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Introduction: Chinese Herbal Medicine (CHM), with its deep-rooted history and

increasing global recognition, encounters significant challenges in automation for

microscopic identification. These challenges stem from limitations in traditional

microscopic methods, scarcity of publicly accessible datasets, imbalanced class

distributions, and issues with small, unevenly distributed, incomplete, or blurred

features in microscopic images.

Methods: To address these challenges, this study proposes a novel deep learning-

based approach for Chinese Herbal Medicine Microscopic Identification (CHMMI).

A segmentation-combination data augmentation strategy is employed to expand

and balance datasets, capturing comprehensive feature sets. Additionally, a

shallow-deep dual attention module enhances the model's ability to focus on

relevant features across different layers. Multi-scale inference is integrated to

process features at various scales effectively, improving the accuracy of object

detection and identification.

Results: The CHMMI approach achieved an Average Precision (AP) of 0.841, a

mean Average Precision at IoU=.50 (mAP@.5) of 0.887, a mean Average Precision

at IoU from .50 to .95 (mAP@.5:.95) of 0.551, and a Matthews Correlation

Coefficient of 0.898. These results demonstrate superior performance compared

to state-of-the-art methods, including YOLOv5, SSD, Faster R-CNN, and ResNet.

Discussion: The proposed CHMMI approach addresses key limitations of traditional

methods, offering a robust solution for automating CHMmicroscopic identification.

Its high accuracy and effective feature processing capabilities underscore its

potential to modernize and support the growth of the CHM industry.
KEYWORDS

Chinese herbal medicine, deep learning, attention mechanism, cell recognition,
data augmentation
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1 Introduction

Chinese Herbal Medicine (CHM) is a cornerstone of traditional

Eastern healthcare and has been integrated into disease treatment.

With roots deeply embedded in ancient Chinese science, CHM

symbolizes Eastern medicine’s cultural heritage and underscores a

comprehensive medical paradigm that has garnered global

recognition for its efficacy. This acknowledgement has notably

surged during the COVID-19 pandemic, highlighting the potential

of CHM in contributing to contemporary medical practices and

prompting a broader international acceptance and trust in its

remedies. The burgeoning trust in CHM has catalyzed a substantial

expansion of its market, with recent data indicating an annual output

reaching 4,555 million tons and daily testing frequencies surpassing

22 million instances. CHM includes plant, animal, and mineral

medicines, and according to the Chinese Materia Medica, there are

8,980 kinds of herbs in total. With the addition of medicines used by

ethnic minorities, the number of varieties has reached more than

28,000 so far (Li, 1999). These figures reflect the growing reliance on

CHM for healthcare purposes and underscore the potential of the fast

inspection market within this domain. However, the predominant

methodologies employed for CHM identification, particularly

through traditional manual microscopy, present numerous

challenges. These methods are labor-intensive, require extensive

expert knowledge, suffer from low throughput due to the

microscopic equipment’s limited field of view, and are prone to

human error from tester fatigue, potentially leading to misjudgments.

There are four traditional identification methods for CHM: original

plant (i.e., animal) identification, character identification, microscopic

identification, and physical and chemical identification. Original plant
Frontiers in Plant Science 02
(i.e., animal) identification Yin et al. (2019) was performed by observing

the appearance of plants, animals, and minerals in morphological form

and classifying herbs using knowledge of taxonomy. Character

identification Thongkhao et al. (2020) was carried out by eyes, hand,

nose, mouth taste, water test, fire test, and other simple ways to identify

medicinal materials. Microscopic identification Ichim et al. (2020) uses

microscopy to observe tissue structure, cell shape, and the features of

inclusions of medicinal herbs to determine the nature of cell walls and

cell inclusions or the distribution of active ingredients of certain species

in tissues, and finally to achieve the identification of authenticity of

herbal medicines. Physical and chemical identification Peng and Tsa

(2020) is to use certain physical, chemical, or instrumental analysis

methods to identify the authenticity, purity, and quality of traditional

Chinese medicines. Generally, the first three conventional identification

techniques rely primarily on abundant working experience, making

distinguishing similar or analogous substances difficult.

However, physical and chemical identification is a highly

advanced technique, particularly tedious, requiring specialized

equipment and high costs. The need for an advanced, reliable,

and less subjective method is evident, particularly to keep pace with

the increasing scale of CHM testing and support the industry’s

growth and modernization efforts.

The development of artificial neural networks has opened up

new avenues for image recognition, and deep learning-based

methods have shown great success in various applications Chen

et al. (2022); Jiang et al. (2022). As shown in Figure 1, several key

challenges hinder the development of automated CHMmicroscopic

identification systems:

1) Data collection difficulties and class imbalance: We found

no publicly available herbal microscopic image datasets after
FIGURE 1

Challenges in Chinese herbal medicine microscopy identification.
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reviewing the literature and searching search engines. CHM image

datasets often exhibit significant class imbalance, where certain cell

types or features are underrepresented. This can lead to biased

models that perform poorly on rare classes.

2) Small and Uneven Features: CHM microscopic images

contain small and unevenly distributed features, making it

difficult for traditional object detection algorithms to locate and

classify them accurately.

3) Incomplete and Blurriness Cell Structures: The grinding

process used to prepare CHM samples can damage cell structures,

resulting in incomplete or ambiguous features that further

complicate identification.

This paper proposes a novel methodology, CHMMI, which

innovatively applies a segmentation-combination method for data

augmentation, allowing the model to capture more comprehensive

feature sets from the available microscopic images. Furthermore, by

integrating attention mechanisms, CHMMI enhances the model’s

focus on relevant features across different layers, thereby improving

the accuracy of CHM identification. Finally, features across multiple

scales and dimensions effectively detect and identify herbal

microscopic images. The contributions of this paper can be

summarized as follows:
Fron
• We propose a data augmentation strategy for generating

more datasets by random cutting and random combination

for the problem that a single image in CHM micrographs

includes many different cells, which can extend and balance

the datasets and provide a solid foundation for the training

and prediction of the actual model.

• We develop a shallow-deep dual attention module that

effectively captures valid auxiliary information from

different channels in shallow and deep layers. This

facilitates the processing of small, uneven features and

incomplete and blurry cell structures in CHM.

• In the final prediction stage, we integrate three features with

different object scales through a multi-scale inference

module to predict objects in the image.

• We evaluate the performance of CHMMI through a series

of comparison experiments with existing state-of-the-art

approaches, such as YOLOv5 Zhu et al. (2021), SSD Liu

et al. (2016), Faster R-CNN Khan et al. (2022), and ResNet

He et al. (2016). The experimental results demonstrate that

CHMMI achieves higher accuracy than these approaches,

highlighting its potential for practical application in CHM

microscopic identification.
2 Related work

Image recognition has significantly advanced by integrating

deep learning techniques, predominantly categorized into one-

stage and two-stage detection algorithms. These methodologies

have been extensively employed across various sectors, including

healthcare, autonomous driving, and precision agriculture,

progressively encompassing microscopic image analysis for CHM.
tiers in Plant Science 03
2.1 Deep learning-based image
recognition methods

Several image recognition approaches based on deep learning

have been proposed, including two-stage detection algorithms (e.g.,

Faster RCNN, SSD) and one-stage detection algorithms (e.g.,

RetinaNet, YOLO). These algorithms have achieved state-of-the-

art performance in various image recognition tasks, such as face

detection, object detection, and image classification. For example,

Sun et al. (2018) improved the state-of-the-art Faster RCNN

framework by combining several strategies, proposed a new face

detection scheme using Deep Learning, and achieved the state-of-

the-art detection performance on the well-known FDDB face

detection benchmark evaluation. Zhai et al. (2020) proposed an

improved SSD object detection algorithm based on Dense

Convolutional Network (DenseNet) and feature fusion; the

algorithm replaces the original backbone network VGG-16 of

SSD with DenseNet-S-32-1 to enhance the feature extraction

ability of the model. Wang et al. (2020) proposed an automatic

ship detection model based on RetinaNet, the model solves the

problem that ships have multi-scale shape features in SAR images

due to the diversity of SAR imaging patterns and the diversity of

ship shapes, resulting in poor recognition rates. Yu et al. (2021)

proposed a Deep Learning model named YOLOv4-FPM to realize

real-time detection for bridge cracks by unmanned aerial vehicles.

Yan et al. (2021) proposed an improved yolov5-based lightweight

apple target detection approach for apple picking robots to address

the problem that existing apple detection algorithms cannot

distinguish between apples obscured by tree branches and apples

obscured by other apples, leading to picking failure. Kim et al.

(2022) proposed an approach with Maritime Dataset on modified

YOLO-V5 with the SMD-Plus, the approach solves the problem of

poor recognition rates due to the presence of noisy labels and

imprecisely positioned bounding boxes in SMD.

The YOLO series of algorithms have been widely used in

various applications, including object detection, pedestrian

detection, and facial recognition. YOLOv5, in particular, has been

shown to be effective in detecting objects in images with varying

sizes, scales, and orientations.
2.2 Microscopic image recognition for
Chinese herbal medicine

In microscopic image recognition for CHM, researchers focus

on several challenges, including the uneven distribution of sample

classes and small differences between classes, stereoscopic features

of cells, and the effect of background color on recognition rate.

For the first type of problem, Wang et al. (2020b) used

techniques such as dynamic ReLU function and multi-channel

color space to use Xception with obvious classification effect as

the base network, and replaced the static ReLU in the network with

dynamic ReLU so that each small sample has a unique ReLU

parameter. For the second type of problem, Ying et al. (2012)

analyzed the differences in the characteristics of cross-sections and

powders of stems and leaves of two herbs, Buddleja albiflora Hemsl
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and Buddleja davidii Franch, which provided important criteria for

the recognition of these two herbs. Ye et al. (2014) used a method of

fusion of coaxial X-ray and micro-CT imaging techniques for three-

dimensional nondestructive in situ microscopic imaging of the

microscopic image of Amomi Rotundus Fructus and Alpiniae

Katsumadai Semen seeds. This method obtained information on

the microscopic image’s internal microstructure and different cross-

sectional orientations. For the third type of problem, Wang et al.

(2017) used MATLAB software to program the stitching of the

cross-sectional tissue images of the CHM Achyranthes bidentata

and Cyathula officinalis. The features such as texture, color, and

invariant moment of the microscopic image were extracted to

recognize the two herbs effectively. Wang et al. (2020a) used a

multi-channel and improved attention method to stitch the

microscopic image data of 34 herbal catheters with images of

different color spaces of the images themselves before inputting

them into the network, and the method effectively improved the

accuracy of recognition.

The above work mainly focuses on researching a single

problem. However, three types of problems simultaneously exist

in detecting CHM microscopic images. Our CHMMI method

shows promising results.
3 Problem statement

CHM identification relies on the microscopic examination of

herbal powders to verify their authenticity. Each herb can be

identified by specific cellular structures, termed “feature cells”, as

illustrated in Figure 2. For example, identifying Scutellaria
Frontiers in Plant Science 04
baicalensis requires detecting six distinct feature cells in

microscopic images. We believe that the features of herbal

microscopic images have a direct relationship with the accuracy

of cell recognition. Therefore, we formulate the problem: How can

we achieve automated herbal microscopic identification on an

insufficient data-level scale and with an unbalanced distribution

of sample data?

To systematically approach the problem, we define the terms

and notations used in this study: Given the dataset of microscopic

images X and their corresponding annotations Y, the objective is to

develop a fitted model f (X) that accurately identifies and classifies

the feature cells in new, unseen microscopic images of CHM.

Le t X =   X1, X2,…, Xi,…, XNf g r ep r e s en t s t h e s e t o f

microscopic images used in the dataset, where each image Xi may

contain one or more cell features and N is the total number of

images. Associated with each image are target bounding boxes Y =

  Y1, Y2,…, Yi,…, YNf g, where each Yi contains one or more

bounding boxes indicating the location of feature cells within the

image Xi. For each feature cell j in image Xi, the bounding box is

represented as Yj
i = xji1, y

j
i1

h i
, xji2, y

j
i2

h in o
and xji1, y

j
i1

h i
are the

coordinates of the upper-left and lower-right corners of the

bounding box, respectively.
4 Methods

This section presents three main modules: the Microscopic

Image Data Augmentation (MIDA) Module, the Shallow-Deep

Dual Attention (SDDA) Module, and the Multi-scale Inference

(MI) Module, as shown in Figure 3. These modules are designed to
FIGURE 2

Quality testing process of herbal medicine by feature cells.
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improve the accuracy and reliability of microscopic image analysis

in the study of Chinese herbal medicine.
4.1 Microscopic image data
augmentation module

The MIDAmodule is used to augment and balance the available

dataset for training and predicting herbal microscopic images. Our

MIDA module associates some of the images with features that are

only partially or partially clear, enhancing the representation of

specific cell types or features. The detailed steps of MIDA are listed

as follows:
Fron
1. Random Selection: Randomly select two images from the

original dataset, such as Figures 4A, B.

2. Horizontal Segmentation: Each image is segmented into

two halves along the horizontal axis.

3. Recombination: Two distinct segments are chosen and

stitched together to form four new images from the pool of

segmented halves. This ensures that the resultant image

differs from the original images (a) and (b), thus enhancing

feature representation and diversity.

4. Augmentation Techniques: Beyond simple recombination,

MIDA incorporates advanced image processing techniques

inspired by YOLOv5, such as mirroring, translation, and
tiers in Plant Science 05
rotation. These techniques enhance the dataset’s diversity

further, enabling the model to generalize better across

unseen images during inference.
4.2 Shallow-deep dual attention module

The SDDA module addresses several prevalent issues in the

microscopic examination of CHM cells, such as the uneven

distribution of cells with distinct morphological features and

incomplete and blurry cell structures. This module integrates two

attention mechanisms: the Shallow Channel Attention Mechanism

(SCAM) and the Deep Channel Attention Mechanism (DCAM).

4.2.1 Shallow channel attention mechanism
The core concept of SCAM is to address the problem of uneven

cell distribution in CHM cell images by assigning more weights to

cell information with significant morphological features while

ignoring unimportant feature information, thus improving the

image feature recognition rate. The SCAM mechanism consists of

three main components: Squeeze, Excitation, and Scale, as shown in

Figure 3A. The Squeeze operation performs a global average

pooling on the image features to compress the features and

reduce the dimensionality. The Excitation operation predicts the

importance of each channel using a gating mechanism of the
FIGURE 3

Network structure of CHMMI. MIDA is allowed to expand and balance the existing herbal microscopic image dataset. SDDA better captures cell
features in the microscopic examination of CHM cells. MI integrates and analyzes features across multiple scales and dimensions intelligently to
make final decisions.
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Sigmoid form, which enables the network model to learn the

importance of each channel automatically. Finally, the Scale

operation outputs the resulting 1 × 1 × C real numbers with the

original feature images, where C is the number of channels. The

specific implementation of the SCAM module is given as follows:

Firstly, the input E is transformed through a series of

convolution operations to obtain the features U. Use V =  ½v1, v2,
…, vC� to denote a series of convolution kernels, where vC denotes

the parameters of the cth layer convolution. That is, the output

feature U =  ½u1, u2,…, uC� can be expressed as follows:

uc = vC ∗ E = o
C0

S=1
 VS

C ∗ E
S (1)

where ∗ denotes the convolution operation VS
C denotes the cth

convolution kernel of the sth input, ES denotes the sth input.

Secondly, a global average pooling Zaidi et al. (2022) is

performed by the Squeeze operation in the SCAM module for the

image features U, intending to compress the image features U. The

compressed image feature becomes a one-dimensional real number

z, and z is denoted as the residual channel statistic. Suppose the

length of the output is set to c, Zc = ½z1, z2 ……, zc�, (x, y) denotes
the size is the feature of W ∗H, x is the horizontal coordinate and y

is the vertical coordinate. That is, the cth element of z can be given

by is expressed as:

zc =
1

H �W
uc(x, y) (2)

Immediately after, the importance of each channel is predicted

by the Excitation operation in the SCAM module using a gating

mechanism of the Sigmoid form to obtain the nonlinear

relationship between the different channels. Assuming that W1  ∈
 R

r�c
c ,  W2  ∈  R

r
c�c are two different fully connected layers, r is the

dimensionality reduction rate when r is small, the global
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information of the upper layer can be better preserved, but the

computational cost will be relatively increased. To balance

propagation speed and detection accuracy, refer to SENet Wang

and Yoon (2021) and set r to 16. The final output parameter of the

Excitation operation is the weight w of each feature channel, and w
can be expressed as follows:

w = s (W2 � d (W1 � z)) (3)

where, s is the Sigmoid function, d is the ReLU

activation function.

Finally, the resulting 1 × 1 × C real numbers are output with the

original feature images by the Scale operation in the SCAMmodule.

The formula is listed as follows:

~EC = wcuc (4)

where ~EC = ½~e1,~e2,…,~ec� denotes the product of the

corresponding pixel points in the channel between the image

feature uc ∈ RW�H and the scalar wc. The Scale operation enables

the network model to automatically learn the importance of each

channel, thus enhancing the recognition of image features.

4.2.2 Deep channel attention mechanism
The DCAM module subtly enhances the feature representation

extracted from the cells by adaptively recalibrating the channel

feature response to address the CHM’s incomplete and blurriness

cell structure. The core of DCAM lies in the clever use of the ECA

attention mechanism to function at deeper layers of the network,

especially at the level where the semantic information is becoming

progressively more abstract and where information localization is

critical in accuracy. This is particularly beneficial in the context of

the CHMMI network structure, where the fusion of features across

d i ff e ren t d imens ions i s c r i t i ca l for ach iev ing h igh

detection performance.
FIGURE 4

Example of MIDA processing. The MIDA module enhances the dataset through image segmentation (A) into a-left and a-right, (B) into b-left and b-
right) and recombination (new_img1, new_img2, new_img3, new_img4, etc.), multiplying the number of images and introducing variability in
the dataset.
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In the CHMMI network, the DCAM is strategically positioned

within the ‘Neck’ layer, a critical juncture for feature fusion and

refinement. This layer utilizes architectures like the Path

Aggregation Network (PAN) and Feature Pyramid Network

(FPN) to effectively amalgamate rich locational details from

shallow layers with deeper, semantically strong features. The goal

is to enhance the upward and lateral flow of information across the

network, ensuring that each level receives a balanced mix of depth-

specific features. The specific implementation of the DCAMmodule

is given as follows:

The Neck layer has three different dimensional feature outputs

towards the Prediction layer, namely low (El), medium (Em), and

high (Eh). Taking Eh as an example, Eh can be expressed as follows:

Eh = e(E + f + g)⊕ (Em + g) + d (5)

where + denotes the serial processing of features. ⊕ denotes

tensor stitching, assigning weights to the input features at different

levels. f denotes the processing of input features by the SPPF

module, g denotes the processing of input features by the CBS

module, and d denotes the processing of input features by the

C3_1_F Zhu et al. (2021) module.

The DCAM module modifies the conventional channel

attention by implementing a three-step process—Squeeze,

Convolve, and Scale—tailored to handle multi-dimensional data

more effectively:

Firstly, the input Eh is transformed through a series of

convolution operations to obtain the feature Uh.

Secondly, the global average pooling of the feature Uh is

performed using the Squeeze operation to compress the feature

Uh. The feature Uh is compressed into a one-dimensional real

number z. For the cth cell in z, the following is calculated:

zc =
1

H �W
uhc (x, y) (6)

Next, to avoid dimensionality reduction, the DCAM module is

implemented by a one-dimensional convolution with a convolution

kernel size of k cross-channel information interaction. The equation

is expressed as follows.

w = s (C1Dk(zc)) (7)

where, C1D is the one-dimensional convolution Wang et al.

(2019). k is the size of the one-dimensional convolution kernel to

represent the cross-channel range of interactions. k has a feature

mapping relationship with the number of channels c, which can be

calculated adaptively by the following equation.

k = y (C) = ‖ log2 (C)=g + b=g ‖odd (8)

where, ∥ n ∥odd is the closest odd number to n. Referring to the

experiments in the literature ECA Wang et al. (2019), g and b are

set to 2 and 1. By mapping y, high-dimensional channels have

longer interactions, while low-dimensional channels have shorter

interactions using nonlinear mappings.

Lastly, the obtained weights and the original feature image are

output by the Scale operation in DCAM, and the final residual

features are represented as follows.
Frontiers in Plant Science 07
~Eh
C = wc : u

h
c (9)

Similarly, the low-dimensional residual features ~El
C and the

medium-dimensional residual features ~Em
C can be obtained
4.3 Multi-scale inference module

The MI module is a crucial component of the CHMMI network

and is responsible for effectively detecting and identifying herbal

microscopic images. It intelligently integrates and analyzes features

across multiple scales and dimensions, enabling the model to

capture local and global information from the input images. The

module consists of two main components: feature fusion and

microscopic recognition.

The feature fusion module integrates features from different

scales and channels using a feature pyramid network (FPN),

allowing the model to capture local and global information from

the input images. This is achieved by up-sampling the feature maps

and fusing them with the shallow feature maps, resulting in a richer

feature representation that facilitates accurate identification of

cellular structures.

The microscopic recognition module is responsible for

predicting the presence and location of cellular features in the

input images. This is accomplished by applying a combination of

convolutional and spatial attention mechanisms to focus on

relevant regions of the images. The module outputs a set of

bounding boxes and confidence scores for each predicted feature.

The input herbal microscopic images are meshed, and if there is a

center of the object in the mesh, the mesh is used to predict this

object. The prediction of each grid cell includes information on the

location of the three object-bounding boxes and a confidence level.

An object box corresponds to four position information (x,y,w,h)

and one confidence information. Where x and y denote the location

of the object’s center point, w and h denote the center point’s width

and height from the object’s two sides. Confidence C represents the

predicted object box contains two-fold information about the

confidence of the object and the accuracy of the prediction of this

object box, and the formula is expressed as follows:

C = Pr(obj)� IOUA
B (10)

where IOU =  (A ∩ B)=(A ∪ B) A denotes the real box, B

denotes the predicted box, IOUA
B denotes the intersection ratio of

A and B. when Pr(obj) = 1, it indicates that there is an object in the

image, when Pr(obj) = 0, it indicates that there is no object in

the image.

We use Non-maximum Suppression (NMS) Wu et al. (2020) to

eliminate redundant prediction boxes and filter out high-quality

detection results.
4.4 Training strategy

During the training phase, a three-part loss function is used:

object loss, category loss, and confidence loss.
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The object loss measures the difference between the predicted

and ground-truth bounding boxes. It is calculated using the

following equation:

lobj = o
S�S

i=0
o
N

j=0
Iobjij

h
(xi − x̂ i)

2 +   (yi − ŷ i)
2
i

+o
S�S

i=0
o
n

j=0
Iobjij (

ffiffiffiffiffi
wi

p
−

ffiffiffiffiffi
ŵ i

p
)2 +   (

ffiffiffiffi
hi

p
−

ffiffiffiffiffi
ĥ i

q
)2

� � (11)

where S × S denotes the partitioning of the input image into S ×

Smesh grids; N denotes a grid responsible for predicting number of

boxes; (xi, yi,wi, hi) denotes the position information of the real

box; (x̂ i, ŷ i, ŵ i, ĥ i) denotes the position information of the

predicted box; Iobjij denotes that the jth prediction box of each of

the ith network is responsible for predicting object obj is 1,

otherwise is 0.

The category loss measures the difference between the predicted

class probabilities and the ground-truth class labels. It is calculated

using the following equation:

lcls = o
S�S

i=0
 Iobjij o

c∈classes

((pi(c) − p̂ i(c))
2 (12)

where, c denotes the number of categories; pi(c) denotes the

probability of the true category; p̂ i(c) denotes the probability of the

predicted category.

The confidence loss was calculated using CIOU Zheng et al.

(2020), and the equation was expressed as follows:

lciou = o
S�S

i=0
 o
n

j=0
 Iobjij (Ci − Ĉ i)

2 + lnoobjo
S�S

i=0
 o
n

j=0
 Inoobjij (Ci − Ĉ i)

2 (13)

where Inoobjij denotes 0 when the jth prediction box of the ith

network is not responsible for predicting an object and 1 otherwise.

lnoobj is to reduce the confidence loss of the prediction box for the

non-existent object obj. In this paper, reference paper Wang et al.

(2021) sets lnoobj to 0.5.

The total loss is the weighted sum of the three components of

object loss, category loss, and confidence loss, expressed by the

following equation.

L = alobj + b lcls + g lciou (14)

where, a, b, g denote the weights of the three loss

components respectively.
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5 Experiments

To evaluate the performance of the proposed CHMMI method

for microscopic image analysis of Chinese herbal medicines, we

conducted a series of comprehensive experiments using our

custom-built dataset. The experiments were designed to assess the

effectiveness of CHMMI for accurately identifying and classifying

different types of feature cells presented in the microscopic images

of Scutellaria Baicalensis(SB) and Magnolia Officinalis(MO).
5.1 Experiment setup

5.1.1 Datasets
Due to the lack of publicly available datasets for microscopic

images of Chinese herbal medicines, we constructed our dataset by

preparing slides of powdered SB and MO. We used a Nikon E200

electron microscope with a 40/0.65 objective and the software

Labeling to label the microscopic image of Chinese medicine

feature cells. The resulting dataset consists of 11,060 microscopic

images containing 12,840 labeled instances of nine distinct types of

feature cells. The distribution of images and labeled instances for

each feature cell type is shown in Table 1. These feature cells include

Fibers, Stone cells, and Oil cells for MO, Phloem fibers, Stone cells,

Corkcells, Vessels, Xylary fibers, and Starch granules for SB.

Figure 5 presents sample images of the nine feature cell types.

To ensure a robust evaluation of the proposed CHMMImethod,

the dataset was partitioned into training and test sets following an

8:2 ratio. Furthermore, to rigorously assess the effectiveness of the

CHMMI method and its individual components, we conducted a

five-fold cross-validation experiment on the training dataset. This

involved splitting the training data into five non-overlapping

subsets. Each subset was then used in turn as a validation set

while the remaining four subsets were combined for training.

Applying each of the five trained models to the test set,

generating five sets of prediction results for every test sample.

Implementing a voting mechanism across the five predictions to

determine the final predicted label for each test sample.

5.1.2 Implementation details
We implemented the CHMMI method based on the PyTorch

deep learning framework YOLOv5, training the model on an

NVIDIA GeForce RTX 3090 GPU with 24GB memory. The

model has trained 100 epochs with the Adam optimizer, using a
TABLE 1 Statistics of Chinese medicine microscopic image annotation dataset.

Dateset
MO SB

Fibers Stonecells Oilcells Phloem Stonecells Corkcells Vessels Xylary Starch

Images 7555 1662 576 304 156 550 229 13 15

Boxes 9080 1726 644 353 171 580 257 13 16

Images Total 9793 1267

Boxes Total 11450 1390
fr
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learning rate of 0.001 and a batch size of 16. In our implementation,

we adopted a three-scale anchor system: P3/8, P4/16, and P5/32.

Specifically, the P3/8 scale anchors are designed to detect small

targets, the P4/16 anchors are geared towards medium-sized targets,

and the P5/32 anchors aim to detect large targets. This hierarchical

structure ensures comprehensive coverage of the target size

spectrum within the microscopic images.

5.1.3 Evaluation metrics
To evaluate the CHMMI algorithm ’s performance

comprehensively, we select four evaluation metrics: precision,

Recall, Average Precision (AP) curve, Mean Average Precision

(MAP), and Matthews Correlation Coefficient(MCC). These

metrics evaluate the algorithm’s ability to accurately identify and

classify the feature cells present in microscopic images.

Precision denotes the ratio of true positive cases predicted to be

true to all predicted positive cases Liu et al. (2018). It is calculated as:

precision = TP=(TP + FP) (15)

where TP denotes that the predicted value is the same as the

true value, and the predicted value is a positive sample; FP denotes

that the predicted value is different from the true value, and the

predicted value is a positive sample.

Recall denotes the ratio of true positive cases predicted to be

true to all true positive cases. It is calculated as:
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recall = TP=(TP + FN) (16)

where FN denotes that the predicted value is not the same as the

true value and the predicted value is a negative sample.

The AP curve is the area surrounded by the curve in two

dimensions: Precision and Recall. Usually, Precision is higher when

Recall is lower and lower when Recall is higher. That is, the larger

the AP curve, the better the model’s performance.

MAP is a comprehensive evaluation metric focusing on

sequence weights. It has become one of the most important

practical metrics for image recognition problems in recent years.

mAP@.5 indicates that the average AP of all images under each

category is calculated at IoU=0.5, and the higher the value of mAP,

the better the model’s performance.

MCC is an effective and comprehensive evaluation metric

widely used in tasks with unbalanced sample categories, such as

defect detection. It is particularly suitable for performance

evaluation of binary classification models because it integrates the

predictions of the model’s TP, TN, FP, and FN and is thus more

robust than other metrics in evaluating the model’s ability to

distinguish between positive and negative samples. It is calculated

as:

MCC =
TP � TN − FP � FN

(TP + FP)� (TP + FN)� (TN + FP)� (TN + FN)
(17)
FIGURE 5

Sample images of the 9 cell types.
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5.2 Comparisons with state-of-the-
art methods

To assess the efficacy of our proposed CHMMI, we compared it

with several widely adopted state-of-the-art image recognition

algorithms. Specifically, we benchmarked our method against

YOLOv5 Zhu et al. (2021), SSD Liu et al. (2016), Faster R-CNN

Khan et al. (2022), ResNet He et al. (2016), FINet Zhang et al.

(2022), YOLOT Liu et al. (2024), and an improved version of

YOLOv5 (Improved_yolov5) Hu et al. (2024). These algorithms

represent diverse architectural paradigms and have demonstrated

exceptional performance across various computer vision tasks,

providing a robust baseline for comparative analysis.

Table 2 presents the quantitative results of the comparative

analysis. As the table shows, our proposed CHMMI approach

outperformed all the state-of-the-art methods across all four

evaluation metrics. Specifically, CHMMI achieved an impressive

AP of 0.841, surpassing the second-best performer, YOLOT, by a

significant margin of 0.013. Furthermore, CHMMI attained the

highest mAP@.5 of 0.887, outperforming the closest competitor,

Improved_yolov5, by 0.006. CHMMI demonstrated its superiority

in the most challenging mAP@.5:.95 metric, achieving a remarkable

score of 0.551, 0.016 higher than the second-best performer,

Improved yolov5. CHMMI performs excellently on the

comprehensive evaluation metric MCC, achieving an outstanding

score of 0.898, surpassing the second-place YOLOT by 0.011.

To provide a visual representation of the performance difference,

we plot the Receiver Operating Characteristic (ROC) curves for both

YOLOv5 and CHMMI, using thresholds ranging from 0.1 to 1.0.

Figure 6 illustrates these curves, revealing a higher Area Under the

Curve (AUC) value for CHMMI (0.83) compared to YOLOv5 (0.74),

further confirming CHMMI’s superior performance.

In comparison to other CNN models, the CHMMI model has

several advantages. For example, the YOLOv5 model uses a single-

stage detection approach, which may not be suitable for handling

the complexity of microscopic images. The SSD model uses a multi-

scale feature fusion approach, but it may not be able to capture the

contextual information of cells as effectively as the CHMMI model.
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The Faster R-CNN model uses a two-stage detection approach, but

it may not be able to handle the issues of uneven cell distribution

and incomplete and blurry cell structures as effectively as the

CHMMI model. The ResNet model uses a residual learning

approach, but it may not be able to capture the complex

relationships between cells as effectively as the CHMMI model.

These results underscore the efficacy of our proposed approach in

accurately detecting and localizing objects under varying degrees of

occlusion and overlap.

In addition, we show the detection results of our CHMMI

model, as shown in Figure 7. As can be seen from the figure,

CHMMI can not only identify different categories of Chinese

medicine feature cells but also accurately detect incomplete and

blurriness cell structures.
5.3 Ablation studies

5.3.1 Effectiveness of different modules
To assess the impact of each proposed module, we conducted a

comprehensive set of ablation studies. Specifically, we systematically

included or excluded the Microscopic Image Data Augmentation

(MIDA), Shallow Channel Attention Module (SCAM), and Deep

Channel Attention Module (DCAM) from our model and evaluated

its performance. We employ a five-fold cross-validation strategy

during the training phase to ensure a robust evaluation and mitigate

the potential impact of data partitioning bias. The training dataset is

divided into five non-overlapping subsets. For each fold, one subset

is held out for validation, while the remaining four subsets are used

for training. This process results in five distinct sets of model

weights (M1, M2, M3, M4, and M5). During the testing phase,

each of the five trained models (M1 to M5) is independently applied

to the test set. This generates five sets of prediction results for each

test sample. To combine these predictions, we implement a voting

mechanism. The final predicted label for each test sample is

determined by selecting the category that received the most votes

across the five individual model predictions.
TABLE 2 Comparisons with state-of-the-art methods.

Method AP mAP@.5 mAP@.5:.95 MCC

YOLOv5
Zhu et al. (2021)

0.803 0.843 0.511 0.753

SSD Liu et al. (2016) 0.781 0.819 0.532 0.798

Faster R-CNN
Khan et al. (2022)

0.629 0.757 0.521 0.647

ResNet He et al. (2016) 0.712 0.823 0.513 0.695

FINet Zhang et al. (2022) 0.637 0.869 0.524 0.823

YOLOT Liu et al. (2024) 0.828 0.877 0.531 0.887

Improved_yolov5
Hu et al. (2024)

0.807 0.881 0.535 0.873

CHMMI 0.841 0.887 0.551 0.898
FIGURE 6

ROC Curves for models YOLOv5 and CHMMI.
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The data in Table 3 demonstrates a clear trend of increasing

model performance as more modules are incorporated. The

inclusion of all three modules (MIDA, SCAM, and DCAM)

results in the highest precision (P), recall(R), mAP@.5, and

mAP@.5:.95. This suggests a synergistic effect between data

augmentation, shallow feature attention, and deep feature

attention mechanisms. The consistent improvement across all

evaluation metrics indicates that the SDDA is vital in enhancing

object detection accuracy. Furthermore, the results show that

including MIDA alone significantly improves the model’s

performance compared to using SCAM or DCAM individually.

This highlights the importance of data augmentation in improving

the model’s ability to detect objects in microscopic images.

Integrating MIDA, SCAM, and DCAM leads to the most

significant improvement in object detection accuracy,

emphasizing the importance of combining data augmentation,

shallow feature attention, and deep feature attention mechanisms.

5.3.2 Effectiveness of microscopic image data
augmentation module

The MIDA module plays a crucial role in enhancing the

performance of our model by addressing the challenges posed by

limited and imbalanced datasets of herbal microscopic images. It is

particularly effective when dealing with images that only partially

demonstrate certain features or cell types. By enhancing the

representation of these specific attributes, we improve our data’s

overall quality and diversity.

To evaluate the effectiveness of the MIDA module, we

conducted extensive experiments by training our model with and
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without the augmented dataset generated by MIDA. The results, as

shown in Table 4, demonstrate the significant impact of MIDA on

the model’s performance metrics. As evident from the table,

including the MIDA module resulted in significant improvements

across all performance metrics. The precision and recall values

increased from 0.831 and 0.808, respectively, without MIDA to

0.854 and 0.835 with MIDA, indicating a substantial enhancement

in the model’s ability to accurately classify cell types and features

while minimizing false positives and false negatives. Moreover, the

mean Average Precision (mAP) values, which comprehensively

evaluate the model’s performance across different confidence

thresholds, also exhibited notable improvements. The mAP@.5,

which measures the average precision at an intersection-over-union

(IoU) threshold of 0.5, increased from 0.843 without MIDA to 0.855

with MIDA. Similarly, the mAP@.5:.95, which averages the

precision values across IoU thresholds ranging from 0.5 to 0.95,

improved from 0.511 to 0.522 with MIDA.

5.3.3 Effectiveness of shallow-deep dual
attention module

The SDDA module represents a significant advancement in

addressing the complex challenges inherent in the microscopic

examination of CHM cells. This module integrates the strengths of

both shallow and deep feature representations within the model. The

heatmaps in Figure 8 provide a visual representation of the impact of

the SDDAmodule. When only the SCAM is used, the model tends to

focus on less relevant areas, potentially discarding crucial feature

information. Conversely, when only the DCAM is used, the attention

becomes scattered, hindering the model’s ability to focus on the
FIGURE 7

Visualization of the detection results using CHMMI.
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TABLE 3 Experimental results using SCAM only, DCAM only, and SCAM+DCAM.

MIDA SCAM DCAM Model P R mAP@.5 mAP@.5:.95

M1 0.874 0.789 0.834 0.507

M2 0.804 0.809 0.845 0.508

M3 0.811 0.763 0.839 0.509

M4 0.821 0.787 0.812 0.491

M5 0.793 0.830 0.844 0.511

vote 0.831 0.808 0.843 0.511

M1 0.883 0.791 0.842 0.520

M2 0.845 0.811 0.864 0.522

✓ M3 0.841 0.793 0.840 0.512

M4 0.833 0.801 0.818 0.497

M5 0.799 0.837 0.858 0.517

vote 0.854 0.835 0.855 0.522

M1 0.884 0.811 0.869 0.521

M2 0.821 0.809 0.863 0.518

✓ M3 0.828 0.849 0.859 0.516

M4 0.825 0.823 0.853 0.497

M5 0.805 0.838 0.850 0.514

vote 0.851 0.831 0.861 0.522

M1 0.875 0.811 0.841 0.509

M2 0.812 0.831 0.852 0.520

✓ M3 0.859 0.798 0.855 0.530

M4 0.825 0.812 0.847 0.493

M5 0.831 0.846 0.860 0.517

vote 0.856 0.835 0.868 0.528

M1 0.891 0.825 0.878 0.530

M2 0.859 0.815 0.867 0.522

✓ ✓ M3 0.849 0.849 0.868 0.519

M4 0.842 0.835 0.858 0.504

M5 0.824 0.841 0.861 0.519

vote 0.876 0.844 0.881 0.532

M1 0.902 0.814 0.875 0.529

M2 0.865 0.838 0.877 0.525

✓ ✓ M3 0.864 0.823 0.857 0.535

M4 0.838 0.826 0.850 0.506

M5 0.835 0.847 0.869 0.527

vote 0.868 0.845 0.879 0.537

M1 0.893 0.821 0.877 0.524

M2 0.863 0.848 0.861 0.538

✓ ✓ M3 0.866 0.848 0.860 0.537

(Continued)
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foreground regions of interest precisely. However, the simultaneous

use of both SCAM and DCAM results in a focused and accurate

attention map, highlighting the model’s ability to detect cells with

diverse morphological features, even incomplete or blurry.

Overall, the Shallow-Deep Dual Attention module effectively

enhances the CHMMI model’s ability to accurately detect and
TABLE 3 Continued

MIDA SCAM DCAM Model P R mAP@.5 mAP@.5:.95

M4 0.858 0.839 0.849 0.518

M5 0.845 0.857 0.865 0.532

vote 0.873 0.854 0.879 0.541

M1 0.917 0.838 0.885 0.531

M2 0.897 0.850 0.875 0.549

✓ ✓ ✓ M3 0.874 0.856 0.883 0.546

M4 0.871 0.849 0.866 0.534

M5 0.861 0.871 0.882 0.543

vote 0.905 0.871 0.887 0.551
The symbol ✓ indicates that the module has been selected.
FIGURE 8

Heatmap examples using SCAM only, DCAM only, and SDDA.
TABLE 4 Experimental results with and without microscopic image data
augmentation module.

Module Name P R mAP@.5 mAP@.5:.95

w/o MIDA 0.831 0.808 0.843 0.511

w MIDA 0.854 0.835 0.855 0.522
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analyze CHM cells by addressing the limitations of individual

attention mechanisms. The combination of SCAM and DCAM

allows the model to focus on relevant features and handle various

challenges in microscopic cell examination, leading to improved

performance and more accurate results.
6 Conclusion

Traditional Chinese Herbal Medicine (CHM) identification

methodologies, such as original plant identification, character

identification, microscopic identification, and physical and

chemical identification, have long been relied upon but present

significant challenges regarding labor intensity, subjectivity, and

limitations in distinguishing similar substances. The rapid growth

of the CHM market and the need for modernization call for more

advanced and reliable identification techniques. Developing deep

learning-based methods, particularly artificial neural networks,

offers a promising solution to automate CHM microscopic

identification. Our proposed methodology, CHMMI, addresses

key challenges in automated CHM identification by combining

segmentation methods with data augmentation and integrating

attention mechanisms to enhance feature recognition and model

accuracy. By effectively capturing small and uneven features and

addressing issues with incomplete and blurry cell structures in

CHM samples, CHMMI outperforms existing state-of-the-art

approaches in experimental comparisons. CHMMI can be

integrated into the quality control processes of CHM

manufacturers. Automating the identification of herbal

components can ensure consistency in raw material selection,

detect adulterants or contaminants, and maintain the purity of

herbal preparations. This application could significantly improve

product quality and safety, potentially reducing the risk of adverse

reactions due to misidentified or contaminated herbs. CHMMI can

accelerate the discovery of new bioactive compounds from

traditional herbal medicines in pharmaceutical research. By

quickly and accurately identifying cellular structures, researchers

can more efficiently screen large numbers of herbal samples,

potentially leading to the development of novel drugs or therapies.

While CHMMI shows superior performance, understanding

why certain features are prioritized over others could be beneficial.

Future research will focus on developing or integrating explainable

AI techniques to provide insights into the model’s decision-making

process, enhancing trust and acceptance in clinical and

regulatory settings.
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