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Multifaceted roles of
WRKY transcription factors
in abiotic stress and
flavonoid biosynthesis
Jinnan Zhang, Haiqing Zhao, Lu Chen, Jiacheng Lin,
Zhile Wang, Jiaqi Pan, Fan Yang, Xiaoli Ni, Yiang Wang,
Yuhua Wang, Rui Li , Erxu Pi* and Shang Wang*

College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
Increasing biotic and abiotic stresses are seriously impeding the growth and

yield of staple crops and threatening global food security. As one of the

largest classes of regulators in vascular plants, WRKY transcription factors

play critical roles governing flavonoid biosynthesis during stress responses.

By binding major W-box cis-elements (TGACCA/T) in target promoters,

WRKYs modulate diverse signaling pathways. In this review, we optimized

existing WRKY phylogenetic trees by incorporating additional plant species

with WRKY proteins implicated in stress tolerance and flavonoid regulation.

Based on the improved frameworks and documented results, we aim to

deduce unifying themes of distinct WRKY subfamilies governing specific

stress responses and flavonoid metabolism. These analyses will generate

experimentally testable hypotheses regarding the putative functions of

uncharacterized WRKY homologs in tuning flavonoid accumulation to

enhance stress resilience.
KEYWORDS

abiotic stresses, cis-elements, flavonoids biosynthesis, transcription factor,
WRKY family
1 Introduction

Escalating stresses seriously impede the production of important crops,

threatening global food security (Zhang et al., 2022a). Plants have evolved intricate

regulatory networks. The WRKY family, as an important member of these networks,

belongs to the functionally diversified transcription factor families. WRKYs are critical

in governing plant diverse stress responses (Jiang and Deyholos, 2009; Li et al., 2009;

Pandey and Somssich, 2009; Hu et al., 2013; Li et al., 2013; Yokotani et al., 2013; Bakshi

and Oelmüller, 2014; Dai et al., 2016; Ahammed et al., 2020b; Wu et al., 2021; Ma et al.,

2021c; Lin et al., 2022; Ma et al., 2023).
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In sweet potato (Ipomoea batatas), after the inaugural gene was

found (Ishiguro and Nakamura, 1994), WRKYs have been

discovered extensively in terrestrial plants, primitive protozoans

and slime molds, affirming the ancient evolutionary origin (Zhang

and Wang, 2005; Pan et al., 2009). Highly conserved WRKY

structural domains paralleling the zinc finger (ZF) motif is an

essential feature of this protein family. The WRKY domain

directly bind to the major cis-element, W-box (TGACCA/T)

(Rushton et al., 2010; Chen et al., 2019). Although slight

variations in some WRKYs, the conserved motif (WRKYGQK)

forms the ZF to confer structural stability (Yamasaki et al., 2005;

Cheng et al., 2021).

Phylogenetically, WRKYs are classified into three distinct groups

depended on the number of WRKY domains together with the type

of ZFs. Two WRKY domains and a C2H2 (CX4-5CX22-23HXH) ZF

are present in Group I, whereas only one WRKY domain combined

with C2H2 or altered C2HC (CX7CX23HXC) ZF appears in Groups

II and III (Eulgem et al., 2000; Li et al., 2010; Chen et al., 2020).

According to the variation of ZF, Group II can be subclassified into

subgroups IIa ~ IIe (Zhang and Wang, 2005). The presence of Group

I WRKYs in primitive organisms suggests that they are the ancestors

of other groups (Wei et al., 2018). WRKY domains are conserved, but

different WRKY groups have evolved specialized functions (He et al.,

2016; Wang et al., 2022).

The importance of WRKYs in modulating plant immunological

responses against pathogen invasion, including effector-triggered

immunity (ETI) and pathogen-associated molecular pattern

(PAMP)-triggered immunity (PTI), have been proven (Chen

et al., 2013; Chi et al., 2013; Dang et al., 2013; Birkenbihl et al.,

2017; Ma et al., 2021b; Wang et al., 2023b; Wang et al., 2023d; Xiao

et al., 2023). Numerous WRKY genes spanning all phylogenetic

groups are induced following pathogen infection or elicitor

treatments across plant species, underscoring the broad defensive

role (Chen et al., 2013; Dang et al., 2013; Birkenbihl et al., 2017;

Wang et al., 2023b; Wang et al., 2023d; Xiao et al., 2023). Gain- and

loss-of-function analyses of WRKYs have demonstrated both

positive and negative regulatory functions in immune signaling

(Shen et al., 2023). Additionally, WRKYs govern hormone signaling

in plant (Shang et al., 2010; Chen et al., 2013; Li et al., 2013; Ding

et al., 2015; Zhang et al., 2015; Chen et al., 2017; Wang et al., 2023c),

regulate secondary metabolism (Suttipanta et al., 2011; Wang et al.,

2023d), and dominate stress responses (Jiang and Deyholos, 2009;

Li et al., 2020c; Ma et al., 2023).

Although the functional roles of plant WRKY transcription

factors in stress responses are well-documented, the relationship

between sequence divergences across distinct WRKY domains and

their varying biological activities is still unclear. In order to fully

understand the functional specificity encoded within differentWRKY

phylogenetic clades, further investigation is necessary Furthermore,

as critical homeostatic regulators of ROS, numerous flavonoid

biosynthetic genes harbor abundant W-box cis-elements within

their promoters (Liu et al., 2019a; Su et al., 2022a). Growing

evidence suggests that specific WRKY proteins play pivotal roles

governing flavonoid metabolism to enhance plant stress adaptation

(An et al., 2019; Wang et al., 2022). However, the specific

contributions of individual members of the WRKY subfamily in
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directing flavonoid accumulation are not well understood. In this

review, we will refine WRKY phylogenetic frameworks by

incorporating additional plant species with WRKY genes that have

been implicated in stress tolerance and flavonoid regulation. Through

these analyses, we aim to elucidate the roles of specific WRKY clades

in modulating flavonoid biosynthesis under defined abiotic stresses.
2 Phylogenetic analysis of
WRKY proteins

The WRKYs sequences of Arabidopsis (Arabidopsis thaliana),

poplar (Populus trichocarpa), maize (Zea mays), rice (Oryza sativa),

and soybean (Glycine max) were downloaded from PlantTFDB

(http://planttfdb.gao-lab.org/index.php). Protein sequences of

WRKY with certain functions mentioned in this review were

sourced from NCBI (https://www.ncbi.nlm.nih.gov). To

distinguish the presence and number of structural WRKY

domains, the sequences of WRKYs were examined by NCBI CD-

search (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/

bwrpsb.cgi) and SMART (http://smart.embl.de/). Proteins

containing the WRKY domain can be used for phylogenetic

analysis. By using bootstrap (1, 000 replicates), building a

phylogenetic tree requires the use of NJ method by MEGA 7.0

software. Finally, the phylogenetic tree was visualized and

embellished using Interactive Tree of Life (iTOL, https://

itol.embl.de/) (Letunic and Bork, 2007; Nan et al., 2020).

The phylogenetic analysis showed that the 816 WRKYs were

segregated into three canonical groups, designated as Roman

numerals (I, II, III), with seven distinct groups and represented

by colored outer circles (Figure 1), consistent with the phylogenetic

system defined by Zhang and Wang (2005). Further examination

reveals that Group II can be categorized into five unique

subdivisions: IIa, IIb, IIc, IId, and IIe (Figure 1). Subgroup I, with

172 members, is the most numerous of the 7 subgroups. Whereas

groups IIa contained only 49 members. The further division of

Group II into 5 subgroups is due to specific sequence variations in

the ZF motifs (Xie et al., 2005).

When compared to Zhang and Wang’s system (Zhang and Wang

(2005)), three WRKY proteins of the present phylogenetic analysis had

distinct classes. For example, AtWRKY10, AtWRKY19, AtWRKY45

from subgroup 1 are reassigned to II c, II c, and III, respectively.
3 WRKYs bind to specific cis-acting
regions of target genes

A platform for systematic investigations of WRKY family is

provided by the expanding genome sequencing data from many

plant species. The identification of genes crucial for specific processes

has been made possible by genome sequences, which have enabled

transcriptome profiling of some families (such as WRKY) during

particular situations (Arndt et al., 2022; Shende et al., 2022; Zhang

et al., 2022e). Furthermore, the genome-wide mapping of WRKY

binding sites and target genes has been made possible by high-
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throughput sequencing after chromatin immunoprecipitation (ChIP-

seq) (Zhou et al., 2021; Xu et al., 2022). These cutting-edge

approaches have profoundly expanded the understanding of

WRKY gene functions and regulatory networks.

The C-terminus contains the ZF structure C2H2 or C2HC,

while theWRKYGQKmotif, which forms the core region, is present

at the N-terminus (Yamasaki et al., 2005; Chen et al., 2010; Song

et al., 2018; Gu et al., 2019; Wang et al., 2021a). Some WRKY

proteins also contain WRRY, WSKY, WKRY, WVKY, or WKKY

motifs in place of the WRKY domain (Xie et al., 2005; Duan et al.,

2007; Li et al., 2020b). The binding of DNA by WRKY proteins

necessitates the ZF motif (Phukan et al., 2017). Replacing the zinc

ion in WRKY domains with the metal chelator 1,10-phenanthroline

abolishes DNA binding, indicating thatWRKY proteins possess ZFs

structures. The WRKY domain is composed of four b-sheets, a zinc-
binding pocket, and coordination with cysteine or histidine residues

make up the WRKY domain. The C-terminal of the WRKY domain

stabilizes the sequence-specific interaction between the projecting

N-terminal WRKYGQK sequence and the 6 bp DNA groove.

Therefore, WRKY proteins may attach to the W-box clusters,
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primarily the TTGACC/T motif, in promoters of target genes.

This enables them to regulate the dynamic network of signals and

responses (Yamasaki et al., 2005; Li et al., 2020b).

The core TGAC sequence is highly conserved and principally

responsible for binding by WRKY proteins (Mare et al., 2004;

Ciolkowski et al., 2008; Rahman et al., 2021). In contrast,

variations in the number, sequence, and nucleotide composition

of the flanking bases in W-boxes of target genes contribute to the

binding specificities of different WRKYs (Cheng et al., 2019).

Indeed, most target genes ofWRKYwere discovered to containW-

box cis-elements in the promoters, as identified through various

approaches. Chromatin immunoprecipitation analyses revealed that

Parsley (Petroselinum crispum) WRKY1 binds to W-boxes in the

promoters of PcWRKY3 and Pathogenesis-Related1-1 (PcPR1-1)

(Turck et al., 2004), and pepper (Capsicum annuum) WRKY6 was

able to bind to theW-boxes of theCaWRKY40, as well as defense genes

Capsicum annuum defensin 1 (CaDEF1), EXTRACELLULAR

PEROXIDASE 2 (CaPO2), and small heat shock protein 24

(CaHSP24) (Hussain et al., 2018). Furthermore, pull-down assays

was used to identify candidate W-box containing genes (AtWRKY58,
FIGURE 1

Phylogenetic analysis of identified WRKY proteins in Arabidopsis thaliana, Glycine max, Oryza sativa, Populus trichocarpa and Zea mays. A phylogenetic
tree was established using the MEGA 7.0 program and the neighborhood joining method, drawing on WRKY domain sequences. Different colors have
been utilized to distinguish between various groups or subgroups. WRKY protein sequences were obtained from NCBI (https://www.ncbi.nlm.nih.gov)
database. The 72 proteins highlighted in the inner circle originate from Arabidopsis thaliana (Supplementary Table S1), while WRKY genes from Groups I
to III are color-coded in Supplementary Table S2. The functional categories of WRKY, annotated in this review, are identified by black asterisks in
Supplementary Table S3. Supplementary Table S4 provides a comprehensive list of the protein IDs and full sequences for all analyzed WRKYs (Jeyasri
et al., 2021; He et al., 2012; Zhang et al., 2017; Yu et al., 2016).
frontiersin.org

https://www.ncbi.nlm.nih.gov
https://doi.org/10.3389/fpls.2023.1303667
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1303667
AtWRKY13, AtWRKY6) of AtWRKY53 (Miao et al., 2004).

Electrophoretic mobility shift assay was applied to uncover putative

W-box targets of WRKY38 in barley (Hordeum vulgare) (Mare et al.,

2004), WRKY26 (Li et al., 2011), WRKY11 (Ali et al., 2018), WRKY53

(Sun and Yu, 2015) in Arabidopsis, and WRKY42 (Su et al., 2015),

WRKY1, WRKY2, and WRKY4 in tobacco (Nicotiana tabacum)

(Yamamoto et al., 2004), as well as WRKY71 in rice (Liu et al., 2007).

Except W-box, WRKY proteins could also recognize several

other cis-elements (Figure 2). Rice OsWRKY13 binds the pathogen-

responsive cis-element 4 (PRE4) (TACTGCGCTTAGT) (Xiao et al.,

2013), while barley SUSIBA2/HvWRKY46 recognizes the sugar

responsive element in the iso1 promoter (Sun et al. (2003).

Moreover, PtoWRKY40 combines with the PHR1-binding site

(P1BS) element (GNATATNC) (Zhou et al., 2008; Sun et al.,

2016). The AtWRKY70 bound the WT-box sequence

(YGACTTTT) of the Pep25-responsive gene expression in parsley

protoplasts (Machens et al., 2014). In addition, the heat-inducible

OsWRKY11 was found to attach to the promoter of heat shock

elements (nGAAnnTTCnnGAAn), leading to enhanced

thermotolerance of transgenic rice seedlings (Lee et al., 2018).

In essence, WRKY takes part in a variety of regulatory processes

by regulating the expression of various cis-elements of target genes
Frontiers in Plant Science 04
(Table 1). Current studies on the cis-elements of WRKY has

primarily focused on six species, including Oryza sativa,

Arabidopsis thaliana, Petroselinum crispum, Hordeum vulgare,

Nicotiana tabacum and Capsicum annuum. It appears that

members of WRKY subgroup 2e have a preference for the PRE4

element. WRKYs in subgroup 1 typically bind to the sulfur-

responsive element (SURE), while the those in subgroup 3

interact with both the WT-box and the traditional W-box.
4 Regulatory mechanism of
WRKYs involved in their
transactivation capabilities

Extensive researches unveiled that plant WRKYs were crucial

orchestrators involved in two branches of plant innate immunity

(PII) (Jones and Dangl, 2006).

Upon perception of PAMPs, the mitogen-activated protein

kinase (MAPK) cascade is activated, leading to upregulation of

AtWRKY22 and AtWRKY29, which are two positive regulators

from 2e subgroup (Asai et al., 2002; Hsu et al., 2013). Certain

WRKYs also fulfill indispensable regulatory roles in ETI (Adachi
FIGURE 2

Various mechanisms of WRKY transcriptional activation regulation. WRKY transcription factors are regulated via a plethora of mechanisms. These range from
binding to an assortment of cis-regulatory elements such as SURE, P1BS, and PRE4, to post-translational modifications including ubiquitination, methylation,
and phosphorylation, which either activate them or mark them for degradation. Regulation may also involve altered chromatin conformations mediated by
changes in histone acetylation or methylation, as well as modulation via interactions with other nuclear proteins like WRKY and ERF.
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TABLE 1 Mechanism of WRKY on transcriptional regulation of target genes.

ubgroup Effect References

play a pivotal role in the response to such
stress. Participate in pathogens, drought,
and heat tolerance

(Lee
et al., 2018)

Regulating Phosphate Translocation and
Acquisition in Arabidopsis

(Su et al., 2015)

negatively regulates drought tolerance by
mediating stomatal movement

(Sun and
Yu, 2015)

Regulate plant responses to biotic stress and
during senescence.

(Turck
et al., 2004)

Regulate plant responses to biotic stress and
during senescence.

(Turck
et al., 2004)

Participate in cold and drought response
(Mare
et al., 2004)

Participate in elicitor-responsive
transcription of defense genes in tobacco.

(Yamamoto
et al., 2004)

Participate in elicitor-responsive
transcription of defense genes in tobacco.

(Yamamoto
et al., 2004)

Participate in elicitor-responsive
transcription of defense genes in tobacco.

(Yamamoto
et al., 2004)

participate in GA induction
(Zhang
et al., 2004)

Participate in abiotic stresses such as
low temperature

(Cheng
et al., 2019)

/
(Pandey
et al., 2018)

Regulator in Pepper Response to
Ralstonia Solanacearum

(Hussain
et al., 2018)

Regulator in Pepper Response to
Ralstonia Solanacearum

(Hussain
et al., 2018)

Participate in the senescence- and
defense-associated

(Robatzek and
Somssich, 2002)
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target gene
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S

W-box (TTGACC/T) Oryza sativa OsWRKY11
CHT2, RAB21, PR10,
Bet v1, HSP101

+ + 2

W-box (TTGACC/T)
Arabidopsis
thaliana

AtWRKY42 PHT1, PHO1 +,- – 2

W-box (TTGACC/T)
Arabidopsis
thaliana

AtWRKY53
CAT1, CAT2,
CAT3, QQS

+ – 3

W-box (TTGACC/T)/WBC
Petroselinum
crispum

PcWRKY1 PcPR1-1, PcWRKY3 – / 1

W-box (TTGACC/T)
Prunus cerasus x
Prunus canescens

PcWRKY3 PcPR1-1, PcWRKY1 – / 1

W-box (TTGACC/T) Hordeum vulgare HvWRKY38 / / / 2

W-box (CTGACC/T)
Nicotiana
tabacum

NtWRKY1 CHN48 + / 1

W-box (CTGACC/T)
Nicotiana
tabacum

NtWRKY2 CHN48 + / 1

W-box (CTGACC/T)
Nicotiana
tabacum

NtWRKY4 CHN48 + / 3

CpNpG/W-box (TTGACC/T) Oryza sativa OsWRKY71 Amy32b – – 2

W-box (TTGACC/T) Oryza sativa OsWRKY45 DPF + + 3

W-box (TTGACC/T)/
SURE
(TAAAGATTACTAATAGGAA)

Hordeum vulgare HvWRKY46 / / / 1

W-box (TTGACC/T)
Capsicum
annuum

CaWRKY6
CaDEF1,
CaPO2, CaHSP24

– + 2

W-box (TTGACC/T)
Capsicum
annuum

CaWRKY40
CaDEF1,
CaPO2, CaHSP24

– + 2

W-box (TTGACC/T)
Arabidopsis
thaliana

AtWRKY6 PR1, SIRK + + 2
c

b

a

a

b

a

b
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/ + 2d
Participate in abiotic stress tolerance and
regulation of plant defense responses.

(Ali et al., 2018)

0, HsfA2,
, APX1, / + 1 Participate in heat stress (Li et al., 2011)

– – 3 Participate in Basal Defense
(Kim
et al., 2008)

/ / 2c /
(Ciolkowski
et al., 2008)

– – 2e Participate in the abiotic stress
(Xiao
et al., 2013)

/ – 3 Regulate leaf senescence
(Machens
et al., 2014)

– – 2a Participate in phosphorus
deficiency response

(Chen
et al., 2022)

/ / 1 /
(Yamasaki
et al., 2012)

t, chitinase; DEF, defensin; DPF, diterpenoid phytoalexin factor; Hsf, heat stress transcription factor; HSP, heat shock protein; MBF1, multiprotein bridging factor;
nsporter; PO, EXTRACELLULAR PEROXIDASE; PR, pathogenesis-related; QQS, Qua-Quine Starch; RAB, RESPONSIVE TO ABA; SIRK, A SENESCENCE-
The ‘+’ represents positive regulation, the ‘-’ represents negative regulation, and the ‘/’ represents unknown.
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Oryza sativa OsWRKY13 SNAC1
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Arabidopsis
thaliana

AtWRKY70 /

W-box (TTGACT/C)/
P1BS(GNATATNC)

Populus tomentos
a Carr.
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W-box (TTGACC/T)
Arabidopsis
thaliana

AtWRKY4 /

Amy, amylases; APX, ascorbate peroxidases; Bet v, Betula verrucosa; CAT, catalase; CHN, class I chitinase; Ch
PHO1, a protein involved in loading inorganic phosphate (Pi) into the xylem of roots; PHT, phosphate tra
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et al., 2015). A plethora of WRKY genes are auto-regulated or cross-

regulated through W-box elements embedded in the promoters

(Robatzek and Somssich, 2002; Turck et al., 2004; Besseau et al.,

2012; Yang et al., 2012; Adachi et al., 2015). For instance,

CaWRKY6 activates CaWRKY40 to elevate pepper tolerance to

heat and high humidity (Cai et al., 2015).

Post-translational modifications, especially phosphorylation,

constitute key mechanisms orchestrating the transactivation

capability of WRKYs. MAPKs phosphorylate WRKY proteins,

either the DNA binding affinity is directly or indirectly altered, or

the transcriptional activity is altered (Miao et al., 2007; Adachi et al.,

2015). Prolonged MAPK activation increases the proportion of

phosphorylated WRKYs (Figure 2), amplifying downstream

signaling (Ishihama et al., 2011). For example, a MAPK kinase

kinase 1 (MEKK1) phosphorylates AtWRKY53 to increase its DNA

binding activity (Miao et al., 2007). In addition, MAPK 4 (MPK4)

phosphorylates MKS1 (MAP kinase substrate 1) to liberate

AtWRKY33 from the MKS1-WRKY33 complex, so as to targets

the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) for the

synthesis of antimicrobial camalexin (Qiu et al., 2008).

Proteasome-mediated degradation also governs WRKY levels

(Figure 2). The E3 ubiquitin protein ligase 5 (UPL5)

polyubiquitinates AtWRKY53, triggering its degradation (Adachi

et al., 2015). Through the 26S proteasome, the E3 ligase Erysiphe

necator-induced RING finger protein 1 (EIRP1) mediates the

degradation of VpWRKY11 (Yu et al., 2013).

WRKY can fine-tune their transactivation capabilities by

formation of polymers. WRKY-WRKY interactions are

widespread (Xie et al., 2006; Chen et al., 2009). For example,

WRKY proteins AtWRKY18, AtWRKY40 and AtWRKY60

interact both physically and functionally (Figure 2) (Xu et al.,

2006; Chen et al., 2010). In addition, WRKY also interact with

ethylene responsive factor (ERF) (Wang et al., 2023a) or VQ motif-

containing proteins to regulate their activities (Lei et al., 2017).

In addition, histone modifications can also impact activities of

WRKYs (Figure 2). For instance, the histone deacetylase 19

(HDA19) represses AtWRKY38 and AtWRKY62 (Kim et al.,

2008). Additionally, the histone methyltransferase suppressor of

variegation 3-9-homologous (SUVH2) epigenetically regulates

AtWRKY53 (Ay et al., 2009).

In conclusion, WRKYs emerged as pivotal regulators in

regulating plant responses to the environment. The diverse

functions are fine-tuned through intricate interaction networks

and post-translational modifications. Further elucidating these

regulatory mechanisms will provide valuable insights into

optimally modulating WRKY functions.
5 WRKYs regulate plant responses to
abiotic stresses

Plants are routinely subjected to various stresses, which impair

the normal growth and plant yield (Thomashow, 1999; Khoso et al.,

2022). To surmount the stresses, sophisticated defense mechanisms

have formed (Rushton et al., 2010; Schluttenhofer and Yuan, 2015;

Sood et al., 2021). Recent research has shown that WRKYs have
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important functions in plant defenses against various stresses,

including pathogens, cold, salinity, drought, and nutrition. The

majority of WRKYs with known functions can be classified into

three subfamilies, as shown in Figure 1; Table 2. Interestingly, WRKY

members that regulate drought stress response are mostly found in

subgroups 2b, 2c, 2d, and 2e, while those regulate salt resistance

mainly belong to the 2a, 2c, and 3 subgroups. Additionally, WRKYs

that regulate cold tolerance are mainly found in subgroups 1 and 2c,

and those involved in plant responses to heavy metal poisoning are

primarily found in subgroup 2c.
5.1 Involvement in drought stress

Drought stress results in cell dehydration, which threatens plant

growth and yield worldwide. Long-term adaptation and evolution

have led plants to have a variety of mechanisms to combat drought-

induced water deficits, including closing stomata to curb water loss,

a response mediated mostly by the abscisic acid (ABA) signaling

(Lee et al., 1999; Finkelstein et al., 2002; Oztur et al., 2002; Shinozaki

et al., 2003; Tang et al., 2016; Ahammed et al., 2020a). Under

drought stress, the abscisic acid (ABA) signaling pathway often

leads to stomatal closure (Ng et al., 2001; Qiu and Yu, 2009).

Actually, many WRKYs orchestrate plant drought responses by

regulating ABA signaling. For instance, overexpressing of

GsWRKY20, which was proven to improved response to ABA,

could enhance plant tolerance to drought stress via stomatal

closure (Luo et al., 2013). Besides, TaWRKY146-Overexpression

also enhances drought tolerance through stomatal closure (Ma

et al., 2017). In addition, soybean GmWRKY54 activates genes

connected with ABA and Ca2+ pathways, alleviates water loss, and

achieves drought resistance (Wei et al., 2019). PbrWRKY53 binds to

and upregulates 9-cis-epoxycarotenoid dioxygenase1 (PbrNCED1),

stimulating vitamin C biosynthesis and drought tolerance in

Chinese white pear (Pyrus communis) (Liu et al., 2019b). In iris

(Iris germanica), IgWRKY32 and IgWRKY50 together stimulate

ABA signaling to upgrade drought tolerance (Zhang et al., 2022c).

In contrast, the cotton GhWRKY21 and GhWRKY33, and the rice

OsWRKY5, suppress this signaling, thereby undermining drought

tolerance (Wang et al., 2019; Wang et al., 2021b; Lim et al., 2022).

Apart from stomatal and ABA regulation, a multitude of

WRKYs can enhance plants tolerance to drought by regulating

responsive genes in other pathways. Rice OsWRKY55 binds to and

upregulates the APETALA-2-like transcription factor gene (OsAP2-

39) to negatively modulate ethylene synthesis and drought tolerance

(Huang et al., 2021). Sorghum (Sorghum bicolor) SbWRKY30 in

induces the Responsive to Dehydration 19 (SbRD19), a homolog of

the Arabidopsis drought-responsive RD19 (Yang et al., 2020). In

apple, by modulating the iron-sulfur cluster biosynthesis protein

gene (MdSUFB) expression, the MdMEK2-MdMPK6-MdWRKY17

cascade regulates chlorophyll levels during drought (Shan et al.,

2021). Additionally in rice, OsWRKY11 directly upregulates

RESPONSIVE TO ABA21 (RAB21), enhancing drought tolerance

(Lee et al., 2018). PheWRKY86 also upregulates NCED1, encoding a

rate-limiting ABA biosynthetic enzyme, conferring drought

tolerance (Wu et al., 2022a).
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TABLE 2 WRKY involved in plant abiotic stresses response.
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Arabidopsis thaliana Salt GarWRKY17 2c / + + /

Arabidopsis thaliana Salt GarWRKY104 2c / + + /

Populus alba
var. pyramidalis

Salt PalWRKY77 2a
PalNAC002,
PalRD26

– – ABA- an

Phyllostachys edulis Salt PeWRKY83 2c / + + ABA-rela

Zea mays Salt
ZmWRKY20
and ZmWRKY115

3 ZmbZIP111 – – Salt-relat

Cucumis sativus L. Cold CsWRKY46 2c
ABI5/
RD29A, COR47

+ + ABA-/co

Cynodon dactylon Cold CdWRKY2 2c CdSPS1, CdCBF1 + +
Mediate s
signalling

Oryza sativa Cold OsWRKY63 1 OsWRKY76 – – Cold-rela

Brassica napus Boron BnaA9.WRKY47 2b BnaA3.NIP5;1 + + Facilitate

Capsicum annuum Phosphorus CaWRKY58 1 PHT1 + + Phosphor

Malus domestica Phosphorus MdWRKY39 2b MdPHT1;7 – – Phosphor

Oryza sativa Phosphorus OsWRKY21 3 PHT1;1 + + Facilitate

Populus deltoides X
Populus
euramericana

Phosphorus PdeWRKY65 2e PdePHT1;9 – – Pi transp
f

t

d

t

e

ld

t

o

https://doi.org/10.3389/fpls.2023.1303667
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


TABLE 2 Continued

ulation
rget
e

Regulation
of stress
response

The effect of target gene Function References
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(Yang
et al., 2022)
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Populus trichocarpa Phosphorus PdeWRKY6 2b PdePHT1;9

Populus tomentosa
Carr.

Phosphorus PtoWRKY40 2a PtoPHT1s

Oryza sativa Phosphorus OsWRKY108 3 PHT1;1

Arabidopsis thaliana Nitrogen AtWRKY46 3
GH3.1, GH3.6,
UGT75D1,
UGT84B2

Oryza sativa Phosphorus OsWRKY28 2c /
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A number of WRKYs mediate drought responses by modulating

osmolyte accumulation and ROS scavenging. For instance,

SlWRKY81 and WRKY46/54/70 suppress proline biosynthesis and

drought responses in tomato and Arabidopsis (Ahammed et al.,

2020a). Conversely, in banana (Musa acuminata), MaWRKY80

upregulates ABA biosynthesis, osmolyte accumulation, and ROS

detoxification, thereby enhancing drought tolerance (Chen et al.,

2017; Liu et al., 2020).

In summary, these compelling findings highlight the significant

roles of WRKYs, particularly in governing ABA signaling, osmolyte

metabolism and ROS homeostasis, in calibrating plant adaptation

to drought stress.
5.2 Regulation of plant resistance
to salinity

The growing issue of soil salinization is having a negative

impact on plant growth and reducing crop yields on a global

scale. Salt stress can significantly hinder plant growth, leading to

harmful consequences for agricultural production worldwide

(Hasegawa et al., 2000; Yan et al., 2022).

Several WRKYs were revealed as positive regulators in plant

tolerance to salinity. Employing CRISPR-Cas9 to knockout

OsWRKY54, Huang et al. (2022a) revealed its beneficial effect on

conferring rice tolerance to salinity. Similarly, by upregulating

GarWRKY17 and GarWRKY104, the salt tolerance of Arabidopsis

was enhanced at different developmental stages (Fan et al., 2015).

Wu et al. (2017) found that overexpressing PeWRKY83 in

Arabidopsis substantiated salt tolerance, resulting in increased

proline accumulation, higher germination rates, less electrolyte

leakage, and lower membrane damage under salt stress.

In contrast, WRKYs could also act as negative regulators on salt

resistance. Jiang et al. (2021) demonstrated that overexpressing of

PalWRKY77 in poplar compromised salt tolerance through

inhibition of ABA-responsive genes. Bo et al. (2022) indicated

that the maize (Zea mays) ZmWRKY20-ZmWRKY115 complex

in nucleus bound to promoters of basic leucine zipper (ZmbZIP111)

to inhibit the expression of ZmbZIP111, which elevated the salt

sensitivity of maize seedlings.
5.3 Orchestrating plant responses to
cold stress

Cold stress is unfavorable to normal plant development and

poses a major constraint on agricultural productivity (Andaya and

Mackill, 2003). Plants have evolved various physiological,

biochemical and molecular adaptation mechanisms to improve

cold tolerance (Ishitani et al., 1997; Ding et al., 2019; Ding and

Yang, 2022; Khoso et al., 2022). Analyzing the regulatory

mechanisms and elucidating the transcriptional networks has

uncovered many cold stress-related genes (Ritonga et al., 2021).

In particular, WRKYs are instrumental to cold tolerance across

plant species. WRKY members in 1 and 2c, were found to regulate
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the chilling stress. Overexpressing CsWRKY46 from cucumber

(Cucumis sativus L.) caused higher tolerance to freezing by

upregulating the expression of Responsive to Desiccation gene

(RD29A) and cold regulated 47 gene (COR47), and by positively

regulating expression of some ABA-regulated genes under low

temperature stress (Zhang et al., 2016). By contrast, rice

OsWRKY63 downregulated various genes related to chilling

response and ROS-scavenging, and negatively regulated chilling

tolerance via the WRKY63-WRKY76-DREB1B regulatory cascade

(Zhang et al., 2022d). CdWRKY2 positively regulated cold

responses by binding to promoters of sucrose phosphate

synthase1 (CdSPS1) and C-repeat binding factor 1 (CdCBF1) in

bermudagrass (Cynodon dactylon), thereby coordinating sucrose

biosynthesis and the CBF pathway (Huang et al., 2022b).
5.4 Fine-tuning plant responses to nutrient
deficiency and other stresses

Insufficient or excessive levels of soil nutrients impede plant

growth. Nutrient deficiency symptoms in plants vary from element

to element. As one of the important plant nutrients, phosphorus

deficiency affects the photosynthetic rate of plant leaves, the growth

of plant stems and the formation of reproductive organs(Barry,

1988; Lauer et al., 1989). Besides, deficiencies of boron or nitrogen

(NH4
+) also seriously affect plant growth (Tanada, 1978; Krueger

et al., 1987; Zhang et al., 2021b).

WRKY also has multiple roles in regulating these plant nutrients.

For instance, suppression of OsWRKY28 resulted in decreased

phosphate (Pi) accumulation in rice (Wang et al., 2018). In

addition, OsWRKY21 and OsWRKY108 can positively regulate the

expression level of phosphate transporter (OsPHT1;1) for Pi

accumulation (Zhang et al., 2021a). In apple, overexpression of

MdWRKY39 led to phosphorus deficiency through up-regulating

MdPHT1;7 (Zhou et al., 2023). In poplar, a phosphate starvation

response 1 (PHR1) homolog can interact with PtoWRKY40 to inhibit

the transcription of PtoPHT1, thereby mediating an increase in Pi

content (Chen et al., 2022). Besides, PdeWRKY6 and PdeWRKY65

modulated tissue Pi concentration by coordinating the expression of

PdePHT1;9 (Yang et al., 2022). CaWRKY58 activated PHT1 and

coordinated with Ca14-3-3 to improve Pi concentration under the Pi-

insufficient conditions (Cai et al., 2021). In addition, BnaA9.WRKY47

enhanced the tolerance of rapeseed to boron deficiency by

upregulating the boric acid channel gene (BnaA3.NIP5;1), thus

increasing boron uptake (Feng et al., 2020). AtWRKY46 suppressed

the expression of GDP-D-mannose pyrophosphohydrolase (NUDX9)

and IAA-conjugating genes, resulting in root tolerance to NH4
+ (Di

et al., 2021).

WRKY also play important roles in regulating plant responses

to other stresses, including heat and cadmium toxicity. Qin et al.

(2022) hypothesized that Arabidopsis ABT1/WRKY14 plays a key

negative regulatory role in plant thermomorphogenesis. Zhang et al.

(2020) demonstrated that Cd induces WRKY13 to activate D-

CYSTEINE DESULFHYDRASE (DCD) expression to elevate H2S

level and enhance Cd tolerance in Arabidopsis.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1303667
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1303667
6 Mechanism of WRKY affecting
flavonoid synthesis

Plants are inevitably challenged by various environmental

stresses including drought, high salinity, cold, ultraviolet (UV)

radiation damage (Apel and Hirt, 2004; Torres and Dangl, 2005;

Ferreyra et al., 2012; Choudhury et al., 2017; Song et al., 2022;

Sugimoto et al., 2022). Recent evidence indicates that flavonoids, a

class of antioxidants, are capable of scavenging the overproduced

ROS and alleviating oxidative injury (Pi et al., 2016; Pi et al., 2018;

Pi et al., 2019; Yu et al., 2020; Qian et al., 2021; Wu et al., 2022b).
6.1 Regulation of flavonoid biosynthesis
in plants

Flavonoids encompass several subclasses, including

anthocyanins, proanthocyanidins, flavones, flavanols, flavonols,
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flavanones and isoflavones (Panche et al., 2016; Durazzo et al.,

2019; Luo et al., 2019). More than 10, 000 diverse variants are

generated by glycosylation and other modifications (Weston and

Mathesius, 2013). Anthocyanins in particular confer bright colors to

plant tissues and also act as antioxidants. Flavonoid biosynthesis

proceeds through a branched pathway catalyzed by sequential

enzymatic reactions. The biosynthesis of flavonoid is regulated by

an intricate transcriptional network. Distinct WRKYs can integrate in

various ways and exert different regulatory effects on flavonoid

synthesis (Table 3; Figure 3).

WRKYs directly regulate flavonoid synthesis by transactivation of

related enzyme genes. In apple, MdWRKY11 regulates anthocyanin

synthesis through directly binding to the flavonoid 3-O-glycosyl-

transferase (UFGT) promoter (Liu et al., 2019a); MdWRKY40 binds

anthocyanidin synthase (MdANS) promoter (Zhang et al., 2019); and

MdWRKY41 negatively regulates anthocyanin and proanthocyanidins

biosynthesis by binding W-boxes of apple anthocyanin reductase

(MdANR), MdUFGT, myb avian myeloblastosis viral oncogene
TABLE 3 Mechanism of WRKY on metabolism of flavonoids.

Species
WRKY
name

Subgroup
Regulation
of
target gene

Regulation
of
biological

Target
gene

Function References

Arabidopsis
thaliana

AtWRKY41 3 / – /
Negative regulation of
anthocyanin biosynthesis

(Duan
et al., 2018)

Malus
crabapple

McWRKY71 2c + + McANR
Enhance
proanthocyanidin biosynthesis

(Zhang
et al., 2022b)

Malus
domestica

MdWRKY75 2c + + MdMYB1 Enhance anthocyanin accumulation
(Su
et al., 2022b)

Malus
domestica

MdWRKY71-
L

2c + +
MdUFGT
and MdMYB1

Enhance anthocyanin accumulation
(Su
et al., 2022a)

Malus
domestica

MdWRKY40 2a + + MdUFGT
Promote wounding-induced
anthocyanin biosynthesis

(An et al., 2019)

Malus
domestica

MdWRKY11 2d + + MdUFGT Enhance anthocyanin accumulation
(Liu
et al., 2019a)

Malus
domestica

MdWRKY41 3 – –

MdANR,
MdUFGT
and MdMYB12

Negatively regulates anthocyanin
and PA biosynthesis

(Mao
et al., 2021)

Malus
domestica

MdWRKY72 2b + +
MdHY5
and MdMYB1

Enhance anthocyanin accumulation
(Hu
et al., 2020)

Malus
domestica

MdWRKY1 2d / + / Enhance anthocyanin accumulation
(Ma
et al., 2021a)

Vitis vinifera VvWRKY26 1 + + VvCHI
Improved activation efficiency and
flavonoid accumulation

(Amato
et al., 2019)

Vitis vinifera VqWRKY56 2b + +
VvCHS3,
VvLAR1,
and VvANR

Promote proanthocyanidin
biosynthesis and increase resistance
to powdery mildew

(Wang
et al., 2023d)

Pyrus L. PpWRKY44 1 + + PpMYB10 Stimulating anthocyanins
(Alabd
et al., 2022)

Pyrus
bretschneideri

PbWRKY75 2c + +
PbDFR,
PbUFGT,
and PbMYB10b

Promote anthocyanin synthesis
(Cong
et al., 2021)

Pyrus L. PyWRKY26 1 + + PyMYB114 Promote anthocyanin synthesis (Li et al., 2020a)
ANR, anthocyanin reductase; ANS, anthocyanidin synthase; CHI, chalcone isomerase; CHS, chalcone synthase; DFR, dihydroflavonol 4-reductase; F3H, flavanone 3-hydroxylase; HY,
ELONGATED HYPOCOTYL; LAR, leucine anthocyanin reductase; MYB, myb avian myeloblastosis viral oncogene homolog; UFGT, flavonoid 3-O-glycosyl-transferase. The ‘+’ represents
positive regulation, the ‘-’ represents negative regulation, and the ‘/’ represents unknown.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1303667
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1303667
homolog 12 (MdMYB12) (Mao et al., 2021); MdWRKY71-L targets

MdUFGT (Su et al., 2022a). In crabapple (Malus crabapple),

McWRKY71 controls McANR and proanthocyanidin synthesis

(Zhang et al., 2022b). In grape, VqWRKY56 binds chalcone synthase

3 (VvCHS3), leucine anthocyanin reductase1 (VvLAR1) and VvANR,

inducing proanthocyanidins (Wang et al., 2023d). In pear, PyMYB10

activates pear anthocyanin structural gene (Feng et al., 2010).

PpWRKY44 activates PpMYB10 by binding to its promoter for light-

induced anthocyanin accumulation (Alabd et al., 2022). PbWRKY75

has shown to promote anthocyanin synthesis in pear by binding the

promoters of dihydroflavonol 4-reductase (PbDFR) and PbUFGT

(Cong et al., 2021). FaWRKY71 stimulates anthocyanin

accumulation in strawberry (Fragaria×ananassa) by upregulating

genes in the synthetic pathway [flavonoid 3’-hydroxylase (FaF3’H),

FaLAR, FaANR, anthocyanin transporter genes transparent testa 19

(FaTT19) and transparent testa 12 (FaTT12)] (Yue et al., 2022).

WRKYs also influence flavonoid biosynthesis indirectly through

modulation of other regulators. In apple, MdWRKY1 activates a long

noncoding RNA (MdLNC499) and MDERF109 expression, which in

turn increases anthocyanin accumulation by inducing the expression of

MdUFGT,MdCHS and basic helix-loop-helix 3 (MdbHLH3) (Ma et al.,

2021a); MdWRKY71-L regulates anthocyanin synthesis via the

ELONGATED HYPOCOTYL 5 (MdHY5)-MdMYB1 cascade;

MdWRKY40 forms homodimers that bound two W-boxes in

MdANS promoters, mitigating MdMYB111 inhibition of MdANS

(Zhang et al., 2019); MdWRKY75 stimulates anthocyanins by

associating with the MdMYB1 promoter (Su et al., 2022a);
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MdWRKY72 binds MdHY5 and MdMYB1 (Hu et al., 2020); and

MdWRKY11 binds with MdHY5 (Liu et al., 2019a). In pear,

PpWRKY44 upregulates PpMYB10 to stimulate anthocyanins (Alabd

et al., 2022); PyWRKY26 in conjunction with PybHLH3 targets the

PyMYB114 promoter, thus affecting anthocyanins accumulation (Li

et al., 2020a). In Arabidopsis, the WRKY41 mutation heightens

anthocyanin levels, indicating AtWRKY41 represses anthocyanin

synthesis by regulating AtMYB75, AtMYB111, AtMYBD, AT1G68440

and AtGSTF12 (Duan et al., 2018). In cotton, Group IIc WRKYs

induce flavonoids by controlling protein kinase kinase 2 (GhMKK2), a

signaling kinase (Wang et al., 2022). In crabapple, McWRKY71

regulates proanthocyanidin synthesis by interacting with McMYB12

(Zhang et al., 2022b).

Furthermore, WRKY forms transcriptional complexes with other

transcription factors. MYB, bHLH and WD40 compose the MBW

complex to modulate PA synthesis and anthocyanin (Nesi et al., 2001;

Ramsay and Glover, 2005; Gou et al., 2011). WRKYs participate in

regulating the MBW complex. For example, VvWRKY26 is absorbed

into the MBWW complex by VvMYB5a to regulate flavonoid

hydroxylation in grape (Amato et al., 2017; Amato et al., 2019).

Thus, the biosynthesis of flavonoids is regulated by a complex

transcriptional network. WRKYs utilize various strategies, such as

directly binding to target promoters, interacting with other

regulators, or forming transcriptional complexes, to regulate

flavonoid biosynthesis. The combined efforts of multiple WRKYs

and the interactions with other transcription factors allow for

precise control over this metabolic pathway.
FIGURE 3

Depiction of the role of WRKY in the biosynthesis of flavonoid. The complex role of WRKY in regulating flavonoid biosynthesis highlights its crucial
function in this pathway and subsequent stress responses in plants. The WRKY protein modulates flavonoid biosynthesis by controlling the
expression of flavonoid biosynthesis genes in various ways. MdWRKY1 and VqWRKY56 can influence the transcription of CHS, while VvWRKY26 can
control CHI expression by forming the MBWW complex. PbWRKY75 might enhance the expression of DFR. MdWRKY11, MdWRKY71-L, MdWRKY40,
and MdWRKY75 can directly or indirectly control the expression of UFGT. MdWRKY72, MdWRKY11, PpWRKY44, and PyWRKY26 can impact
anthocyanin synthesis by forming the MYB-WRKY complex. In addition to positive regulation, MdWRKY41 also has a role in negatively regulating ANR
synthesis. All these pathways influence the synthesis of anthocyanin or proanthocyanidin ultimately. Arrows represent positive regulation, and T-bars
represent negative regulation. CHS, chalcone synthase; CHI, chalcone isomerase; F3H: flavanone 3-hydroxylase; DFR, dihydroflavonol 4-reductase;
ANS, anthocyanidin synthase; ANR, anthocyanin reductase; UFGT, flavonoid 3-O-glycosyl-transferase.
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6.2 Elevation of plant stress tolerances
through flavonoid synthesis

WRKYs play pivotal roles in modulating the synthesis of various

flavonoid for regulating plant responses to various abiotic stresses caused

by UV-B, O3, and wounding, etc. UV-B-induced apple MdWRKY71-L

promotes in apple anthocyanin accumulation by directly activating

MdUFGT and MdMYB1 (Su et al., 2022a). When exposed to UV-B

radiation in the transgenic calli, MdWRKY72 directly control

anthocyanin synthesis via promoting MdMYB1, or indirectly regulates

by interacting with MdMYB16 (Hu et al., 2020; Mao et al., 2021). In

addition, McWRKY71 directly binds to the McANR, thus regulate the

PA biosynthesis in regard to O3 stress in crabapple (Zhang et al., 2022b).

Moreover, MdWRKY40, interacting with MdMYB1, enhance the

activation of target genes in reaction to injuries (An et al., 2019).

Apart from abiotic stresses, WRKY also partakes in biotic stresses

by regulating the biosynthesis of flavonoids. For example, expression

of VqWRKY56 activates PA biosynthesis genes (VvCHS3, VvLAR1

and VvANR) (Wang et al., 2023d). The upregulation of GhMYC2 by

group IIc WRKYs induced GhMKK2-GhNTF6 signaling and

increased cotton resistance to Fusarium oxysporum via enhancing

flavonoid biosynthesis. This demonstrates a novel defense

mechanism mediated by WRKY-MAPK-regulated flavonoid

biosynthesis against pathogen infection in cotton (Wang et al., 2022).

In short, WRKYs participate in almost all stages of flavonoid

synthesis and regulate flavonoid synthesis genes through diverse

mechanisms. However, the contribution of WRKY-mediated

flavonoid synthesis to plant tolerance has been poorly characterized.
7 Conclusion and perspective

In this review, we optimized existing WRKY phylogenetic trees

and tried to deduce unifying themes of distinct WRKY subfamilies

governing specific stress responses and flavonoid metabolism.

Analysis of documented data reveals WRKY members across all

subgroups participate in flavonoid synthesis. However, WRKYs

regulating salt tolerance mainly belong to subgroups 2a, 2c and 3.

Given their shared protein motifs (Tables 2, 3; Figure 1), it is

reasonable to hypothesize these WRKY subgroups promote

flavonoid accumulation to enhance plant salinity tolerance. Similar

hypotheses could be proposed for WRKY homologs tuning

flavonoids to elevate plant resistance to cold, drought and nutrient

deficiency. However, only a handful of studies have demonstrated

direct relationships between WRKY-modulated flavonoid synthesis

and stress tolerance. Perhaps the significant contribution of

flavonoids has been overlooked in analyzing stress resistance, and

roles of the WRKY-flavonoid interplay in plant stress tolerance

deserve greater attention in future work. Nonetheless, laboratory

validation remains necessary to verify these hypotheses.

On the other hand, research on WRKY-mediated flavonoid

regulation has focused on few species like apple, Arabidopsis,

grapevine and crabapple. Could WRKY regulate flavonoid

synthesis in other species via distinct pathways? Molecular

mechanisms underlying flavonoid-enhanced plant stress resilience

remain largely unclear. Particularly, flavonoid regulation by WRKY
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transcription factors and subsequent impacts on plant stress

response warrant deeper exploration.

Further research is imperative to elucidate the complex crosstalk

between flavonoid metabolism and stress signaling cascades. In

subsequent studies, integrating transcriptomic and metabolomic

analyses could prove insightful. Transcriptomics can provide

comprehensive information about WRKY transcription factors and

identify flavonoid pathway target genes. Metabolomics can directly

assess functional outcomes of WRKY-mediated flavonoid regulation.

Together, these efforts will uncover valuable knowledge for

engineering flavonoid pathways to improve multiple stress

tolerance in economically important crops.
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