, but also has 100% precision. The F1

score of YOLO v4+ is 93.33%, which is much higher than the other

eight models. The F1 scores of SSD, YOLO v3 and YOLO v8 surpass

that of CenterNet, which is benefit from the absence of mistaken

detection in SSD, YOLOv3 and YOLO v8.
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Compared with the other eight models, the model proposed in

this article has better generalization ability, the detection accuracy

in heavy fog weather is still the highest relative to other models.

Specifically, the proposed method is better than other models in the

recognition performance, especially in Recall. Moreover, all models

except YOLO v4+ identified two clusters of grapes numbered 15

and 16 as a single target. This result firmly proves the superiority of

the model proposed in this article for severe obscured

fruit detection.

4.3.3 Comparison of model parameters and
detection speed

Since we embedded the SimAM block in the backbone and

added an additional connection path in the neck, more computing

resources may consume. In order to evaluate the model proposed in

this article more comprehensively, we calculated the parameters

and detection speed of these models and drew histograms as shown

in Figure 10.

As we can see from histograms, compared to YOLO v4, the

proposed model hardly increases the amount of parameters, and the

detection speed is only reduced by 1 FPS, but the detection

performance of YOLO v4+ significantly improved. It is worth noting

that Faster R-CNN is two-stage model, so its detection speed is the

slowest. Thanks to the depthwise separable convolution, the

EfficientDet-D1 model has very few parameters, but still has a lower

detection speed. The 640 × 640 input size determined by the

EfficientDet version may have caused this result. Because the YOLO

v4 model has a series of tricks mentioned in Section 1.1, it is normal

that the number of parameters increases and the detection speed

decreases compared to YOLO v3. There are fewer convolutional

layers in backbone of SSD model, but the lack of optimization results
FIGURE 8

P-R curves for different detection methods.
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in the loss of corresponding high detection speed. Both YOLO v8 and

CenterNet use an anchor-free strategy to achieve the first and second

fastest detection speed among several models. Surprisingly, YOLO v7 is

lighter and should have higher detection speed compared to YOLOv3,

but its performance is disappointing.

Since the model proposed in this article is an improvement of

YOLO v4, even though the detection speed of proposed method is

not the fastest in all models, we should focus on the difference

between the model proposed in this article and YOLO v4. It is

known from the experimental results that the model parameters

and detection speed of YOLO v4+ are roughly the same as those of

YOLO v4. Therefore, the embedding of the attention block and the

newly-added connection path greatly improve the detection

precision of the model without increasing the amount of

calculation and hardly reducing the detection speed.
4.4 Impact of experimental dataset size

The purpose of experiment in this section is to explore the impact

of dataset on performance of the proposed model. We randomly

selected 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% of the

dataset, and obtained 10 datasets for experiments. The evaluation

indicators and P-R curves for proposed method corresponding to

different quantities of training images are shown in Figures 11, 12.

The most obvious finding to emerge from Figures 11, 12 is that as

the dataset expands, the performance of the model improves. The value

of Recall rises from fast to slow when the number of images exceeds

1080, while the precision has been steadily increasing. This result

means that Recall is more sensitive to the size of the dataset than

precision. Because the F1 score integrates Recall and precision, it shows

the same trend of change under the effect of Recall. When the amount

of images in dataset exceeds 1080, the F1 score is gradually saturated,

but the improvement of that is rapid before then.
4.5 Impact of data augmentation methods

The data augmentation methods selected in Section 3.2 can

theoretically solve various disturbances. In order to verify the
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effectiveness of these methods, we removed one of the data

augmentation methods each time and obtained the AP and final

loss values as shown in Table 8.

Raindrop processing is the same as we expected, it is extremely

beneficial to improve the robustness of proposed method. The AP of

the model trained with the dataset, which without raindrop processing,

drops by 4.53%, and the saturated loss value rises to 6.75. Blur

processing is favorable for the model to improve the detection

accuracy of unclear images captured by the camera. The final sTable

loss value is still 6.85, which means that the training effect of the model

lacking blur processing is poor. Brightness transformation makes the

model reliable to deal with the fluctuation of illumination throughout

the day. The precision of the model after removing the brightness

transformation drops to 92.72%. Mirror transformation and affine

transformation, as methods to enrich the dataset, have a slight help for

training the model. The performance of YOLO v4+ trained on the

dataset without these two augmentation methods is worse than that of

complete dataset.

From the experimental results, no matter which data enhancement

method is removed, the AP of the proposed model decreases to varying

degrees and the final convergence loss value increases significantly. The

effectiveness of the augmentation methods chosen in this paper can

also be proved by the comparison without using the augmentation

methods and the complete dataset. Selecting the corresponding

augmentation method for specific working condition will greatly

improve the model detection accuracy.
4.6 Impact of convolution type and
number of modules in our improved PAN

This experiment explains why our feature fusion module

mentioned in Section 2.3 does not use depthwise separable

convolution. It can be seen from Figure 13 that with the increase

of the number of repetitions of the feature fusion module, the FPS of

both convolution types decreases linearly. However, no matter how

many times the module is repeated, the AP of the model hardly

changes. In addition, the models using standard convolution have

better AP and FPS than the models using depthwise separable

convolution. Therefore, we abandoned the depthwise separable
TABLE 6 Performance of different detection models on grape dataset.

Model Backbone Input size [pixels] AP [%] F1 [%]

YOLO v4+ SAM-CSPDarkNet 53 512 × 512 94.25 93

Faster R-CNN MobileNet V2 — 91.57 88

YOLO v3 DarkNet 53 512 × 512 91.06 89

YOLO v4 CSPDarkNet 53 512 × 512 90.90 90

CenterNet ResNet 50 512 × 512 88.52 74

SSD VGG 16 512 × 512 85.05 85

YOLO v8-s C2f-CSPDarkNet 512 X 512 82.76 77

EfficientDet-D1 EfficientNet 640 × 640 79.53 80

YOLO v7-l ELAN-CSPDarkNet 512 X 512 78.33 74
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convolution as a matter of course, and repeated the improved PAN

once to save computing resources.
4.7 Instruction for YOLO v4+

We took images from “Erya” Vineyard in Jurong, Jiangsu,

China to verify the practical application of YOLO v4+. We found
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that the model is so sensitive to grape features that it detects

object in the background that is not of interest, as shown in

Figure 14A. However, this phenomenon does not work for all

distant objects. Furthermore, Figure 14B demonstrates that

grapes showing very little detail at the left edge of the image

are also detected. Therefore, the harvesting robot system needs

to judge the position and distance of the target when

picking fruit.
B
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FIGURE 9

Detection results of grapes in a severely obstructed environment due to the heavy fog: (A) ground truth boxes, (B) YOLO v4+, (C) SSD, (D) Faster R-
CNN, (E) EfficientDet-D1, (F) YOLO v3, (G) YOLO v4, (H) CenterNet, (I) YOLO v7-l, (J) YOLO v8-s, where grapes are TP in red boxes, FN in blue
boxes, and FP in orange boxes.
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5 Conclusion

This paper proposes a model for detecting grapes in

unstructured environment, which is an improved version based

on YOLO v4. SimAM attention blocks are embedded behind each

feature extraction stage in CSPParkNet 53, and the innovative

backbone called SAM-CSPDarkNet 53 is designed for feature

extraction. Moreover, we refer to the connection structure of Bi-

FPN in the EfficientDet model, and upgraded the feature fusion

module of YOLO v4 using a weighted jump connection structure. In
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short, all adjustments are for the model to obtain comprehensive

target feature pixels. We also use the focal loss function with

hyperparameters a = 0:75 and g = 2 to suppress the loss of

massive negative samples. Ablation experiments have proven that

each optimization method used in this paper is effective. The AP

and F1 scores of YOLO v4+ are 94.25% and 93%, respectively.

Compared with several SOTA detection models, the above

improvements make YOLO v4+ model has more excellent

detection performance for severe occlusion, fruit overlap,

illumination fluctuations, complex background and even the
TABLE 7 Detection Precision and Recall of different models in foggy weather.

Model TP FP FN Precision [%] Recall [%] F1 score[%]

YOLO v4+ 21 0 3 100.00 87.50 93.33

Faster R-CNN 16 3 8 84.21 66.67 74.42

SSD 11 0 13 100.00 45.83 62.86

YOLO v3 11 0 13 100.00 45.83 62.86

YOLO v8-s 10 0 14 100.00 41.67 58.82

CenterNet 12 5 12 70.59 50.00 58.54

YOLO v7-l 11 7 13 61.11 45.83 52.38

YOLO v4 8 0 16 100.00 33.33 50.00

EfficientDet-D1 7 1 17 87.50 29.17 43.75
FIGURE 10

Comparison of parameters and detection speed between different models.
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FIGURE 11

F1 score, P and R of YOLO v4+ trained with different size of datasets.
FIGURE 12

P-R curves of YOLO v4+ trained with different size of datasets.
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FIGURE 13

AP and FPS for different convolution types and module repetitions.
TABLE 8 AP and saturated loss value for YOLO v4+ with removing different data augmentation method.

Data augmentation method AP [%] Saturated loss value

Dataset after augmentation 94.25 5.38

Remove raindrop processing 89.72 6.75

Remove mirror transformation 93.11 5.91

Remove affine transformation 93.23 5.84

Remove blur processing 92.87 6.85

Remove brightness transformation 92.72 6.13

No augmentation method 89.04 7.21
F
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FIGURE 14

(A, B) Failure detection cases with YOLO v4+.
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heavy fog weather without increasing the amount of calculation and

hardly reducing the detection speed. Compared to YOLO v4, YOLO

v4+ has an AP and F1 increase of 3.35% and 3%, respectively.

Generally, YOLO v4+ not only has the highest comprehensive

ability, but also has better generalization ability. Applying the

proposed method to harvesting robots may enhance the

applicability and robustness of the robotic system.

In addition, we found unexpectedly during the experiments that

Recall is more sensitive to the size of the dataset than precision. In

the case of insufficient datasets, augmentation methods can be used

for data augmentation for a specific environment, such as cloudy

and rainy weather. The depthwise separable convolution in YOLO

v4+ does not improve FPS as expected, but reduces the AP.

In future work, we will (1) combine the point cloud information

with the RGB of images to filter out objects beyond the

robot workspace; (2) estimate the grape posture to improve

grasping stability.
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